JP2004018318A - Fibrous material for cement mortar or concrete reinforcement - Google Patents

Fibrous material for cement mortar or concrete reinforcement Download PDF

Info

Publication number
JP2004018318A
JP2004018318A JP2002176128A JP2002176128A JP2004018318A JP 2004018318 A JP2004018318 A JP 2004018318A JP 2002176128 A JP2002176128 A JP 2002176128A JP 2002176128 A JP2002176128 A JP 2002176128A JP 2004018318 A JP2004018318 A JP 2004018318A
Authority
JP
Japan
Prior art keywords
fiber
molecular weight
average molecular
concrete
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002176128A
Other languages
Japanese (ja)
Other versions
JP4178503B2 (en
Inventor
Godo Sakamoto
阪本 悟堂
Katsuji Oda
小田 勝二
Hirotaka Murase
村瀬 浩貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002176128A priority Critical patent/JP4178503B2/en
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to US10/510,565 priority patent/US7247372B2/en
Priority to EP03745910A priority patent/EP1493851B1/en
Priority to AT03745910T priority patent/ATE540146T1/en
Priority to KR1020047015949A priority patent/KR100943592B1/en
Priority to CNB03807737XA priority patent/CN100376730C/en
Priority to PCT/JP2003/004310 priority patent/WO2003085176A1/en
Priority to KR1020097026505A priority patent/KR100985938B1/en
Priority to TW92116331A priority patent/TWI315359B/en
Publication of JP2004018318A publication Critical patent/JP2004018318A/en
Priority to US11/723,548 priority patent/US7736564B2/en
Application granted granted Critical
Publication of JP4178503B2 publication Critical patent/JP4178503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide fiber and a fibrous material for cement mortar or concrete reinforcement which are light, and have excellent alkali resistance, bending strength, durability, toughness, and moisture resistance. <P>SOLUTION: The fibrous material for cement mortar or concrete reinforcement essentially consists of the chopped filaments of high strength polyethylene in which the weight average molecular weight in a fibrous state is ≤300,000, and the ratio between the weight average molecular weight and number average molecular weight (Mw/Mn) is ≤4.0, and having strength of ≥15 cN/dtex, and an elastic modulus of ≥500 cN/dtex. When premix mortar is produced, fiber having excellent dispersibility can be obtained by the fiber cross-sectional shape. Further, a high breaking load and high toughness can be imparted as a concrete reinforcing material also when a shape is given to a monofilament type organic fiber with a sizing material, and slump loss can be reduced as well. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、疎水製構造体に使用するセメントモルタル又はコンクリート補強用繊維状物に関する。
【0002】
【従来の技術】
セメントモルタル、コンクリートの構造材として欠点である脆性を改善する方法として、例えば金属繊維・ガラス繊維・炭素繊維・ポリビニルアルコール繊維・各種オレフィン繊維を各種セメントモルタル・コンクリートに練り混ぜた繊維補強コンクリートが開発されている(例えば、特公昭58−18343,特許2510671他)。しかしながらこれら補強用繊維も、例えば鋼繊維に代表される金属繊維は、コンクリートマトリックスとの付着による補強効果は優れるものの、本質的に比重が大きく、構造物が重くなってしまう欠点があり、また、錆の発生による構造物の強度の低下が発生するため、港湾施設あるいは軽量化の求められる超高層ビルなどの構造材としては、不適である。一方、無機繊維であるガラス繊維は耐アルカリ性に劣る課題があり、炭素繊維においては練混ぜ中に繊維が折れ曲がったり、切断したりする課題がある。そして有機繊維であるポリビニルアルコール繊維やポリオレフィン系繊維、特にポリプロピレン繊維は、強力が低い為、十分な効果を得る為には繊維の混入量を大幅に増やす必要があり、スランプ低下の課題がある。超高分子量ポリエチレン繊維は、強度や耐アルカリ性には十分優れているけれども、断面形状が扁平なため、繊維の剛性が低く、練混ぜにおいて繊維同士が絡まって塊になりやすいという課題があった。
【0003】
【発明が解決しようとする課題】
軽量かつ耐アルカリ性に優れ、曲げ強度、耐久性、靱性、耐湿に優れるセメントモルタル又はコンクリート補強用繊維および補強用繊維状物を提供する。
【0004】
【課題を解決するための手段】
かかる状況を改善するために、本発明者らは鋭意努力し以下の発明に到達した。
1.繊維状態での重量平均分子量が300,000以下、重量平均分子量と数平均分子量の比(Mw/Mn)が4.0以下であり、強度15cN/dtex以上、弾性率500cN/dtex以上の高強度ポリエチレン繊維を主成分とするセメントモルタル又はコンクリート補強用繊維状物。
2.高強度ポリエチレン繊維の単繊維繊度が1.5dtex以下であることを特徴とする上記第1記載のセメントモルタル又はコンクリート補強用繊維状物。
3.繊維が、チョップドフィラメントであることを特徴とする上記第1又は2記載のセメントモルタル又はコンクリート補強用繊維状物。
4.繊維が、適当な長さにカットされた複数の高強度ポリエチレン繊維が収束されたチップであることを特徴とする上記第1〜3のいずれかに記載のセメントモルタル又はコンクリート補強用繊維状物。
5.上記第4記載のチップを含んでなることを特徴とするコンクリート組成物。
以下本発明を詳述する
【0005】
本発明におけるセメントモルタル又はコンクリート補強用繊維又は繊維状物を製造する方法は、慎重でかつ新規な製造法を採用する必要であり、例えば以下のような方法が推奨されるが、それに限定されるものでは無い。
【0006】
本発明におけるポリエチレンとは、その繰り返し単位が実質的にエチレンであることを特徴とし、少量の他のモノマー例えばα−オレフィン,アクリル酸及びその誘導体,メタクリル酸及びその誘導体,ビニルシラン及びその誘導体などとの共重合体であっても良いし、これら共重合物どうし、あるいはエチレン単独ポリマーとの共重合体、さらには他のα−オレフィン等のホモポリマーとのブレンド体であってもよい。特にプロピレン,ブテンー1などのαオレフィンと共重合体を用いることで短鎖あるいは長鎖の分岐をある程度含有させることは本繊維を製造する上で、特に紡糸・延伸においての製糸上の安定を与えることとなり、より好ましい。しかしながらエチレン以外の含有量が増えすぎると反って延伸の阻害要因となるため、高強度・高弾性率繊維を得るという観点からはモノマー単位で0.2mol%以下、好ましくは0.1mol%以下であることが望ましい。もちろんエチレン単独のホモポリマーであっても良い。。また、繊維状態での重量平均分子量が300,000以下であり、重量平均分子量と数平均分子量の比(Mw/Mn)が4.0以下となる事が重要である。好ましくは、繊維状態での重量平均分子量が250,000以下であり、重量平均分子量と数平均分子量の比(Mw/Mn)が3.5以下となる事が重要である。さらに好ましくは、繊維状態での重量平均分子量が200,000以下であり、重量平均分子量と数平均分子量の比(Mw/Mn)が3.0以下となる事が重要である。
【0007】
繊維状態のポリエチレンの重量平均分子量が300、000を越えるような重合度のポリエチレンを原料と使用した場合では、溶融粘度が極めて高くなり、溶融成型加工が極めて困難となる。又、繊維状態の重量平均分子量と数平均分子量の比が4.0以上となると同じ重量平均分子量のポリマーを用いた場合と比較し最高延伸倍率が低く又、得られた糸の強度は低いものとなる。これは、同じ重量平均のポリエチレンで比較した場合、緩和時間の長い分子鎖が延伸を行う際に延びきる事ができずに破断が生じてしまう事と、分子量分布が広くなる事によって低分子量成分が増加するために分子末端が増加する事により強度低下が起こると推測している。また、繊維状態での分子量と分子量分布をコントロールする為に溶解・押し出し工程や紡糸工程で意図的にポリマーを劣化させても良いし、予め狭い分子量分布を持つポリエチレンを使っても良い。
【0008】
本発明の推奨する製造方法においては、このようなポリエチレンを押し出し機で溶融押し出ししギアポンプにて定量的に紡糸口金を介して吐出させる。その後冷風にて該糸状を冷却し、所定の速度で引き取る。この時充分素早く引き取る事が重要である。即ち、吐出線速度と巻き取り速度の比が100以上で有ることが重要である、好ましくは150以上、さらに好ましくは200以上である。吐出線速度と巻き取り速度の比は、口金口径、単孔吐出量、溶融状態のポリマー密度、巻き取り速度から計算することが出来る。このように、ゲル紡糸とことなり溶剤を用いない為、例えば丸形の口金を使用した場合、繊維の断面が丸形状となり紡糸・延伸時の張力化に於いても圧着が発生しづらい。
【0009】
さらに該繊維を以下に示す様な方法で延伸することが非常に重要である。即ち該繊維を、該繊維の結晶分散温度以下の温度で延伸を行い、該繊維の結晶分散温度以上融点以下の温度でさらに延伸を行うことにより驚く程繊維の物性が向上する事を見いだした。また、融点以下の温度で延伸を行う事で繊維の融着・圧着が発生しづらい。この時さらに多段に繊維を延伸しても良い。
【0010】
本発明では、延伸に際して、1台目のゴデットロールの速度を5m/minと固定して、その他のゴデットロールの速度を変更する事により所定の延伸倍率の糸を得た。
【0011】
チョップドフィラメントのセメントモルタル又はコンクリート補強用繊維状物は、得られた繊維を所定の長さにカットする事により得ることが出来る。特にチョップドフィラメントはモルタル補強用途に有効であり、カット長は、30mm以下であることが望ましい。30mm以上となると練り混ぜの際に繊維が塊状(ファイバーボール)となり均一性の面から好ましくない。ここで、モルタル補強用途として、プレミックスと呼ばれる砂とセメントと繊維を混ぜ合わせた混合物が良く用いられる。プレミックスを作製する場合、繊維の分散が均一であるほど、繊維の特性を有効に発揮できることがわかっている。本発明の繊維は、断面形状が円形であるため、融着や圧着が殆ど無いため、1本1本が補強効果に寄与することができ、また剛性もあるので、均一に分散し易い特徴を有していると考えられる。
【0012】
モノフィラメント型有機繊維のセメントモルタル又はコンクリート補強用繊維状物は、得られた繊維を所定の太さに引き揃え、集束剤もしくは熱融着繊維を用い、各々のフィラメントを結着させ、その後所定の長さにカットする事により得る事が出来る。特にモノフィラメント型有機繊維は、コンクリート補強用途に特に有効である。集束材としては、耐アルカリ性に優れている樹脂を選ぶことが好ましく、エポキシ樹脂やフェノール樹脂などの熱硬化性樹脂やエチレン系樹脂やウレタン樹脂、アクリル樹脂などの熱可塑性が挙げられる。熱融着繊維は、スキンコア構造でスキン部分の融点が120℃以下である繊維や、繊維全体の融点が120℃以下である繊維を選ぶことができる。このように得られたモノフィラメント型有機繊維は、カットして適当な長さのチップにして使用する。カット長としては、最大粗骨材径に対し、1倍から2倍までの間の長さに合わせることが好ましい。モノフィラメント型有機繊維の場合は、繊維に樹脂を付着させて集束させるため、補強効果の低い樹脂の含有量はできる限り少ないほうが好ましい。本発明の繊維は断面形状が円形であるため、樹脂の付着が均一に付着する効果が期待できる。また、熱融着糸などで集束させる場合として、本発明の繊維に熱融着糸をカバリングする方法が挙げられる。このデザインにおいても、繊維の形状が丸断面である方が、表面積を小さくする効果があり、異形断面の繊維よりも水の吸収が小さくなり、引いてはスランプロスも小さくなる効果が期待できる。モルタルに使用する場合には、30mm以下で使用することが好ましい。
【0013】
本発明のコンクリート組成物は、セメントは一般的に使用されているもので例えば、ポルトランドセメントや早強セメントなどが挙げられる。水や砂、砂利に関しても、特に地域や種類に限定することなく、一般に使用されているもので作製することができる。また、フライアッシュや高炉スラグ微粉末も適宣選んで使用することができる。
【0014】
以下に本発明における特性値に関する測定法および測定条件を説明する。
【0015】
(強度・弾性率)
本発明における強度,弾性率は、オリエンティック社製「テンシロン」を用い、試料長200mm(チャック間長さ)、伸長速度100%/分の条件で歪ー応力曲線を雰囲気温度20℃、相対湿度65%条件下で測定し、曲線の破断点での応力を強度(cN/dtex)、曲線の原点付近の最大勾配を与える接線より弾性率(cN/dtex)を計算して求めた。なお、各値は10回の測定値の平均値を使用した。
【0016】
(重量平均分子量Mw、数平均分子量Mn及びMw/Mn)
重量平均分子量Mw、数平均分子量Mn及びMw/Mnは、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置としては、Waters製GPC 150C ALC/GPCを持ち、カラムとしてはSHODEX製GPC UT802.5を一本UT806Mを2本用いて測定した。測定溶媒は、o−ジクロロベンゼンを使用しカラム温度を145度した。試料濃度は1.0mg/mlとし、200マイクロリットル注入し測定した。分子量の検量線は、ユニバーサルキャリブレーション法により分子量既知のポリスチレン試料を用いて構成されている。
【0017】
(動的粘弾弾性測定)
本発明における動的粘度測定は、オリエンテック社製「レオバイブロンDDV−01FP型」を用いて行った。繊維は全体として100デニール±10デニールとなるように分繊あるいは合糸し、各単繊維ができる限り均一に配列するように配慮して、測定長(鋏金具間距離)が20mmとなるように繊維の両末端をアルミ箔で包みセルロース系接着剤で接着する。その際の糊代ろ長さは、鋏金具との固定を考慮して5mm程度とする。各試験片は、20mmの初期幅に設定された鋏金具(チャック)に糸が弛んだり捩じれたりしないように慎重に設置され、予め60℃の温度、110Hzの周波数にて数秒、予備変形を与えてから本実験を実施した。本実験では−150℃から150℃の温度範囲で約1℃/分の昇温速度において110Hzの周波数での温度分散を低温側より求めた。測定においては静的な荷重を5gfに設定し、繊維が弛まない様に試料長を自動調整させた。動的な変形の振幅は15μmに設定した。
【0018】
(吐出線速度と紡糸速度の比(ドラフト比))
ドラフト比(Ψ)は、以下の式で与えられる。
ドラフト比(Ψ)=紡糸速度(Vs)/吐出線速度(V)
【0019】
(モルタルプレミックスの分散性評価)
砂とセメント(S/C=40)の混合物をビニール袋に入れ、繊維を0.1%ずつ混入し、ファイバーボールが発生するまでの混入量を測定した。繊維はできる限り分散させた状態で投入し、30秒間攪拌して、5mm以上の塊が発生したら、ファイバーボールが発生したと判断した。この試験を5回繰り返し、平均値を算出して、限界混入量とした。
【0020】
(モルタル曲げ試験)
モルタルプレミックスの分散性評価で得られた最大混入量のプレミックス材に水セメント比が45%になるよう水を混入し、2分間攪拌した。モルタルペーストを10×10×40(cm)の供試体に作製した。養生期間は14日と取った。曲げ試験条件は、たわみ速度はスパンの1/1500、スパン30cmの4点曲げ試験を実施した。そして繊維の効果を確認する為、中央の変位点が2mm撓んだ位置での荷重値を比較し、繊維の靭性性能とした。
【0021】
(スランプ試験)
本発明の繊維を樹脂もしくは熱融着繊維で集束させ、モノフィラメント型有機繊維を得た。
スランプ試験として、細骨材とセメントを1分間攪拌し、更に最大粗骨材径20mmの粗骨材と水を加え2分間練混ぜ、更にモノフィラメント型有機繊維と減水剤を加え、コンクリートペーストを作製した。各配合比は、水セメント比が50%、細骨材比が50%、単位水量が190kg/m、最大粗骨材径が20mm、繊維混入量が1vol%、減水剤はポリカルボン酸系でセメント量に対し、2%加えた。スランプ試験はJIS−A1101に従い、測定した。
【0022】
(コンクリート曲げ試験)
スランプ試験で得られたコンクリートペーストを、JCI−SF4「繊維補強コンクリートの曲げ強度及び曲げタフネス試験方法」にある試験法に従い、10×10×40(cm)の供試体に作製した。養生日数は28日取った。曲げ試験の条件は、たわみ速度はスパンの1/1500、スパン30cmの4点曲げ試験を実施した。評価項目としては、最大曲げ強度と2mm換算曲げ強度を評価した。
【実施例】
以下、実施例をもって本発明を説明する。
【0023】
(実施例1)
重量平均分子量115,000、重量平均分子量と数平均分子量の比が2.3、5個以上の炭素を有する長さの分岐鎖が炭素1,000個あたり0.4個である高密度ポリエチレンをφ0.8mm、390Hからなる紡糸口金から290℃で単孔吐出量0.5g/minの速度で押し出した。押し出された繊維は、15cmの保温区間を通りその後20℃、0.5m/sのクエンチで冷却され、300m/minの速度で巻き取られる。該未延伸糸を、複数台の温度コントロールの可能なネルソンロールにて延伸した。1段延伸は、25℃で2.8倍の延伸を行った。さらに115℃まで加熱し5.0倍の延伸を行い、延伸糸を得た。単糸破断強度18.0cN/dtex、引張弾性率が820cN/dtex、単繊維繊度1.5dtex、断面形状は丸形であった。この繊維を12mmにカットして、モルタルプレミックスの分散性評価とモルタル曲げ試験を実施した。また、スランプ試験とコンクリート曲げ試験用に、876dtexにフィラメントを束ねてエポキシ樹脂で硬化(樹脂含浸量71wt%)したものを作製した。
【0024】
(実施例2)
実施例1の延伸糸を125℃に加熱し、さらに1.3倍の延伸を行った。単糸破断強度19.1cN/dtex、引張弾性率が890cN/dtex、単繊維繊度1.4dtex、断面形状は丸形であった。この繊維を12mmにカットして、モルタルプレミックスの分散性評価とモルタル曲げ試験を実施した。また、スランプ試験とコンクリート曲げ試験用に、672dtexにフィラメントを束ねてエポキシ樹脂で硬化(樹脂含浸量75wt%)したものを作製した。
【0025】
(比較例1)
繊維として、単糸破断強度29.8cN/dtex、引張弾性率が1008cN/dtex、単繊維繊度1.2dtex、断面形状は1:7の楕円形状である超高分子量ポリエチレン繊維を12mmにカットして、モルタルプレミックスの分散性評価とモルタル曲げ試験を実施した。また、スランプ試験とコンクリート曲げ試験用に、超高分子量ポリエチレン繊維880Tをエポキシ樹脂で硬化(樹脂含浸量160wt%)したものを作製した。
【0026】
(比較例2)
繊維として、単糸破断強度7.5cN/dtex、引張弾性率240cN/dtex、単糸繊度が378dtex、断面形状はほぼ丸型のポリビニルアルコール繊維を6mmにカットして、モルタルプレミックスの分散性評価とモルタル曲げ試験を実施した。また、スランプ試験とコンクリート曲げ試験用に、破断強度6.1cN/detx、引張弾性率241.9cN/dtex、繊度1650dtexのポリビニルアルコール繊維を使用した。
【0027】
モルタルプレミックスの分散性評価、モルタル曲げ試験、スランプ試験、コンクリート曲げ試験の結果を表1にまとめる。表1より、プレミックスの分散性が高く、より多くの繊維を混入できる為、モルタル曲げ試験でも高靭性の補強効果が確認できた。また、スランプ試験、曲げ試験からは、樹脂付着量をコントロールでき、樹脂付着量を少なくできる為、曲げ試験における最大破断荷重値、2mm換算曲げ強度とも高い性能を付与することができることがわかる。
【0028】
【表1】

Figure 2004018318
【0029】
次に熱融着糸で本発明の繊維をカバリングしたモノフィラメント型有機繊維の特性を実施例3と比較例3で比較した。この特性はスランプ試験とコンクリート曲げ試験で評価した。
【0030】
(実施例3)
実施例1で得られた本発明の繊維を、繊度190Tの芯PP、鞘PEのスキンコア型熱融着繊維でカバリングを行った。得られたモノフィラメント型有機繊維を30mmにカットして、特性を評価した。ここで、カバリングターン数として、10ターン/30mmであった。
【0031】
(比較例3)
比較例1で使用した超高分子量ポリエチレン繊維を用いて、繊度190Tの芯PP、鞘PEのスキンコア型熱融着繊維でカバリングを行った。得られたモノフィラメント型有機繊維を30mmにカットして、特性を評価した。ここで、カバリングターン数として、10ターン/30mmであった。
【0032】
スランプ試験、コンクリート曲げ試験の結果を表2にまとめる。表2より、スランプロスが小さくなることがわかる。
【0033】
【表2】
Figure 2004018318
【0034】
【発明の効果】
本発明によると、その繊維断面形状から、プレミックスモルタルを作製した場合には、分散性に優れた繊維となり、且つその高い強度から、高靭性を付与することができる。また、集束材などでモノフィラメント型有機繊維に形状を付与しても、コンクリート補強材として高破断荷重、高靭性を付与し、スランプロスも低減することを可能とした。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cement mortar or a fibrous material for concrete reinforcement used for a hydrophobic structure.
[0002]
[Prior art]
As a method of improving brittleness, which is a disadvantage of cement mortar and concrete structural materials, for example, fiber reinforced concrete in which metal fiber, glass fiber, carbon fiber, polyvinyl alcohol fiber, various olefin fibers are mixed with various cement mortars and concrete has been developed. (For example, Japanese Patent Publication No. 58-18343, Japanese Patent No. 2510671, etc.). However, these reinforcing fibers, for example, metal fibers represented by steel fibers, for example, have an excellent reinforcing effect due to adhesion to a concrete matrix, but have a inherently large specific gravity and have a disadvantage that the structure becomes heavy. Since the strength of the structure is reduced due to the generation of rust, it is unsuitable as a structural material for a port facility or a skyscraper requiring light weight. On the other hand, glass fiber which is an inorganic fiber has a problem of poor alkali resistance, and carbon fiber has a problem that the fiber is bent or cut during kneading. Since polyvinyl alcohol fibers and polyolefin fibers, especially polypropylene fibers, which are organic fibers, have low strength, it is necessary to greatly increase the amount of mixed fibers to obtain a sufficient effect, and there is a problem of slump reduction. Although the ultrahigh molecular weight polyethylene fiber is sufficiently excellent in strength and alkali resistance, it has a problem in that since the cross-sectional shape is flat, the rigidity of the fiber is low and the fibers are easily entangled into a mass when kneading.
[0003]
[Problems to be solved by the invention]
Provided are a cement mortar or concrete reinforcing fiber and a reinforcing fibrous material which are lightweight, have excellent alkali resistance, and are excellent in bending strength, durability, toughness, and moisture resistance.
[0004]
[Means for Solving the Problems]
In order to improve such a situation, the present inventors have worked diligently to arrive at the following invention.
1. High strength with a weight average molecular weight of 300,000 or less in a fiber state, a weight average molecular weight to number average molecular weight ratio (Mw / Mn) of 4.0 or less, a strength of 15 cN / dtex or more, and an elastic modulus of 500 cN / dtex or more. A cement mortar or a fibrous material for concrete reinforcement mainly composed of polyethylene fibers.
2. 2. The fibrous material for reinforcing cement mortar or concrete according to claim 1, wherein the single-fiber fineness of the high-strength polyethylene fiber is 1.5 dtex or less.
3. 3. The fibrous material for cement mortar or concrete reinforcement according to the above 1 or 2, wherein the fibers are chopped filaments.
4. 4. The cement mortar or concrete reinforcing fibrous material according to any one of the first to third aspects, wherein the fiber is a chip in which a plurality of high-strength polyethylene fibers cut to an appropriate length are converged.
5. A concrete composition comprising the chip according to the fourth aspect.
Hereinafter, the present invention will be described in detail.
The method for producing fiber or fibrous material for cement mortar or concrete in the present invention requires careful and novel production methods, for example, the following methods are recommended, but are not limited thereto Not a thing.
[0006]
The polyethylene in the present invention is characterized in that its repeating unit is substantially ethylene, and includes a small amount of other monomers such as α-olefin, acrylic acid and its derivatives, methacrylic acid and its derivatives, vinylsilane and its derivatives, and the like. Or a copolymer of these copolymers, a copolymer with an ethylene homopolymer, and a blend with a homopolymer such as another α-olefin. In particular, the use of a copolymer with an α-olefin such as propylene or butene-1 to contain a short-chain or long-chain branch to some extent provides stability in spinning and drawing in producing the present fiber, particularly in spinning and drawing. This is more preferable. However, if the content other than ethylene is too high, it may be a factor to hinder the drawing, and from the viewpoint of obtaining high-strength / high-modulus fibers, the content is 0.2 mol% or less, preferably 0.1 mol% or less in monomer units. Desirably. Of course, a homopolymer of ethylene alone may be used. . It is important that the weight average molecular weight in the fiber state is 300,000 or less, and that the ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight is 4.0 or less. Preferably, it is important that the weight average molecular weight in the fiber state is 250,000 or less, and that the ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight is 3.5 or less. More preferably, it is important that the weight average molecular weight in the fiber state is 200,000 or less, and that the ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight is 3.0 or less.
[0007]
When a polyethylene having a degree of polymerization such that the weight average molecular weight of the fibrous polyethylene exceeds 300,000 is used as a raw material, the melt viscosity becomes extremely high, and the melt molding becomes extremely difficult. Also, when the ratio of the weight average molecular weight to the number average molecular weight in the fiber state is 4.0 or more, the maximum draw ratio is lower than when a polymer having the same weight average molecular weight is used, and the strength of the obtained yarn is lower. It becomes. This is because, when compared with polyethylene of the same weight average, the molecular chains having a long relaxation time cannot be extended during stretching, causing breakage, and the low molecular weight component due to the wide molecular weight distribution. It is presumed that the strength decreases due to an increase in molecular terminals due to an increase in the molecular weight. Further, in order to control the molecular weight and molecular weight distribution in the fiber state, the polymer may be intentionally deteriorated in the dissolution / extrusion step or the spinning step, or polyethylene having a narrow molecular weight distribution may be used in advance.
[0008]
In the production method recommended by the present invention, such polyethylene is melted and extruded by an extruder, and is discharged quantitatively through a spinneret by a gear pump. Thereafter, the filament is cooled with cold air and is taken up at a predetermined speed. It is important to pick up quickly enough at this time. That is, it is important that the ratio between the ejection linear speed and the winding speed is 100 or more, preferably 150 or more, and more preferably 200 or more. The ratio between the discharge linear speed and the winding speed can be calculated from the die diameter, the single hole discharge amount, the polymer density in the molten state, and the winding speed. As described above, since a solvent is not used unlike gel spinning, for example, when a round die is used, the cross section of the fiber becomes round, and it is difficult to cause pressure bonding even in tensioning during spinning and drawing.
[0009]
Further, it is very important that the fiber is drawn by the following method. That is, it has been found that the properties of the fiber are surprisingly improved by stretching the fiber at a temperature equal to or lower than the crystal dispersion temperature of the fiber and further stretching at a temperature equal to or higher than the crystal dispersion temperature of the fiber and equal to or lower than the melting point. Further, by performing drawing at a temperature equal to or lower than the melting point, fusion and pressure bonding of fibers are less likely to occur. At this time, the fiber may be drawn in multiple stages.
[0010]
In the present invention, at the time of drawing, a yarn having a predetermined draw ratio was obtained by fixing the speed of the first godet roll at 5 m / min and changing the speeds of the other godet rolls.
[0011]
The chopped filament cement mortar or concrete reinforcing fibrous material can be obtained by cutting the obtained fiber into a predetermined length. In particular, chopped filaments are effective for mortar reinforcement, and the cut length is desirably 30 mm or less. When the thickness is 30 mm or more, the fibers become clumps (fiber balls) during kneading, which is not preferable in terms of uniformity. Here, as a mortar reinforcement application, a mixture of sand, cement and fiber, called a premix, is often used. When preparing a premix, it is known that the more uniform the dispersion of the fibers, the more effectively the characteristics of the fibers can be exhibited. Since the fiber of the present invention has a circular cross-sectional shape, there is almost no fusion or crimping, so that each fiber can contribute to the reinforcing effect, and since it has rigidity, it is easily dispersed uniformly. It is considered to have.
[0012]
The monofilament type organic fiber cement mortar or concrete reinforcing fibrous material is prepared by aligning the obtained fibers to a predetermined thickness, using a sizing agent or a heat-sealing fiber, and binding the respective filaments. It can be obtained by cutting to length. In particular, monofilament type organic fibers are particularly effective for concrete reinforcement applications. As the sizing material, it is preferable to select a resin having excellent alkali resistance, such as a thermosetting resin such as an epoxy resin or a phenol resin, or a thermoplastic material such as an ethylene resin, a urethane resin, or an acrylic resin. As the heat-fused fiber, a fiber having a skin core structure and a melting point of a skin portion of 120 ° C. or less and a fiber having a melting point of 120 ° C. or less can be selected. The monofilament type organic fiber thus obtained is cut into chips having an appropriate length and used. The cut length is preferably adjusted to a length between 1 and 2 times the maximum coarse aggregate diameter. In the case of a monofilament type organic fiber, it is preferable that the content of the resin having a low reinforcing effect is as small as possible, since the resin is adhered to the fiber and bundled. Since the fiber of the present invention has a circular cross section, the effect of uniformly adhering the resin can be expected. In addition, as a method of bundling with a heat fusion yarn or the like, a method of covering the heat fusion yarn with the fiber of the present invention can be mentioned. Also in this design, a fiber having a round cross-section has an effect of reducing the surface area, and is expected to have an effect of reducing water absorption and a slump loss as compared with a fiber having a modified cross-section. When used for mortar, it is preferable to use it in a thickness of 30 mm or less.
[0013]
In the concrete composition of the present invention, cement is generally used, and examples thereof include Portland cement and early-strength cement. Regarding water, sand and gravel, it can be made of a generally used material without being limited to a particular region or type. In addition, fly ash and blast furnace slag fine powder can be appropriately selected and used.
[0014]
Hereinafter, measurement methods and measurement conditions relating to characteristic values in the present invention will be described.
[0015]
(Strength and elastic modulus)
The strength and elastic modulus in the present invention were measured by using a Tensilon manufactured by Orientic Co., Ltd., under the conditions of a sample length of 200 mm (length between chucks) and an elongation speed of 100% / min. Measured under 65% condition, the stress at the break point of the curve was determined by calculating the strength (cN / dtex) and the elastic modulus (cN / dtex) from the tangent line giving the maximum gradient near the origin of the curve. In addition, each value used the average value of 10 measured values.
[0016]
(Weight average molecular weight Mw, number average molecular weight Mn and Mw / Mn)
The weight average molecular weight Mw, number average molecular weight Mn and Mw / Mn were measured by gel permeation chromatography (GPC). As a GPC device, GPC 150C ALC / GPC manufactured by Waters was used, and as a column, measurement was performed using two GPC UT802.5 manufactured by SHOdex and one UT806M. As a measurement solvent, o-dichlorobenzene was used, and the column temperature was 145 degrees. The sample concentration was 1.0 mg / ml, and 200 microliters were injected and measured. The calibration curve of the molecular weight is constituted by using a polystyrene sample whose molecular weight is known by the universal calibration method.
[0017]
(Dynamic viscoelasticity measurement)
The dynamic viscosity measurement in the present invention was performed using "Ryo Vibron DDV-01FP" manufactured by Orientec. The fibers are split or ligated so as to be 100 denier ± 10 denier as a whole, and the measurement length (distance between scissors metal fittings) is 20 mm in consideration of arranging each single fiber as uniformly as possible. Both ends of the fiber are wrapped in aluminum foil and adhered with a cellulosic adhesive. In this case, the length of the adhesive margin is set to about 5 mm in consideration of fixing to the scissors metal fittings. Each test piece was carefully set on a scissor fitting (chuck) set to an initial width of 20 mm so that the thread would not be loosened or twisted, and was preliminarily deformed for several seconds at a temperature of 60 ° C. and a frequency of 110 Hz. After that, this experiment was performed. In this experiment, the temperature dispersion at a frequency of 110 Hz was obtained from the lower temperature side at a temperature rise rate of about 1 ° C./min in a temperature range of −150 ° C. to 150 ° C. In the measurement, the static load was set to 5 gf, and the sample length was automatically adjusted so that the fiber did not loosen. The amplitude of the dynamic deformation was set at 15 μm.
[0018]
(Ratio of discharge linear speed to spinning speed (draft ratio))
The draft ratio (Ψ) is given by the following equation.
Draft ratio (Ψ) = spinning speed (Vs) / discharge linear speed (V)
[0019]
(Evaluation of dispersibility of mortar premix)
A mixture of sand and cement (S / C = 40) was put in a plastic bag, fibers were mixed in 0.1% each, and the mixed amount until fiber balls were generated was measured. The fibers were put in a state of being dispersed as much as possible, stirred for 30 seconds, and when a lump of 5 mm or more was generated, it was determined that fiber balls were generated. This test was repeated five times, and the average value was calculated, which was defined as the limit mixing amount.
[0020]
(Mortar bending test)
Water was mixed with the maximum mixing amount of the premix material obtained in the dispersibility evaluation of the mortar premix so that the water cement ratio became 45%, and the mixture was stirred for 2 minutes. The mortar paste was prepared into a 10 × 10 × 40 (cm) specimen. The curing period was 14 days. As the bending test conditions, a four-point bending test was performed in which the deflection speed was 1/1500 of the span and the span was 30 cm. Then, in order to confirm the effect of the fiber, the load value at a position where the center displacement point was bent by 2 mm was compared, and the result was defined as the toughness performance of the fiber.
[0021]
(Slump test)
The fiber of the present invention was bundled with a resin or a heat-sealing fiber to obtain a monofilament type organic fiber.
As a slump test, fine aggregate and cement were stirred for 1 minute, coarse aggregate having a maximum coarse aggregate diameter of 20 mm and water were further added and kneaded for 2 minutes, and then a monofilament type organic fiber and a water reducing agent were added to produce a concrete paste. did. Each mixing ratio is 50% for water cement, 50% for fine aggregate, unit water amount is 190kg / m 3 , maximum coarse aggregate diameter is 20mm, fiber mixing amount is 1vol%, water reducing agent is polycarboxylic acid type And added 2% to the cement amount. The slump test was measured according to JIS-A1101.
[0022]
(Concrete bending test)
The concrete paste obtained by the slump test was prepared into a 10 × 10 × 40 (cm) specimen according to the test method in JCI-SF4 “Testing method for bending strength and bending toughness of fiber reinforced concrete”. The curing period was 28 days. As for the conditions of the bending test, a four-point bending test was performed in which the deflection rate was 1/1500 of the span and the span was 30 cm. As the evaluation items, the maximum bending strength and the 2 mm-converted bending strength were evaluated.
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0023]
(Example 1)
A high-density polyethylene having a weight average molecular weight of 115,000, a ratio of the weight average molecular weight to the number average molecular weight of 2.3, and 0.4 or more branched chains having a length of carbon having 1,000 or more carbon atoms per 1,000 carbon atoms. It was extruded from a spinneret consisting of φ0.8 mm and 390H at 290 ° C. at a single hole discharge rate of 0.5 g / min. The extruded fiber passes through a 15 cm heat insulation section, is then cooled at 20 ° C. with a quench of 0.5 m / s, and is wound up at a speed of 300 m / min. The undrawn yarn was drawn by a plurality of Nelson rolls capable of controlling the temperature. In the one-stage stretching, stretching was performed 2.8 times at 25 ° C. It was further heated to 115 ° C. and stretched 5.0 times to obtain a drawn yarn. The single yarn breaking strength was 18.0 cN / dtex, the tensile modulus was 820 cN / dtex, the single fiber fineness was 1.5 dtex, and the cross-sectional shape was round. This fiber was cut into 12 mm, and the mortar premix was evaluated for dispersibility and subjected to a mortar bending test. For slump test and concrete bending test, filaments were bundled at 876 dtex and cured with an epoxy resin (resin impregnation amount: 71 wt%).
[0024]
(Example 2)
The drawn yarn of Example 1 was heated to 125 ° C. and further drawn 1.3 times. The single yarn breaking strength was 19.1 cN / dtex, the tensile modulus was 890 cN / dtex, the single fiber fineness was 1.4 dtex, and the cross-sectional shape was round. This fiber was cut into 12 mm, and the mortar premix was evaluated for dispersibility and subjected to a mortar bending test. For slump test and concrete bending test, filaments were bundled in 672 dtex and cured with epoxy resin (resin impregnation amount 75 wt%).
[0025]
(Comparative Example 1)
As a fiber, an ultra-high molecular weight polyethylene fiber having an elliptical shape having a single yarn breaking strength of 29.8 cN / dtex, a tensile modulus of elasticity of 1008 cN / dtex, a single fiber fineness of 1.2 dtex and a cross section of 1: 7 is cut into 12 mm. And a mortar premix were evaluated for dispersibility and a mortar bending test. In addition, for the slump test and the concrete bending test, an ultrahigh molecular weight polyethylene fiber 880T was cured with an epoxy resin (resin impregnation amount: 160 wt%).
[0026]
(Comparative Example 2)
As a fiber, a polyvinyl alcohol fiber having a single yarn breaking strength of 7.5 cN / dtex, a tensile modulus of elasticity of 240 cN / dtex, a single yarn fineness of 378 dtex and a substantially round cross section was cut into 6 mm, and the dispersibility of the mortar premix was evaluated. And a mortar bending test. For the slump test and the concrete bending test, polyvinyl alcohol fibers having a breaking strength of 6.1 cN / detx, a tensile modulus of elasticity of 241.9 cN / dtex and a fineness of 1650 dtex were used.
[0027]
Table 1 summarizes the results of the mortar premix dispersibility evaluation, mortar bending test, slump test, and concrete bending test. From Table 1, the dispersibility of the premix is high, and more fibers can be mixed. Therefore, the reinforcing effect of high toughness was confirmed even in the mortar bending test. Further, from the slump test and the bending test, it can be seen that the resin adhesion amount can be controlled and the resin adhesion amount can be reduced, so that high performance can be imparted in both the maximum breaking load value and the 2 mm equivalent bending strength in the bending test.
[0028]
[Table 1]
Figure 2004018318
[0029]
Next, the characteristics of the monofilament type organic fiber obtained by covering the fiber of the present invention with the heat-sealing yarn were compared between Example 3 and Comparative Example 3. This property was evaluated by a slump test and a concrete bending test.
[0030]
(Example 3)
The fiber of the present invention obtained in Example 1 was covered with a skin-core type heat-fused fiber of a core PP having a fineness of 190 T and a sheath PE. The obtained monofilament type organic fiber was cut into 30 mm, and the characteristics were evaluated. Here, the number of covering turns was 10 turns / 30 mm.
[0031]
(Comparative Example 3)
Using the ultrahigh molecular weight polyethylene fiber used in Comparative Example 1, covering was performed with a core PP having a fineness of 190 T and a skin core type heat-sealing fiber having a sheath PE. The obtained monofilament type organic fiber was cut into 30 mm, and the characteristics were evaluated. Here, the number of covering turns was 10 turns / 30 mm.
[0032]
Table 2 summarizes the results of the slump test and the concrete bending test. Table 2 shows that the slump loss is reduced.
[0033]
[Table 2]
Figure 2004018318
[0034]
【The invention's effect】
According to the present invention, when a premix mortar is produced from the fiber cross-sectional shape, it becomes a fiber having excellent dispersibility, and high toughness can be imparted due to its high strength. Further, even when the monofilament type organic fiber is given a shape with a sizing material or the like, a high breaking load and high toughness can be provided as a concrete reinforcing material, and slump loss can be reduced.

Claims (5)

繊維状態での重量平均分子量が300,000以下、重量平均分子量と数平均分子量の比(Mw/Mn)が4.0以下であり、強度15cN/dtex以上、弾性率500cN/dtex以上の高強度ポリエチレン繊維を主成分とするセメントモルタル又はコンクリート補強用繊維状物。High strength with a weight average molecular weight of 300,000 or less in a fiber state, a weight average molecular weight to number average molecular weight ratio (Mw / Mn) of 4.0 or less, a strength of 15 cN / dtex or more, and an elastic modulus of 500 cN / dtex or more. A cement mortar or a fibrous material for concrete reinforcement mainly composed of polyethylene fibers. 高強度ポリエチレン繊維の単繊維繊度が1.5dtex以下であることを特徴とする請求項1記載のセメントモルタル又はコンクリート補強用繊維状物。The fibrous material for reinforcing cement mortar or concrete according to claim 1, wherein the single-fiber fineness of the high-strength polyethylene fiber is 1.5 dtex or less. 繊維が、チョップドフィラメントであることを特徴とする請求項1又は2記載のセメントモルタル又はコンクリート補強用繊維状物。The fibrous material for reinforcing cement mortar or concrete according to claim 1 or 2, wherein the fibers are chopped filaments. 繊維が、適当な長さにカットされた複数の高強度ポリエチレン繊維が収束されたチップであることを特徴とする請求項1〜3のいずれかに記載のセメントモルタル又はコンクリート補強用繊維状物。The cement mortar or concrete reinforcing fiber according to any one of claims 1 to 3, wherein the fiber is a chip in which a plurality of high-strength polyethylene fibers cut to an appropriate length are converged. 請求項4記載のチップを含んでなることを特徴とするコンクリート組成物。A concrete composition comprising the chip according to claim 4.
JP2002176128A 2002-04-09 2002-06-17 Cement mortar or concrete reinforcing fiber Expired - Fee Related JP4178503B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002176128A JP4178503B2 (en) 2002-06-17 2002-06-17 Cement mortar or concrete reinforcing fiber
KR1020097026505A KR100985938B1 (en) 2002-04-09 2003-04-04 Polyethylene Fiber and Process for Producing the Same
AT03745910T ATE540146T1 (en) 2002-04-09 2003-04-04 POLYETHYLENE FIBER AND THE PRODUCTION PROCESS THEREOF
KR1020047015949A KR100943592B1 (en) 2002-04-09 2003-04-04 Polyethylene Fiber and Process for Producing the Same
CNB03807737XA CN100376730C (en) 2002-04-09 2003-04-04 Polyethylene fiber and process for producing the same
PCT/JP2003/004310 WO2003085176A1 (en) 2002-04-09 2003-04-04 Polyethylene fiber and process for producing the same
US10/510,565 US7247372B2 (en) 2002-04-09 2003-04-04 Polyethylene filament and a process for producing the same
EP03745910A EP1493851B1 (en) 2002-04-09 2003-04-04 Polyethylene fiber and process for producing the same
TW92116331A TWI315359B (en) 2002-06-17 2003-06-17 Polyethylene fiber, polyethylene fiber knitted/woven fabric, cut wound resistant glove, cut wound resistant vest, fibrous product for reinforcing cement mortar and concrete, concrete composition
US11/723,548 US7736564B2 (en) 2002-04-09 2007-03-20 Process of making a high strength polyolefin filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176128A JP4178503B2 (en) 2002-06-17 2002-06-17 Cement mortar or concrete reinforcing fiber

Publications (2)

Publication Number Publication Date
JP2004018318A true JP2004018318A (en) 2004-01-22
JP4178503B2 JP4178503B2 (en) 2008-11-12

Family

ID=31174575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176128A Expired - Fee Related JP4178503B2 (en) 2002-04-09 2002-06-17 Cement mortar or concrete reinforcing fiber

Country Status (1)

Country Link
JP (1) JP4178503B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089175A1 (en) * 2011-12-13 2013-06-20 ダイワボウホールディングス株式会社 Fibers for cement reinforcement, method for producing same and cement hardened body
JP2014001087A (en) * 2012-06-15 2014-01-09 Toyobo Co Ltd Short fiber for reinforcement of cement-based structure composed of polyethylene fiber, and cement-based structure
JP2017214243A (en) * 2016-05-31 2017-12-07 東洋紡株式会社 Fiber material for reinforcing cement-based structure
CN113307568A (en) * 2021-06-03 2021-08-27 纪泳丞 Formula and preparation method of double-doped fiber concrete

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089175A1 (en) * 2011-12-13 2013-06-20 ダイワボウホールディングス株式会社 Fibers for cement reinforcement, method for producing same and cement hardened body
JP5568693B2 (en) * 2011-12-13 2014-08-06 ダイワボウホールディングス株式会社 Cement reinforcing fiber, method for producing the same, and hardened cement
JPWO2013089175A1 (en) * 2011-12-13 2015-04-27 ダイワボウホールディングス株式会社 Cement reinforcing fiber, method for producing the same, and hardened cement
JP2014001087A (en) * 2012-06-15 2014-01-09 Toyobo Co Ltd Short fiber for reinforcement of cement-based structure composed of polyethylene fiber, and cement-based structure
JP2017214243A (en) * 2016-05-31 2017-12-07 東洋紡株式会社 Fiber material for reinforcing cement-based structure
CN113307568A (en) * 2021-06-03 2021-08-27 纪泳丞 Formula and preparation method of double-doped fiber concrete

Also Published As

Publication number Publication date
JP4178503B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US7736564B2 (en) Process of making a high strength polyolefin filament
US4483727A (en) High modulus polyethylene fiber bundles as reinforcement for brittle matrices
JP4834859B2 (en) Manufacturing method of monofilament-like products
US4524101A (en) High modulus polyethylene fiber bundles as reinforcement for brittle matrices
KR100951222B1 (en) High-strength polyethylene fiber
CN108138402B (en) Composite long object
EP1193335A1 (en) High-strength polyethylene fiber and process for producing the same
JP4178503B2 (en) Cement mortar or concrete reinforcing fiber
JP2022527551A (en) Two-component ultrafine fiber with hydrophilic polymer on surface with enhanced dispersion in alkaline environment for roof applications of fiber cement
JP3832614B2 (en) High-strength polyethylene fiber and method for producing the same
JPH11350247A (en) High-strength polyethylene fiber
JP6040584B2 (en) Short fibers for reinforcing cement-based structures made of polyethylene fibers, and cement-based structures
JP2020176035A (en) Cement reinforcement material
JP2004019050A (en) Polyethylene fiber having excellent cut resistance, woven or knitted fabric and utilization thereof
JP6122296B2 (en) Fiber for reinforcing hydraulic material, method for producing the same, and hydraulic cured body using the same
JP3997613B2 (en) High-strength polypropylene fiber and method for producing the same
JP6778025B2 (en) Hydraulic material
JP5830785B2 (en) Connection thread for concrete reinforcement and manufacturing method thereof
JP3849861B2 (en) rope
TW200408738A (en) Polyethylene fiber, fibrous product, knitted/woven fabric and use thereof
JP2003328257A (en) Net
KR100731955B1 (en) Inorganic Material Added High Strength Polyethylene Fiber and Manufacturing Method Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R151 Written notification of patent or utility model registration

Ref document number: 4178503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees