JPH10195208A - Rubber-reinforcing fiber and production of rubber-molded product using the same - Google Patents

Rubber-reinforcing fiber and production of rubber-molded product using the same

Info

Publication number
JPH10195208A
JPH10195208A JP58397A JP58397A JPH10195208A JP H10195208 A JPH10195208 A JP H10195208A JP 58397 A JP58397 A JP 58397A JP 58397 A JP58397 A JP 58397A JP H10195208 A JPH10195208 A JP H10195208A
Authority
JP
Japan
Prior art keywords
rubber
fiber
liquid
fibers
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58397A
Other languages
Japanese (ja)
Inventor
Ichiro Hanamori
一郎 花森
Hisashi Nakahara
寿 中原
Eiichi Sasagawa
栄一 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP58397A priority Critical patent/JPH10195208A/en
Publication of JPH10195208A publication Critical patent/JPH10195208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject fiber that can increase uniform dispersion of fibers without damage to the physical properties of the rubber molding product and has increased adhesion to the matrix rubber by applying a liquid rubber excellent in compatibility the rubber on the surface of the reinforcing fiber. SOLUTION: This objective fiber is produced by applying >=1wt.% of a liquid rubber (or rubber in liquid at room temperature), particularly an isoprene liquid rubber with a molecular weight of 10,000-70,000, to the fiber that can be divided or f'ibrillated by the mechanical shear force caused in the mixing or molding in the rubber-molding step (Banbury or roll kneading step), preferably comprises (A) a polyvinyl alcohol polymer and (B) an acrylonitrile polymer where the cross sections of the fibers are islands or either A or B is islands and the other is the sea (matrix) and the weight A/B ratio is 90/10-20/80. This fiber and the matrix rubber are kneaded, molded by extrusion molding, when desired, vulcanized (hot-press vulcanization treatment) to give a fiber-reinforced rubber molding product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マトリックス・ゴムの
補強に用いられる繊維及び該補強用繊維を用いたゴム成
型体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber used for reinforcing matrix rubber and a method for producing a molded rubber article using the reinforcing fiber.

【0002】[0002]

【従来の技術】強度、摩耗性等の物性を向上させるため
に補強繊維を配合したゴム(繊維補強ゴム)が各種ゴム
用途分野で使用されている。補強効果が十分発揮される
ためには、繊維/ゴム間の良好な接着力を確保しなが
ら、繊維がマトリックス・ゴム中に均一に分散されるこ
とが重要である。補強繊維とマトリックスの接着性が低
いと補強効果が十分発揮されず、また繊維分散に不均一
化が生じると、製品各部位における性能に大きな差異が
生じて製品の品質が不十分となるのみでなく、補強効果
も十分得られない。通常の短繊維は、繊維同志が絡みや
すくかつ繊維間の滑りが悪いために均一分散性が低く、
繊維をゴム中に均一に分散させるためには長時間混練す
ることが必要であり、また長時間混練しても分散性がや
はり不十分になりやすかった。
2. Description of the Related Art Rubber (fiber reinforced rubber) containing reinforcing fibers for improving physical properties such as strength and abrasion has been used in various rubber application fields. In order for the reinforcing effect to be sufficiently exhibited, it is important that the fibers are uniformly dispersed in the matrix rubber while ensuring good adhesion between the fibers and the rubber. If the adhesion between the reinforcing fiber and the matrix is low, the reinforcing effect will not be sufficiently exhibited, and if the fiber dispersion becomes uneven, a large difference will occur in the performance of each part of the product and the quality of the product will only be insufficient. In addition, a sufficient reinforcing effect cannot be obtained. Normal short fibers have low uniform dispersibility due to easy entanglement between fibers and poor slippage between fibers.
It is necessary to knead the fibers for a long time in order to disperse the fibers uniformly in the rubber, and even if the fibers are kneaded for a long time, the dispersibility tends to be insufficient.

【0003】以上のことから、繊維分散性を高めるため
に様々な検討が加えられている。たとえば低融点の熱可
塑性樹脂を用いて単繊維を集束したものをゴム中に添加
混練する方法が提案されている。この方法によれば、ま
ず集束糸がゴム中に分散し、次いでゴム混練工程で生じ
る熱により熱可塑性樹脂が溶融して繊維が分繊するた
め、繊維の均一分散性という点では優れた効果が得られ
る。
[0003] In view of the above, various studies have been made to enhance fiber dispersibility. For example, a method has been proposed in which a single fiber bundle obtained by using a thermoplastic resin having a low melting point is added and kneaded in rubber. According to this method, first, the bundled yarn is dispersed in the rubber, and then the thermoplastic resin is melted by the heat generated in the rubber kneading step to separate the fibers, so that an excellent effect in terms of uniform dispersion of the fibers is obtained. can get.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この化
学的接着処理には比較的大なる費用を要し、また、繊維
およびマトリックスによっては充分な接着力が得られな
いケースがあり、さらには、ゴム中に熱可塑性樹脂が残
存するためにゴム本来の性能が損なわれる可能性があっ
た。本発明の目的は、以上のことを鑑み、均一分散性お
よび補強性に優れ、かつゴム本来の性質を損なわない優
れたゴム補強用繊維を提供することにある。
However, this chemical bonding process requires a relatively large cost, and there are cases where a sufficient bonding force cannot be obtained depending on the fibers and the matrix. Since the thermoplastic resin remains therein, the original performance of the rubber may be impaired. In view of the above, an object of the present invention is to provide an excellent rubber reinforcing fiber which is excellent in uniform dispersibility and reinforcing property and does not impair the inherent properties of rubber.

【0005】[0005]

【課題を解決するための手段】本発明は、液状ゴムが付
着したゴム補強用繊維、および液状ゴムが付着したゴム
補強用繊維とマトリックス・ゴムからなる混合物を加熱
して加硫するゴム成型体の製造方法に関する。
SUMMARY OF THE INVENTION The present invention relates to a rubber molded article obtained by heating and vulcanizing a rubber reinforcing fiber to which liquid rubber is adhered, and a mixture of the rubber reinforcing fiber to which liquid rubber is adhered and a matrix rubber. And a method for producing the same.

【0006】繊維表面にゴムとの相溶性に優れた液状ゴ
ムを付着させることにより、繊維/ゴム間の濡れ性が向
上すると同時にマトリックス・ゴムの溶融粘度が低下す
るため、繊維の均一分散性を顕著に高めることができ
る。さらに、通常の熱可塑性樹脂がマトリックス・ゴム
に存在するとゴム本来の性能が損なわれる可能性がある
が、本発明においては、液状ゴムがゴム加硫段階でマト
リックス・ゴムと共加硫するためゴム成型物の物性は損
なわれず、さらにマトリックス・ゴムと補強繊維の接着
性が高まり優れた効果が得られる。
[0006] By adhering a liquid rubber having excellent compatibility with rubber to the fiber surface, the wettability between the fiber and the rubber is improved and at the same time the melt viscosity of the matrix rubber is reduced. Can be significantly increased. Furthermore, if a normal thermoplastic resin is present in the matrix rubber, the inherent performance of the rubber may be impaired.In the present invention, however, the liquid rubber is co-vulcanized with the matrix rubber in the rubber vulcanization step. The physical properties of the molded product are not impaired, and the adhesiveness between the matrix rubber and the reinforcing fibers is enhanced, so that an excellent effect can be obtained.

【0007】本発明でいう液状ゴムとは、常温で液体の
ゴムをいい、繊維分散性及び取扱性の点では融点50℃
以下のものが好ましい。具体的には液状化天然ゴム(分
子量約100万程度以上の通常の天然ゴムを熱分解処理
して分子量を数万程度としたもの)、液状イソプレン系
合成ゴム、液状ニトリル・ブタジエン・ゴム(NB
R)、液状スチレン・ブタジエン・ゴム(SBR)、液
状ブタジエン・ゴム(BR)などが挙げられ、これらを
併用してもよい。マトリックス・ゴムと分子構造が近似
しているものを使用するのが好ましい。なかでもイソプ
レン系液状ゴムが好ましく、特に分子量1〜7万のもの
が好ましい。対ゴム接着の点では、30モル%をこえな
い範囲でマレイン酸、イタコン酸で変性された液状イソ
プレンゴムが好ましく、液状イソプレンゴムと分子量1
〜5万程度の液状化天然ゴムを併用するのがより好まし
い。
[0007] The liquid rubber in the present invention refers to a rubber which is liquid at normal temperature, and has a melting point of 50 ° C in terms of fiber dispersibility and handleability.
The following are preferred. More specifically, liquefied natural rubber (which is obtained by subjecting ordinary natural rubber having a molecular weight of about 1,000,000 or more to thermal decomposition to a molecular weight of about tens of thousands), liquid isoprene-based synthetic rubber, and liquid nitrile / butadiene / rubber (NB
R), liquid styrene-butadiene rubber (SBR), liquid butadiene rubber (BR), and the like, and these may be used in combination. It is preferable to use one having a molecular structure similar to that of the matrix rubber. Of these, isoprene-based liquid rubber is preferred, and those having a molecular weight of 10,000 to 70,000 are particularly preferred. From the viewpoint of adhesion to rubber, a liquid isoprene rubber modified with maleic acid or itaconic acid is preferable within a range not exceeding 30 mol%, and a liquid isoprene rubber and a molecular weight of 1
More preferably, about 50,000 liquefied natural rubber is used in combination.

【0008】該液状ゴムの分子量は5000以上10万
以下とするのが好ましい。かかる分子量のものはマトリ
ックス・ゴムの性能が損なわれにくく、また粘度も適度
であるため繊維分散性及び繊維への付着処理工程性の点
で好ましい。また液状ゴムの付着量は、繊維重量に対し
て1重量%以上、特に8重量%以上、さらに10〜30
0重量%、さらには15〜150重量%とするのが好ま
しい。本発明においては、共加硫可能な液状ゴムを使用
しているためマトリックス・ゴムへの影響は極めて小さ
く多量に使用することができる。しかしながら、付着量
をある程度以上大きくしても繊維分散性はそれほど改善
されず、経済的に好ましくない。
[0008] The molecular weight of the liquid rubber is preferably 5,000 or more and 100,000 or less. Those having such a molecular weight are preferred in terms of fiber dispersibility and processability of adhering to fibers because the performance of the matrix rubber is hardly impaired and the viscosity is moderate. The amount of the liquid rubber adhered to the fiber is 1% by weight or more, particularly 8% by weight or more, and more preferably 10 to 30%.
It is preferably 0% by weight, more preferably 15 to 150% by weight. In the present invention, since the co-vulcanizable liquid rubber is used, the influence on the matrix rubber is extremely small, and it can be used in a large amount. However, even if the adhesion amount is increased to a certain degree or more, the fiber dispersibility is not so much improved, which is not economically preferable.

【0009】繊維のアスペクト比は繊維分散性、補強効
果の点で30〜1500、特に50〜800であるのが
好ましい。アスペクト比を小さくすれば繊維の分散性は
向上するものの、繊維表面積が小さくなり十分な接着力
の確保ができず補強効果は発揮されにくくなる。本発明
においては液状ゴムを付着させているため、アスペクト
比の大きい繊維を使用しても分散性が低下しにくく優れ
た補強効果が得られる。本発明でいうアスペクト比と
は、繊維長を繊維横断面と同一の面積を有する円の直径
で除した値である。なお、単繊維が液状ゴムで集束され
た集束糸として使用してもよく、該集束糸も本発明に含
まれる。
The aspect ratio of the fibers is preferably from 30 to 1500, particularly preferably from 50 to 800, from the viewpoint of fiber dispersibility and reinforcing effect. If the aspect ratio is reduced, the dispersibility of the fiber is improved, but the surface area of the fiber is reduced and a sufficient adhesive force cannot be secured, so that the reinforcing effect is hardly exhibited. In the present invention, since the liquid rubber is adhered, even if a fiber having a large aspect ratio is used, the dispersibility is hardly reduced and an excellent reinforcing effect can be obtained. The aspect ratio in the present invention is a value obtained by dividing the fiber length by the diameter of a circle having the same area as the cross section of the fiber. In addition, a single fiber may be used as a bundled yarn bundled with liquid rubber, and the bundled yarn is also included in the present invention.

【0010】本発明で使用される繊維の素材は特に限定
されず、たとえばポリエステル系繊維(ポリアリレ−ト
系繊維を含む)、ポリビニルアルコ−ル系繊維、パラア
ミド系繊維、メタアラミド系繊維等の有機合成繊維、ガ
ラス繊維、アルミナ繊維、炭素繊維等の無機繊維が使用
できる。繊維の太さとしては、0.1〜20デニール、
特に1〜10デニールのものが好ましい。繊維強度は5
g/d以上、特に7g/d以上が好ましく、ヤング率は
100g/d以上、特に150g/d以上が好ましい。
The material of the fiber used in the present invention is not particularly limited. For example, organic synthetic fibers such as polyester fibers (including polyarylate fibers), polyvinyl alcohol fibers, paraamide fibers, and metaaramid fibers are used. Inorganic fibers such as fiber, glass fiber, alumina fiber and carbon fiber can be used. As the thickness of the fiber, 0.1-20 denier,
Particularly, those having 1 to 10 denier are preferable. Fiber strength is 5
g / d or more, particularly preferably 7 g / d or more, and Young's modulus is preferably 100 g / d or more, particularly preferably 150 g / d or more.

【0011】繊維としては、ゴム成型加工工程の混合ま
たは成型する際(たとえばバンバリ−、ロ−ル混練工
程)に生じる機械的剪断力により繊維が分割、細径化す
るものが好ましく、その平均径が混合前の2/3以下と
なるものがより好ましい。このときの分割後の平均繊維
直径は9μm以下、特に5μm以下、さらに0.03〜
3μmであるのが好ましい。かかる繊維を用いれば、良
好な分散性が得られると同時に優れた補強効果が得られ
る。
The fiber is preferably one in which the fiber is divided and reduced in diameter by the mechanical shearing force generated during mixing or molding in the rubber molding process (for example, Banbury and roll kneading process). Is more preferably 2/3 or less before mixing. At this time, the average fiber diameter after division is 9 μm or less, particularly 5 μm or less, and more preferably 0.03 to
It is preferably 3 μm. When such fibers are used, good dispersibility can be obtained, and at the same time, an excellent reinforcing effect can be obtained.

【0012】該補強用繊維は、糸全断面が分割・細径化
しても、あるいは、幹を残して、その周辺のみが分割・
細径化しても良く、後者の部分分割・細径化はマトリッ
クス中で繊維の絡み合いが少なくより好ましい。剪断力
が加わった際の分割・細径化は、1×10-5sec-1
上の剪断速度で主に生じることが繊維の均一分散の点で
より好ましく、極めて弱い剪断力で分割すると加工方法
によっては、繊維切断等のゴム製品生産前の準備工程で
も繊維が分割し、その結果、繊維が絡み合い分散に問題
を生じる。ゴム成型物を製造するいずれかの工程で剪断
力を加え、繊維を分割細径化するのが好ましく、具体的
には、バンバリ−ミキサ−、ゴム素練ロール、カレンダ
ーのロール間隙、回転速度比を調整したり、また射出、
押し出し成型工程においてはゴム吐出量、押し出しスク
リューの溝構造、回転速度あるいは金型部へのゲート・
隙間を調節する方法等が挙げられる。
In the reinforcing fiber, even if the entire cross section of the yarn is divided and reduced in diameter, or only the periphery thereof is divided and reduced while leaving the trunk.
The diameter may be reduced, and the latter partial division and reduction in diameter are more preferable because the entanglement of the fibers in the matrix is small. It is more preferable in terms of uniform dispersion of the fibers that the splitting / diameter reduction when shearing force is applied mainly occurs at a shearing rate of 1 × 10 −5 sec −1 or more. Depending on the method, the fibers are also split in a preparatory step before production of the rubber product such as fiber cutting, and as a result, the fibers are entangled with each other, causing a problem in dispersion. It is preferable to apply a shearing force in any of the processes for producing a rubber molded product to reduce the diameter of the fibers by dividing them. Specifically, a Banbury mixer, a rubber kneading roll, a roll gap of a calender, a rotation speed ratio Or adjust the injection,
In the extrusion molding process, the amount of rubber discharged, the groove structure of the extrusion screw, the rotation speed or the gate to the mold
There is a method of adjusting the gap, and the like.

【0013】該繊維の好適な具体例として、セルロ−ス
をアミノキサイド系の溶媒に溶解させた紡糸原液を水中
に乾湿式紡糸してセルロ−スを析出させる方法で得られ
る溶剤紡糸セルロ−ス繊維(英国コ−ト−ルズ社製「テ
ンセル」等)や分割型ポリエステル繊維等が挙げられる
が、特に分子量5000以上10万以下の液状ゴムが8
重量%以上付着した繊維であって、該繊維が少なくとも
ポリビニルアルコール系ポリマー(A)とアクリロニト
リル系ポリマー(B)からなり、かつその繊維断面が海
島状であり、AまたはBのいずれかが島成分、他方が海
成分で、A/Bの重量比が90/10〜20/80であ
る繊維が好ましい。
As a preferred specific example of the fiber, a solvent-spun cellulose obtained by a method of spin-dry spinning a cellulose stock solution obtained by dissolving cellulose in an amino oxide-based solvent in water to precipitate cellulose. Fiber ("TENCEL" manufactured by Coulters Co., Ltd., UK) and splittable polyester fiber. Liquid rubber having a molecular weight of 5,000 to 100,000 is particularly preferred.
% By weight or more, wherein the fibers are composed of at least a polyvinyl alcohol-based polymer (A) and an acrylonitrile-based polymer (B), and have a sea-island cross-section, wherein either A or B is an island component The other is a sea component, and a fiber having a weight ratio of A / B of 90/10 to 20/80 is preferable.

【0014】かかる繊維は、繊維添加・分散時に分散性
良好なアスペクト比、すなわち比較的低いアスペクト比
の繊維を用いても、その後の加工段階で繊維が分割・細
径化するため優れた補強効果が得られる。またポリビニ
ルアルコール系のポリマーは、それから得られる繊維が
極めて高い強度を有していることより用いられるが、そ
れとともにアクリロニトリル系ポリマーが用いられる。
ポリビニルアルコール系ポリマーとアクリロニトリル系
ポリマーの組み合わせは繊維の分割・細径化や高強度の
点で好ましく、さらにポリビニルアルコール系繊維の製
造方法として湿式紡糸方法で代表される溶剤紡糸方法が
好適に用いられるが、その際の紡糸原液の溶媒としてジ
メチルスルホキシド(DMSO)が用いられる場合に
は、アクリロニトリル系ポリマーもDMSOに可溶性で
あるため、製造の点からもポリビニルアルコール系ポリ
マーとアクリロニトリル系ポリマーの組み合わせが好ま
しい。
Even if a fiber having an aspect ratio with good dispersibility, that is, a fiber having a relatively low aspect ratio is used at the time of adding and dispersing the fiber, the fiber is divided and reduced in diameter in a subsequent processing step, so that an excellent reinforcing effect is obtained. Is obtained. A polyvinyl alcohol-based polymer is used because the fiber obtained therefrom has an extremely high strength, and an acrylonitrile-based polymer is used together therewith.
The combination of a polyvinyl alcohol-based polymer and an acrylonitrile-based polymer is preferred in terms of fiber division / diameter reduction and high strength, and a solvent spinning method typified by a wet spinning method is more preferably used as a method for producing a polyvinyl alcohol-based fiber. However, when dimethyl sulfoxide (DMSO) is used as a solvent for the spinning solution at that time, an acrylonitrile-based polymer is also soluble in DMSO, and therefore, a combination of a polyvinyl alcohol-based polymer and an acrylonitrile-based polymer is preferable from the viewpoint of production. .

【0015】ポリビニルアルコール系ポリマーとして
は、完全ケン化されたものであっても、部分ケン化され
たものであっても、さらに他のモノマーを共重合したも
のでもよい。アクリロニトリル系ポリマーとしては、ア
クリロニトリルを70モル%以上有していればよく、し
たがって例えばメチルアクリレート、エチルアクリレー
ト、メチルメタクリレートなどの(メタ)アクリル酸エ
ステル類、酢酸ビニルや酪酸ビニルなどのビニルエステ
ル類、塩化ビニルなどのビニル化合物類、アクリル酸、
メタクリル酸、無水マレイン酸などの不飽和カルボン酸
類、スルホン酸含有ビニル化合物などのモノマーや、ブ
タジエン、イソプレン等のゴムと共加硫し得るモノマー
等で共重合されていてもよい。原液溶媒に対する溶解性
を向上させるためには、PANホモポリマーよりも、他
のモノマーを0.5〜10モル%、さらに好ましくは2
〜8モル%共重合させたアクリロニトリル系ポリマーが
好ましい。
The polyvinyl alcohol polymer may be completely saponified, partially saponified, or copolymerized with another monomer. The acrylonitrile-based polymer only needs to have acrylonitrile in an amount of 70 mol% or more. Therefore, for example, (meth) acrylates such as methyl acrylate, ethyl acrylate, and methyl methacrylate; vinyl esters such as vinyl acetate and vinyl butyrate; Vinyl compounds such as vinyl chloride, acrylic acid,
It may be copolymerized with a monomer such as an unsaturated carboxylic acid such as methacrylic acid or maleic anhydride, a vinyl compound containing a sulfonic acid, or a monomer co-vulcanizable with a rubber such as butadiene or isoprene. In order to improve the solubility in the undiluted solvent, 0.5 to 10 mol%, more preferably 2 to 10 mol% of other monomers is used as compared with the PAN homopolymer.
Acrylonitrile-based polymers copolymerized at 88 mol% are preferred.

【0016】該海島繊維の好適な製造方法は、海成分ポ
リマーと島成分ポリマーを共通溶媒に溶解して湿式紡糸
又は乾式紡糸したのち、湿延伸し(乾式紡糸の場合には
用いる必要がない)、さらに乾熱延伸するのが好まし
い。繊維の強度を高め、より優れた分割・細径化を達成
するためには延伸倍率を高めるのが好ましい。
A preferred method for producing the sea-island fiber is that the sea component polymer and the island component polymer are dissolved in a common solvent, wet-spun or dry-spun, and then wet-drawn (they need not be used in the case of dry-spinning). Further, it is preferable to perform dry heat stretching. In order to increase the fiber strength and achieve more excellent division and reduction in diameter, it is preferable to increase the draw ratio.

【0017】本発明の液状ゴムの付着方法は特に限定さ
れないが、たとえば、トウ状繊維束、モノフィラメント
やマルチフィラメントを単糸あるいは引き揃えたもの
を、液状ゴムやその有機溶剤希釈液、または液状ゴムを
乳化剤を用いてエマルジョン化したもの等に浸漬後搾液
し、乾燥して溶剤、水等を除去する方法が好適に挙げら
れる。繊維のカットは液状ゴムを付着した後、または付
着させる前に行えばよい。繊維カット方法は特に限定さ
れず、ECカッタ−、ギロチンカッタ−等の公知の方法
が採用できる。また、本発明に加え、液状ゴムを付着さ
せる前の繊維に従来技術のRFL、イソシアネート等の
接着処理を併用することも、本発明の効果を減ずるもの
ではなく、より高い接着力が得られる点で好ましい。
The method for adhering the liquid rubber of the present invention is not particularly limited. For example, tow-like fiber bundles, monofilaments or multifilaments obtained by single yarn or pulling, can be used as a liquid rubber or an organic solvent diluted liquid, or a liquid rubber. Is preferably immersed in, for example, emulsified with an emulsifier and then squeezed and dried to remove the solvent, water and the like. The fiber may be cut after or before the liquid rubber is attached. The fiber cutting method is not particularly limited, and a known method such as an EC cutter or a guillotine cutter can be employed. Further, in addition to the present invention, the use of the conventional adhesive treatment such as RFL and isocyanate on the fibers before the liquid rubber is adhered does not reduce the effect of the present invention, and a higher adhesive force can be obtained. Is preferred.

【0018】本発明の補強用繊維とマトリックス・ゴム
の混練方法及び補強用繊維を添加する工程は特に限定さ
れない。たとえばバンバリ−ミキサ−やロ−ル混練工程
でマトリックス・ゴム配合物(ゴム、加硫剤、加硫促進
剤、老化防止剤、カ−ボン等)と共に投入して混練した
り、繊維およびマトリックス・ゴムを予備混練した段階
でゴム配合物を投入する方法が挙げられる。マトリック
ス・ゴムと補強繊維の混練時間は1〜40分間、特に3
〜20分間程度とするのが好ましい。繊維分散性の点で
は後者を採用するのが好ましい。特にバンバリ−ミキサ
−で混練を行う場合、混練に伴う摩擦発熱によりゴム配
合物は100℃以上の高温になって混練中に加硫が進行
するため、マトリックス・ゴムと液状ゴム付着繊維のみ
を混練し、繊維をゴム中に十分分散させたのちに加硫
剤、加硫促進剤等を添加混練するのが好ましい。
The method for kneading the reinforcing fiber and the matrix rubber of the present invention and the step of adding the reinforcing fiber are not particularly limited. For example, in a Banbury mixer or a roll kneading step, it is charged together with a matrix / rubber compound (rubber, vulcanizing agent, vulcanization accelerator, antioxidant, carbon, etc.) and kneaded, or mixed with fiber and matrix. There is a method in which a rubber compound is charged at the stage where rubber is pre-kneaded. The kneading time of the matrix rubber and the reinforcing fibers is 1 to 40 minutes, especially 3
It is preferably set to about 20 minutes. It is preferable to employ the latter from the viewpoint of fiber dispersibility. In particular, when kneading with a Banbury mixer, the rubber compound reaches a high temperature of 100 ° C. or more due to frictional heat generated during kneading, and vulcanization proceeds during kneading. Therefore, only the matrix rubber and the liquid rubber-adhered fiber are kneaded. After the fibers are sufficiently dispersed in the rubber, it is preferable to add and knead a vulcanizing agent, a vulcanization accelerator and the like.

【0019】また補強繊維をゴム中に高率に配合したい
わゆるマスタ−バッチを製造し、これをマトリックス・
ゴムに添加混合する方法は、繊維分散性の点ではより好
ましい。マスタ−バッチ中の繊維配合割合は、10〜5
0重量%/マスタ−バッチ全重量、さらに20〜40重
量%/マスタ−バッチ全重量とするのが好ましい。マス
タ−バッチを得るための繊維とゴムとの混練時間は1〜
40分間、特に3〜20分間程度とするのが好ましく、
マスタ−バッチを構成するゴムと、マトリックス・ゴム
は同種または異種のゴムを使用することができる。ゴム
成型体における繊維の配合割合は1〜50重量%/ゴム
成型体全重量、特に3〜20重量%/ゴム成型体全重量
とするのが好ましい。
Further, a so-called master batch in which reinforcing fibers are compounded in rubber at a high ratio is produced, and this is called a matrix batch.
The method of adding to and mixing with rubber is more preferable in terms of fiber dispersibility. The fiber mixing ratio in the master batch is 10 to 5
It is preferred to be 0% by weight / master-batch total weight, more preferably 20-40% by weight / master-batch total weight. The kneading time of fiber and rubber to obtain a master batch is 1 to
40 minutes, preferably about 3 to 20 minutes,
The rubber constituting the master batch and the matrix rubber may be the same or different rubbers. The compounding ratio of the fibers in the rubber molding is preferably 1 to 50% by weight / the total weight of the rubber molding, particularly preferably 3 to 20% by weight / the total weight of the rubber molding.

【0020】マトリックス・ゴムと補強用繊維等を混練
後、公知の押出成型法、カレンダ−成型法、射出成型法
等により成型し、次いで所望により加硫処理(熱プレス
加硫処理等)を行えば繊維補強ゴム成型物が得られる。
加硫処理は80〜250℃、特に120〜200℃で行
うのが好ましく、処理時間は5〜60分間,特に10〜
30分間とするのが好ましい。本発明により得られるゴ
ム成型体の形態は特に限定されず、シ−ト状、筒状等適
宜選択できる。
After kneading the matrix rubber and the reinforcing fibers, the mixture is molded by a known extrusion molding method, calendar molding method, injection molding method or the like, and then vulcanization treatment (hot press vulcanization treatment or the like) is performed if desired. For example, a fiber-reinforced rubber molded product can be obtained.
The vulcanization treatment is preferably performed at 80 to 250 ° C, particularly 120 to 200 ° C, and the treatment time is 5 to 60 minutes, particularly 10 to
Preferably, it is 30 minutes. The form of the rubber molded product obtained by the present invention is not particularly limited, and can be appropriately selected, such as a sheet shape and a tubular shape.

【0021】[0021]

【実施例】以下、実施例により本発明を説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0022】[実施例1]重合度1750、けん化度9
9.9モル%のポリビニルアルコール(以下PVAと略
記する)60重量部とメチルメタクリレート5モル%共
重合したアクリロニトリル系ポリマー(PANと略す)
40重量部をジメチルスルホキシド(DMSO)に添加
し、80℃8時間窒素気流下200rpmの条件下で撹
拌混合溶解して総ポリマー濃度20重量%の混合紡糸原
液を得た。この原液は、肉眼で観察すると不透明であ
り、またこの原液を相構造を観察すると2〜8μmの粒
子径を有する相構造を有しており、熱水処理によりPV
A成分が分散媒成分(海成分)でPAN成分が分散成分
(島成分)となっていることを確認した。
Example 1 Degree of polymerization 1750, degree of saponification 9
Acrylonitrile-based polymer (abbreviated as PAN) obtained by copolymerizing 60 parts by weight of 9.9 mol% of polyvinyl alcohol (hereinafter abbreviated as PVA) and 5 mol% of methyl methacrylate
40 parts by weight were added to dimethyl sulfoxide (DMSO), and the mixture was stirred and dissolved under a nitrogen stream at 80 ° C. for 8 hours at 200 rpm to obtain a mixed spinning dope having a total polymer concentration of 20% by weight. This undiluted solution is opaque when observed with the naked eye, and has a phase structure having a particle diameter of 2 to 8 μm when the undiluted solution is observed for its phase structure.
It was confirmed that the A component was a dispersion medium component (sea component) and the PAN component was a dispersion component (island component).

【0023】この原液を、孔数1000ホール、孔径
0.08mmφの紡糸口金を通じ、DMSO/メタノー
ルの重量比が45/55で、温度5℃の凝固浴中に湿式
紡糸して3倍の湿延伸を施し、糸中のDMSOをメタノ
ール抽出した後、80℃で熱風乾燥し、230℃で全延
伸倍率16倍の乾熱延伸を行い、1800d/1000
fのPVA/PANブレンド繊維を得た。この繊維の強
度は8.5g/d、ヤング率は180g/dであった。
この繊維をギロチンカッターを用いて長さ2mmにカッ
ト(アスペクト比140)し、カット糸100重量部に
対して液状イソプレンゴム(分子量5万のイソプレン・
オリゴマ− 株式会社クラレ製 LIR−50)を10
0重量部付着させた。次いで、1リットルのバンバリ−
ミキサ−(ブレ−ド回転速度:一方のブレ−ド52rp
m、他方のブレ−ド44rpm)に天然ゴム(RSS#
3)320gを投入して約1分間混練し、次いで上記液
状イソプレンゴム付着繊維160gを投入して15分間
混練してマスタ−バッチ(MB)を作製した。
The stock solution is wet-spun through a spinneret having 1,000 holes and a hole diameter of 0.08 mmφ in a coagulation bath at a temperature of 5 ° C. at a weight ratio of DMSO / methanol of 45/55, and wet-stretched three times. After DMSO in the yarn was extracted with methanol, the yarn was dried with hot air at 80 ° C., and subjected to dry heat drawing at 230 ° C. with a total draw ratio of 16 times to obtain 1800 d / 1000.
Thus, a PVA / PAN blend fiber of f was obtained. The fiber had a strength of 8.5 g / d and a Young's modulus of 180 g / d.
This fiber is cut to a length of 2 mm (aspect ratio 140) using a guillotine cutter, and 100 parts by weight of the cut yarn is liquid isoprene rubber (isoprene having a molecular weight of 50,000).
Oligomer LIR-50) manufactured by Kuraray Co., Ltd.
0 parts by weight were adhered. Next, 1 liter Banbury
Mixer (blade rotation speed: one blade 52 rp)
m, natural rubber (RSS #) on the other blade (44 rpm)
3) 320 g was charged and kneaded for about 1 minute, and then 160 g of the above liquid isoprene rubber-adhered fiber was charged and kneaded for 15 minutes to prepare a master batch (MB).

【0024】このマスタ−バッチを7.51inφ×2
本ロ−ルの一方が11.5mm/min、他方が13.
0m/min回転速度、ロ−ル間隔0.5mm、ロ−ル
温度50〜55℃で5分間混練し、厚さ約1.0mmの
シ−トとした。該シ−トのゴム内部を目視で観察したと
ころ、良好に繊維が分散していたため繊維の存在自体が
確認できなかった。またその繊維径を確認するため、シ
−トの長手方向に対して直角に裁断し、その断面を走査
型電子顕微鏡で倍率1000倍で観察したところ、繊維
径は0.4〜1.4μm(平均0.8μm)であり、混
練前の繊維径15μmに対して大幅に細径化しており、
その断面積比から剪断力によって約300に分割してい
ることがわかった。
This master batch is 7.51 inφ × 2
One of the rolls is 11.5 mm / min and the other is 13.
The sheet was kneaded at a rotation speed of 0 m / min, a roll interval of 0.5 mm, and a roll temperature of 50 to 55 ° C. for 5 minutes to form a sheet having a thickness of about 1.0 mm. When the inside of the rubber of the sheet was visually observed, the presence of the fiber itself could not be confirmed because the fiber was well dispersed. Further, in order to confirm the fiber diameter, the sheet was cut at right angles to the longitudinal direction of the sheet, and the cross section was observed with a scanning electron microscope at a magnification of 1,000 times. The fiber diameter was 0.4 to 1.4 μm ( 0.8 μm on average), which is significantly smaller than the fiber diameter of 15 μm before kneading.
From the cross-sectional area ratio, it was found that it was divided into about 300 by the shearing force.

【0025】上記のMB120g、天然ゴム(RSS#
3)100g、SBR(日本合成社製JSR1500)
20gを再度バンバリ−に投入して2分間混練した後、
素練促進剤レナシット7(バイエル製)2g、カ−ボン
ブラックH(三菱化成社製)180g、亜鉛華#3(三
井金属社製)20g、ステアリン酸10g、プロセスオ
イル(スワフレックス#200:丸善石油製)20gを
添加して混練し、さらにイオウ9.6g、加硫促進剤と
して住友化学製ソクシノ−ルCMとソクシノ−ルDMを
各2g、老化防止剤(大内新興化学製アンチゲン3C)
4gを添加し、1分間混練した。得られた混練物を上記
と同一の7.51inφの2本ロ−ルで温度50〜55
℃の条件で5分間混練し、厚さ約1mmのシ−トとした
のち150℃で30分間プレス加硫してゴム成型体を製
造した。
The above MB 120 g, natural rubber (RSS #
3) 100 g, SBR (JSR 1500 manufactured by Nippon Gosei)
20 g is again put into Banbury and kneaded for 2 minutes,
2 g of a peptizing accelerator, Lenasit 7 (manufactured by Bayer), 180 g of carbon black H (manufactured by Mitsubishi Kasei), 20 g of zinc white # 3 (manufactured by Mitsui Kinzoku), 10 g of stearic acid, process oil (Swaflex # 200: Maruzen) 20 g of sulfuric acid) was added and kneaded, 9.6 g of sulfur was further added, 2 g each of Succinol CM and Socynol DM manufactured by Sumitomo Chemical as vulcanization accelerators, and an anti-aging agent (Ouchi Shinko Chemical's Antigen 3C).
4 g was added and kneaded for 1 minute. The obtained kneaded material was heated at a temperature of 50 to 55 with the same two rolls of 7.51 inφ as described above.
The mixture was kneaded at a temperature of 5 ° C. for 5 minutes to form a sheet having a thickness of about 1 mm, and then press-vulcanized at 150 ° C. for 30 minutes to produce a rubber molded body.

【0026】この加硫シ−トをJIS K6251の1
号ダンベルで打ち抜き、20℃、500mm/minの
引張速度で強度〜歪み曲線を測定したところ、10%歪
み時の応力は5MPaと優れた補強性を確認した。また
この測定をn=20実施し、10%歪み時応力の変動率
を求めたところ、その変動率は5.1%と極めて低率で
あり、繊維がゴム中で均一に分散していることがわか
る。なお本発明でいう変動率は、上記n=20の測定値
の標準偏差を平均値で除した値を百分率で示したもので
ある。
This vulcanized sheet is JIS K6251-1
The sheet was punched out with a No. dumbbell, and the strength to strain curve was measured at 20 ° C. and a tensile speed of 500 mm / min. Further, when this measurement was carried out n = 20 and the fluctuation rate of the stress at the time of 10% strain was obtained, the fluctuation rate was extremely low at 5.1%, indicating that the fibers were uniformly dispersed in the rubber. I understand. The fluctuation rate in the present invention is a value obtained by dividing the standard deviation of the measured value of n = 20 by an average value, and the value is expressed as a percentage.

【0027】[比較例1]液状イソプレン・ゴムを付着
させない以外は実施例1と同様に行った。繊維分散は不
良でゴム中に繊維の塊が多数存在し、また加硫シ−トの
10%時応力は3.5MPaと低く、その変動率も2
6.8%とバラツキの大きいものであった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that no liquid isoprene rubber was attached. The fiber dispersion is poor, many lumps of fiber are present in the rubber, the stress at 10% of the vulcanized sheet is as low as 3.5 MPa, and the fluctuation rate is 2%.
The variation was as large as 6.8%.

【0028】[実施例2〜7、比較例2]単繊維の繊度
が2drで強度10.5g/dr,伸度8%のPVA系
繊維(クラレ製造;商品名ビニロン,銘柄T−16)を
長さ3mmにカット(アスペクト比200)し、分子量
5万のイソプレン・オリゴマ−(株式会社クラレ製 L
IR−50)を双腕型ニ−ダ−を用いて表1に示すごと
く0〜300%付着させた。なお付着量が100重量%
以下のものは、液状イソプレンゴムをトリクロルエチレ
ンに溶解したものを用いて付着処理を施して50℃で乾
燥する方法で付与した。次いで得られた補強用繊維20
重量部、未加硫天然ゴム100重量部を配合してバンバ
リ−ミキサ−で5〜30分間混練した以外は実施例1と
同様に行った。結果1を表1に示す。なお、繊維の均一
分散性は、ゴムシ−ト中に繊維塊状物が多数存在するも
のを×、繊維塊状物が少し存在するものを△、繊維塊状
物が実質的に存在せず繊維が均一に分散しているものを
○として評価した。
[Examples 2 to 7, Comparative Example 2] PVA-based fiber (Kuraray; trade name: Vinylon, brand name T-16) having a single fiber fineness of 2 dr, a strength of 10.5 g / dr and an elongation of 8% was used. Cut to 3 mm length (aspect ratio 200), isoprene oligomer of molecular weight 50,000 (L made by Kuraray Co., Ltd.)
As shown in Table 1, 0 to 300% of IR-50) was adhered using a double-armed kneader. 100% by weight
The following was applied by a method in which a liquid isoprene rubber was dissolved in trichloroethylene and subjected to an adhesion treatment and dried at 50 ° C. Next, the obtained reinforcing fiber 20
The same procedure as in Example 1 was carried out except that 100 parts by weight of the unvulcanized natural rubber was mixed and kneaded with a Banbury mixer for 5 to 30 minutes. Table 1 shows the result 1. In addition, the uniform dispersibility of the fiber was evaluated as follows: a rubber sheet having a large number of fiber lumps was x, a fiber lumpy was slightly present was △, and the fiber lumps were substantially absent and the fibers were uniform. Those that were dispersed were evaluated as ○.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明によれば、マトリックス・ゴムの
基本性能を損なうことなく優れた分散性及び補強性を奏
するゴム補強用繊維が得られる。本発明のゴム補強用繊
維はあらゆるゴムの補強に用いることができ、たとえば
各種伝達ベルト、タイヤ、ホース、ガスケット、ダイヤ
グラム、ピストンキャップ、自動車の外装部品等に利用
可能である。
According to the present invention, there can be obtained a rubber reinforcing fiber having excellent dispersibility and reinforcing property without impairing the basic performance of the matrix rubber. The rubber reinforcing fiber of the present invention can be used for reinforcing any rubber, and can be used for various transmission belts, tires, hoses, gaskets, diagrams, piston caps, exterior parts of automobiles, and the like.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液状ゴムが付着したゴム補強用繊維。1. A rubber reinforcing fiber to which liquid rubber has adhered. 【請求項2】 液状ゴムが付着した繊維であって、ゴム
成型加工工程における混合または成型する際の機械的剪
断力により分割・細径化するゴム補強用繊維。
2. A fiber to which liquid rubber is adhered, and which is divided and reduced in diameter by mechanical shearing force at the time of mixing or molding in a rubber molding process.
【請求項3】 液状ゴムが付着した繊維であって、該繊
維が少なくともポリビニルアルコール系ポリマー(A)
とアクリロニトリル系ポリマー(B)からなり、かつそ
の繊維断面が海島状であり、AまたはBのいずれかが島
成分、他方が海成分で、A/Bの重量比が90/10〜
20/80であるゴム補強用繊維。
3. A fiber to which a liquid rubber is attached, wherein the fiber is at least a polyvinyl alcohol-based polymer (A).
And the acrylonitrile-based polymer (B), and its fiber cross section is a sea-island shape, either A or B is an island component and the other is a sea component, and the weight ratio of A / B is 90/10
20/80 rubber reinforcing fibers.
【請求項4】 液状ゴムが付着したゴム補強用繊維とマ
トリックス・ゴムからなる混合物を加熱して加硫するゴ
ム成型体の製造方法。
4. A method for producing a molded rubber article, comprising heating and vulcanizing a mixture comprising a rubber reinforcing fiber and a matrix rubber to which liquid rubber has adhered.
JP58397A 1997-01-07 1997-01-07 Rubber-reinforcing fiber and production of rubber-molded product using the same Pending JPH10195208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58397A JPH10195208A (en) 1997-01-07 1997-01-07 Rubber-reinforcing fiber and production of rubber-molded product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58397A JPH10195208A (en) 1997-01-07 1997-01-07 Rubber-reinforcing fiber and production of rubber-molded product using the same

Publications (1)

Publication Number Publication Date
JPH10195208A true JPH10195208A (en) 1998-07-28

Family

ID=11477745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58397A Pending JPH10195208A (en) 1997-01-07 1997-01-07 Rubber-reinforcing fiber and production of rubber-molded product using the same

Country Status (1)

Country Link
JP (1) JPH10195208A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207220A (en) * 2011-03-17 2012-10-25 Teijin Fibers Ltd Fiber-reinforced elastomer molding
JP2014077041A (en) * 2012-10-10 2014-05-01 Ihi Aerospace Co Ltd Method for producing insulation
WO2019230700A1 (en) 2018-05-29 2019-12-05 株式会社クラレ Reinforcing fibers and production method therefor, and molded article using same
WO2020175404A1 (en) * 2019-02-27 2020-09-03 株式会社クラレ Reinforcing fiber, method for manufacturing same, and molded body using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207220A (en) * 2011-03-17 2012-10-25 Teijin Fibers Ltd Fiber-reinforced elastomer molding
JP2014077041A (en) * 2012-10-10 2014-05-01 Ihi Aerospace Co Ltd Method for producing insulation
WO2019230700A1 (en) 2018-05-29 2019-12-05 株式会社クラレ Reinforcing fibers and production method therefor, and molded article using same
KR20210014107A (en) 2018-05-29 2021-02-08 주식회사 쿠라레 Reinforcing fiber and manufacturing method thereof, and molded article using the same
WO2020175404A1 (en) * 2019-02-27 2020-09-03 株式会社クラレ Reinforcing fiber, method for manufacturing same, and molded body using same
CN113454282A (en) * 2019-02-27 2021-09-28 株式会社可乐丽 Reinforcing fiber, method for producing same, and molded body using same
KR20210129076A (en) 2019-02-27 2021-10-27 주식회사 쿠라레 Reinforcing fiber, manufacturing method thereof, and molded article using same
US11884788B2 (en) 2019-02-27 2024-01-30 Kuraray Co., Ltd. Reinforcing fiber, method for manufacturing same, and molded body using same
CN113454282B (en) * 2019-02-27 2024-02-13 株式会社可乐丽 Reinforcing fiber, method for producing same, and molded article using same

Similar Documents

Publication Publication Date Title
JPH0678379B2 (en) Ultra high molecular weight crystalline polyethylene modified product and method for producing the same
CA3156672C (en) Surface-treated nanocellulose master batch
JP4128580B2 (en) Polyvinyl alcohol composite fiber
CA1079431A (en) Fiber-reinforced rubber article and process for producing the same
JPH10195208A (en) Rubber-reinforcing fiber and production of rubber-molded product using the same
US6607819B2 (en) Polymer/dispersed modifier compositions
JPH107811A (en) Staple fiber for reinforcing rubber
JPH1121767A (en) Fiber for reinforcing rubber
JPH10212670A (en) Fiber for rubber reinforcement
JP2000273764A (en) Fiber for reinforcing rubber and rubber molded article
JPH0913226A (en) Short fiber for reinforcing rubber
JPH0881593A (en) Polypropylene resin composition and production thereof
MXPA02000508A (en) Methods of making polymer/dispersed modifier compositions.
JPH11189654A (en) Rubber composition and dispersion of reinforcing fiber
CN112029191B (en) High-strength degradable PP composite material
JP6309798B2 (en) Reinforcing fiber
JP2888502B2 (en) Method for producing high strength polyvinyl alcohol fiber with excellent hot water resistance
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JP2015232187A (en) Polyolefin-based fiber and manufacturing method therefor
JPH0959394A (en) Production of fiber-reinforced rubber molded product
JPH10338791A (en) Composition for reinforcing resin, and resin composition and its production
JPH02281054A (en) Production of fiber reinforced rubber composition
JP2000351155A (en) Polyethylene raw fabric sheet for orientation mold and manufacture of the sheet using it
JP2905545B2 (en) High strength and high modulus polyvinyl alcohol fiber with excellent hot water resistance
JP2004018318A (en) Fibrous material for cement mortar or concrete reinforcement