JPH1019495A - Cooling tower - Google Patents

Cooling tower

Info

Publication number
JPH1019495A
JPH1019495A JP17017896A JP17017896A JPH1019495A JP H1019495 A JPH1019495 A JP H1019495A JP 17017896 A JP17017896 A JP 17017896A JP 17017896 A JP17017896 A JP 17017896A JP H1019495 A JPH1019495 A JP H1019495A
Authority
JP
Japan
Prior art keywords
cooling
water
cooling water
cooling tower
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17017896A
Other languages
Japanese (ja)
Other versions
JP3260627B2 (en
Inventor
Hatsuhiko Kawamura
初彦 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP17017896A priority Critical patent/JP3260627B2/en
Publication of JPH1019495A publication Critical patent/JPH1019495A/en
Application granted granted Critical
Publication of JP3260627B2 publication Critical patent/JP3260627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a cooling tower smaller in size without reduction in cooling capacity. SOLUTION: A distributer 83 is provided below water spray ports 821 of a water spray pipe 82, a plate-shaped member 833 is provided immediately below a ridge portion 831 of a roof section 832 on the distributer 83, and guide grooves 834 are formed on the plate-shaped member 833 to permit insertion of cooling heat radiation plates 84 in the plate-shaped member 833. Ends of the cooling heat radiation plates 84 are inserted into the guide grooves 834 with a lower end of the roof section 832 contacted with the lower ends of the cooling heat radiation plates 84. Spacings between the ends of the respective cooling heat radiation plates 84 can be regulated to become constant. A cooling water flowing down from the water spray ports 821 is divided by the ridge portion 831 of the distributer 83 to flow diverging at the roof section 832 to move from the lower end of the roof section 832 to the ends of the cooling heat radiation plates 84. The cooling water surely shifts to the cooling heat radiation plates 84 and does not fall down between the cooling heat radiation plates 84, whereby a cooling effect of the cooling water can be ensured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置等におい
て、排熱を放出するための冷却水を散布してその温度を
低下させる冷却塔に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling tower in a refrigeration system or the like, which sprays cooling water for releasing exhaust heat to lower the temperature.

【0002】[0002]

【従来の技術】冷凍装置、空調装置などの冷凍サイク
ル、吸収サイクルなどでは、庫内あるいは室内の温度を
下げるために、庫内あるいは室内から回収した排熱を凝
縮器などを介して外部へ放熱する。この放熱の際の放熱
効率を高めるために、放熱部において冷却水を散布して
強制的に風を送りその気化熱を利用して冷却水の温度を
下げる冷却塔が用いられている。こうした冷却塔では、
凝縮器などで熱を回収した冷却水が、散水器で幾つかの
冷却用放熱板に散布され、冷却用放熱板の表面を流下す
る間に気化熱による自己冷却によってその温度が下が
る。冷却塔で低温となった冷却水は再び凝縮器などへ供
給され、冷却塔と凝縮器などとの間で循環される。
2. Description of the Related Art In refrigeration cycles and absorption cycles of refrigeration systems and air conditioners, etc., in order to lower the temperature in a refrigerator or room, waste heat collected from the refrigerator or room is radiated to the outside via a condenser or the like. I do. In order to increase the heat radiation efficiency at the time of heat radiation, a cooling tower is used in which a cooling water is sprayed in a heat radiating section to forcibly send wind and utilize the heat of vaporization to lower the temperature of the cooling water. In these cooling towers,
Cooling water, whose heat has been recovered by a condenser or the like, is sprayed on several cooling radiators by a sprinkler, and the temperature of the cooling water drops by self-cooling due to heat of vaporization while flowing down the surface of the cooling radiator. The cooling water that has become low temperature in the cooling tower is again supplied to a condenser or the like, and circulated between the cooling tower and the condenser.

【0003】このように、冷却塔では冷却水が冷却用放
熱板の表面を流下する間にその温度が下がるため、冷却
水の表面積が広がるように冷却用放熱板の表面積を大き
くすることが望ましく、塩化ビニールシート等からなる
多数の冷却用放熱板を空間を介在して重層させて、各冷
却用放熱板に散布された冷却水と空気との接触面積を確
保していた。
As described above, in the cooling tower, while the temperature of the cooling water is lowered while flowing down the surface of the cooling radiator plate, it is desirable to increase the surface area of the cooling radiator plate so as to increase the surface area of the cooling water. In addition, a large number of cooling radiators made of vinyl chloride sheet or the like are layered with a space interposed therebetween to secure a contact area between the cooling water and air sprayed on each cooling radiator plate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、冷却塔
を用いた冷凍装置等において、装置の小型化を図る場合
には、冷却塔等の大きさが制限されるため、冷却用放熱
板の表面積を大きくすることができない。このため、限
られた寸法内で、放熱の効率を高めることが必要とな
り、そのためには、冷却水を各冷却用放熱板の表面に隈
なく行き渡らせて、冷却水の温度を確実に低下させる必
要がある。
However, in a refrigerating apparatus or the like using a cooling tower, when the size of the apparatus is reduced, the size of the cooling tower is limited. Can't be bigger. For this reason, it is necessary to increase the efficiency of heat radiation within the limited dimensions, and for that purpose, the cooling water is spread all over the surface of each cooling radiator plate to surely lower the temperature of the cooling water. There is a need.

【0005】しかし、冷却塔の体格を小さくするため
に、塩化ビニールシートからなる多数の冷却用放熱板間
の空間を狭くしてその重層間隔を小さくすると、剛性の
小さい冷却用放熱板を用いた場合には、その形状のばら
つきによって重層間隔の差による冷却水の流下への影響
が大きくなり、例えば、重層間隔が約1センチメートル
以下になると、冷却水が表面張力によって滞留するため
円滑に流下せず、逆に、1センチメートルより大きくな
ると、過剰の冷却水が一気に流下して水滴飛散を生じる
などして、いずれの場合にも、冷却性能の低下を招くと
いう問題がある。
However, in order to reduce the size of the cooling tower, if the space between a large number of cooling radiators made of vinyl chloride sheets is narrowed to reduce the interval between the cooling radiating plates, a cooling radiator having a small rigidity is used. In such a case, the influence on the cooling water flow due to the difference in the space between the layers increases due to the variation in the shape. For example, when the space between the layers becomes about 1 cm or less, the cooling water stays due to surface tension and flows down smoothly. On the other hand, if it is larger than 1 cm, excessive cooling water will flow down at once and water droplets will be scattered. In either case, there is a problem that the cooling performance is reduced.

【0006】本発明では、多数の冷却用放熱板の間に空
間を設けて重層させ、各冷却用放熱板に冷却水を散布し
て冷却する冷却塔において、冷却能力を低下させること
なく、冷却塔の小型化を図ることを目的とする。
According to the present invention, in a cooling tower for cooling by dispersing cooling water on each cooling radiator plate by providing a space between a plurality of cooling radiator plates and spraying cooling water on each cooling radiator plate, the cooling capacity of the cooling tower can be reduced. It aims at miniaturization.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1では、
複数の冷却用放熱板を鉛直方向に配置し、各冷却用放熱
板間に空気通過用空間を形成して前記複数の冷却用放熱
板を水平方向に重層し、前記複数の冷却用放熱板の上方
に配置された散水器から流下される冷却水を前記複数の
冷却用放熱板に分散させて冷却水を冷却する冷却塔にお
いて、前記散水器に、前記複数の冷却用放熱板の各上端
部をそれぞれ挿入して重層間隔を整えるための複数の案
内溝を形成したことを技術的手段とする。
According to claim 1 of the present invention,
A plurality of cooling radiators are arranged in the vertical direction, an air passage space is formed between each cooling radiator, and the plurality of cooling radiators are horizontally layered. In a cooling tower that cools cooling water by dispersing cooling water flowing down from a water sprinkler disposed above to the plurality of cooling heat radiating plates, the water sprinkler includes an upper end of each of the plurality of cooling heat radiating plates. Is formed as a plurality of guide grooves for adjusting the interval between the layers by inserting the respective grooves.

【0008】上記構成により、請求項1では、散水器の
下方に複数の冷却用放熱板を配置する際に、各冷却用放
熱板の上端部が散水器の案内溝に挿入されるため、各冷
却用放熱板の各上端部の間隔が整えられ、これにより、
各冷却用放熱板の上端部をあらかじめ決められた重層間
隔に維持することができる。
According to the first aspect of the present invention, when a plurality of cooling radiators are arranged below the water sprinkler, the upper end of each cooling heat radiator is inserted into the guide groove of the water sprinkler. The spacing between the upper ends of the cooling radiator plate is adjusted,
The upper end of each cooling radiator plate can be maintained at a predetermined interval between layers.

【0009】これにより、重層間隔が狭いために供給さ
れる冷却水が少なくなってしまったり、重層間隔が広い
ために供給される冷却水が過剰になって、冷却用放熱板
間を一気に流れ落ちて、水滴が飛散してしまったりする
ことがなく、散水器から流下する冷却水は、整えられた
重層間隔で各冷却用放熱板に均等に分散して、各冷却用
放熱板の表面を均等に濡らしながら流下する。この結
果、各冷却用放熱板における冷却水の冷却性能が均一に
なり、冷却性能の低下を招くことがない。
As a result, the amount of cooling water supplied becomes small because the interval between the layers is narrow, or the amount of cooling water supplied becomes excessive because the interval between the layers is large, and the water flows between the cooling radiating plates at a stretch. The cooling water flowing down from the sprinkler is distributed evenly to each cooling radiator plate at regular intervals to prevent the water droplets from being scattered, so that the surface of each cooling radiator plate is evenly distributed. Flow down while getting wet. As a result, the cooling performance of the cooling water in each cooling radiator plate becomes uniform, and the cooling performance does not decrease.

【0010】請求項2では、請求項1において、前記複
数の案内溝の縁に、前記複数の冷却用放熱板の各端部の
挿入を容易にするための面取りを施したことを技術的手
段とする。この構成により、複数の冷却用放熱板の端部
を案内溝への挿入が容易となり、冷却塔の組立作業を円
滑に行うことができ、組立時間を短縮できるため、生産
性が向上する。
According to a second aspect of the present invention, in the first aspect, an edge of the plurality of guide grooves is chamfered to facilitate insertion of each end of the plurality of cooling radiating plates. And With this configuration, it is easy to insert the ends of the plurality of cooling radiating plates into the guide grooves, and it is possible to smoothly perform the assembling work of the cooling tower and shorten the assembling time, thereby improving the productivity.

【0011】請求項3では、請求項1、2において、前
記散水器は、複数の散水口が前記複数の冷却用放熱板の
重層方向に分散して形成された散水配管と、該散水配管
の下方に該散水配管に沿って配置され、該散水配管から
流下される冷却水を分散させる屋根状部材からなる分散
器とを具備し、該分散器の下に、前記複数の案内溝が形
成された案内溝付き板部材が設けられたことを技術的手
段とする。
According to a third aspect of the present invention, in the first and second aspects, the water sprinkler comprises a water sprinkling pipe formed by dispersing a plurality of water spouts in a direction in which the plurality of cooling radiating plates are stacked. A disperser that is disposed along the sprinkling pipe below and that includes a roof-like member that disperses the cooling water flowing down from the sprinkling pipe, wherein the plurality of guide grooves are formed below the disperser. The provision of the plate member with a guide groove is technical means.

【0012】このように、請求項3では、冷却用放熱板
を挿入するための案内溝が分散器である屋根状部材の下
にあるため、散水配管の散水口から流下する冷却水は、
屋根状部材の表面で分散し、冷却水が案内溝付き板部材
に直接伝わることがないため、散水経路に影響がない。
また、分散器と案内溝付き板部材とを一体形成すること
ができ、部品点数が増加しないため、安価にすることが
できる。
As described above, according to the third aspect, since the guide groove for inserting the cooling radiator plate is located below the roof-like member which is the distributor, the cooling water flowing down from the sprinkling port of the sprinkling pipe is:
Since the cooling water is dispersed on the surface of the roof-like member and is not directly transmitted to the plate member with the guide groove, there is no influence on the watering path.
Further, the disperser and the plate member with guide grooves can be integrally formed, and the number of parts does not increase, so that the cost can be reduced.

【0013】請求項4では、請求項3において、前記分
散器の前記屋根状部材は、略円弧状の断面形状を呈する
ことを技術的手段とする。これにより、分散器の上端が
単純に角張っておらず、丸みが確保されるため、散水配
管から屋根状部材に流下した冷却水は、すぐに屋根状部
材の両側へ分流することがなく、屋根状部材の配置方向
へも広がるため、冷却水をより広い範囲へ分散させるこ
とができる。
According to a fourth aspect of the present invention, in the third aspect, the roof-like member of the disperser has a technical shape of having a substantially arc-shaped cross-sectional shape. As a result, since the upper end of the disperser is not simply angular and rounded, the cooling water flowing down from the sprinkling pipe to the roof-shaped member does not immediately flow to both sides of the roof-shaped member, and the roof is not spilled. The cooling water can be dispersed over a wider range because it also spreads in the arrangement direction of the shaped members.

【0014】請求項5では、請求項3において、前記散
水配管の前記複数の散水口の間隔と、前記冷却用放熱板
の重層間隔を同一にして、前記各冷却用放熱板の配置位
置を前記各散水口の位置に対応させたことを技術的手段
とする。これにより、散水配管の散水口から流下した冷
却水が各冷却用放熱板に正しく流下し、各冷却用放熱板
に流下する冷却水の量を均一化させることができる。こ
の結果、各冷却用放熱板での冷却水を冷却能力を低下さ
せることがない。
According to a fifth aspect of the present invention, in the third aspect, an interval between the plurality of water spouts of the water sprinkling pipe and an overlapping interval between the cooling radiating plates are the same, and the arrangement position of each of the cooling radiating plates is set to the same value. The technical means is to correspond to the position of each water spout. Thereby, the cooling water that has flowed down from the sprinkling port of the watering pipe correctly flows down to each cooling radiator plate, and the amount of cooling water flowing down to each cooling radiator plate can be made uniform. As a result, the cooling capacity of the cooling water in each cooling radiator plate is not reduced.

【0015】請求項6では、請求項1から5において、
冷媒を含む吸収液を加熱して該吸収液から冷媒蒸気を分
離させる再生器と、該再生器によって分離した前記冷媒
蒸気を冷却して凝縮させる凝縮器と、該凝縮器で凝縮し
た冷媒を低圧下で蒸発させる蒸発器と、該蒸発器で蒸発
した冷媒蒸気を前記再生器から供給される吸収液に吸収
させる吸収器と、該吸収器から前記再生器へ吸収液を戻
すポンプとから吸収サイクルを形成した吸収式冷凍装置
において、前記凝縮器を冷却する冷却水の循環回路に前
記冷却塔を設けたことを技術的手段とする。
According to a sixth aspect, in the first to fifth aspects,
A regenerator for heating the absorbing liquid containing the refrigerant to separate the refrigerant vapor from the absorbing liquid, a condenser for cooling and condensing the refrigerant vapor separated by the regenerator, and a low-pressure refrigerant for condensing the refrigerant in the condenser. An absorption cycle comprising: an evaporator for evaporating under the evaporator; an absorber for absorbing the refrigerant vapor evaporated by the evaporator into an absorbent supplied from the regenerator; and a pump for returning the absorbent from the absorber to the regenerator. In the absorption refrigeration apparatus formed with the above, technical means is that the cooling tower is provided in a circulation circuit of cooling water for cooling the condenser.

【0016】[0016]

【発明の実施の形態】本発明に関わる空調装置は、図1
に示すとおり、室外機としての吸収式冷凍装置100と
室内機RUとからなり、吸収式冷凍装置100は、図2
に示すように、冷凍機本体101と冷却塔(クーリング
タワー)CTとから構成される。なお、空調装置は、制
御装置102により制御される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An air conditioner according to the present invention is shown in FIG.
As shown in FIG. 2, an absorption refrigeration apparatus 100 as an outdoor unit and an indoor unit RU are provided.
As shown in FIG. 2, the refrigerator comprises a refrigerator main body 101 and a cooling tower (cooling tower) CT. The air conditioner is controlled by the control device 102.

【0017】冷凍機本体101は、冷媒及び吸収液とし
てのとしての臭化リチウム水溶液の吸収サイクルを形成
するもので、加熱源としてのガスバーナBが下方に備え
られた高温再生器1と、この高温再生器1の外側に被さ
るように配置された低温再生器2とからなる二重効用型
の再生器と、さらに低温再生器2の外周に向かって二重
に配置された吸収器3および蒸発器4と、低温再生器2
の外周で吸収器3の上方に配置された凝縮器5とを、幾
つかの通路で接続してなる。
The refrigerator main body 101 forms an absorption cycle of a refrigerant and an aqueous solution of lithium bromide as an absorbing liquid, and includes a high temperature regenerator 1 provided with a gas burner B as a heating source below, and a high temperature regenerator 1. A double-effect regenerator comprising a low-temperature regenerator 2 disposed so as to cover the outside of the regenerator 1; and an absorber 3 and an evaporator which are further disposed double toward the outer periphery of the low-temperature regenerator 2. 4 and low-temperature regenerator 2
And a condenser 5 disposed above the absorber 3 on the outer periphery of the condenser 5 through several passages.

【0018】高温再生器1は、ガスバーナBによって加
熱される加熱タンク11の上方に中濃度吸収液分離筒1
2を延長させて設け、中濃度吸収液分離筒12の上方か
らその外周に覆い被さるように縦型円筒形の気密性の冷
媒回収タンク10が設けられている。
The high-temperature regenerator 1 is provided above the heating tank 11 heated by the gas burner B with the medium-concentration absorbent separating cylinder 1.
2, a vertical cylindrical airtight refrigerant recovery tank 10 is provided so as to cover the outer periphery of the medium-concentration absorbing liquid separation tube 12 from above.

【0019】これにより、高温再生器1では、加熱タン
ク11の内部に収容された低濃度吸収液をガスバーナB
によって加熱して、低濃度吸収液中の冷媒としての水を
蒸発させて冷媒蒸気(水蒸気)として中濃度吸収液分離
筒12の外側へ分離させ、冷媒蒸気の蒸発により濃化し
た中濃度吸収液を中濃度吸収液分離筒12の内側の貯留
部121に残し、分離した冷媒蒸気を冷媒回収タンク1
0で回収する。
Thus, in the high-temperature regenerator 1, the low-concentration absorbing liquid contained in the heating tank 11 is supplied to the gas burner B
To evaporate water as a refrigerant in the low-concentration absorbing liquid and separate it as refrigerant vapor (water vapor) outside the medium-concentration absorbing liquid separation cylinder 12, and concentrate the medium-concentration absorbing liquid by evaporation of the refrigerant vapor Is left in the storage part 121 inside the medium-concentration absorption liquid separation cylinder 12, and the separated refrigerant vapor is collected in the refrigerant recovery tank 1.
Collect at 0.

【0020】低温再生器2は、冷媒回収タンク10の外
周に偏心して設置した縦型円筒形の低温再生器ケース2
0を有し、低温再生器ケース20の天井の周囲には冷媒
蒸気出口21が設けられている。低温再生器ケース20
の天井の頂部は、中濃度吸収液流路L1により熱交換器
Hを介して中濃度吸収液分離筒12の貯留部121と連
結されている。中濃度吸収液流路L1中には、貯留部1
21から低温再生器2へ流れる中濃度吸収液の流量を制
限するためのオリフィス(図示なし)が設けられてい
て、低温再生器ケース20内へは中濃度吸収液分離筒1
2との圧力差により中濃度吸収液が供給される。
The low-temperature regenerator 2 is a vertical cylindrical low-temperature regenerator case 2 installed eccentrically on the outer periphery of the refrigerant recovery tank 10.
0, a refrigerant vapor outlet 21 is provided around the ceiling of the low-temperature regenerator case 20. Low temperature regenerator case 20
The top of the ceiling is connected to the storage part 121 of the middle-concentration absorbent separation cylinder 12 via the heat exchanger H by the middle-concentration absorbent flow path L1. The storage unit 1 is provided in the medium-concentration absorbent flow path L1.
An orifice (not shown) for restricting the flow rate of the medium-concentration absorbent flowing from the low-temperature regenerator 2 to the low-temperature regenerator 2 is provided.
The medium concentration absorbing liquid is supplied by the pressure difference from the pressure absorbing liquid 2.

【0021】これにより、低温再生器2では、低温再生
器ケース20内に供給された中濃度吸収液を、冷媒回収
タンク10の外壁を熱源として再加熱し、中濃度吸収液
は低温再生器ケース20の上部の気液分離部22で冷媒
蒸気と高濃度吸収液とに分離され、高濃度吸収液は、高
濃度吸収液受け部23で貯留される。
Thus, the low-temperature regenerator 2 reheats the medium-concentration absorbent supplied into the low-temperature regenerator case 20 by using the outer wall of the refrigerant recovery tank 10 as a heat source, and the medium-concentration absorbent is supplied to the low-temperature regenerator case. The refrigerant vapor and the high-concentration absorption liquid are separated by the gas-liquid separation section 22 above the high-concentration absorption liquid 20, and the high-concentration absorption liquid is stored in the high-concentration absorption liquid receiving section 23.

【0022】低温再生器ケース20の外周下部には、縦
型円筒形で気密性の蒸発・吸収ケース30が、外周上部
には凝縮器ケース50がそれぞれ同心的に配されてお
り、冷媒回収タンク10、低温再生器ケース20、蒸発
・吸収ケース30は、各底板部13で一体に溶接されて
冷凍機本体101を形成している。なお、低温再生器ケ
ース20は、冷媒蒸気出口21および隙間5Aを介して
凝縮器ケース50内と連通している。
A low-temperature regenerator case 20 has a vertical cylindrical air-tight evaporating / absorbing case 30 disposed concentrically below the outer peripheral lower part thereof, and a condenser case 50 concentrically disposed above the outer peripheral upper part thereof. The low-temperature regenerator case 20 and the evaporating / absorbing case 30 are integrally welded to each other at the bottom plate portions 13 to form the refrigerator main body 101. The low-temperature regenerator case 20 communicates with the inside of the condenser case 50 via the refrigerant vapor outlet 21 and the gap 5A.

【0023】吸収器3は、蒸発・吸収ケース30内の内
側部分内に縦型円筒状に巻設され内部を排熱用冷却水が
流れる吸収コイル31が配置され、吸収コイル31の上
方には、高濃度吸収液を吸収コイル31に散布するため
の高濃度吸収液散布具32が配置されている。
The absorber 3 is provided with an absorption coil 31 which is wound in a vertical cylindrical shape inside an evaporating / absorbing case 30 and through which cooling water for exhaust heat flows, and above the absorption coil 31. A high-concentration absorbent spraying device 32 for dispersing the high-concentration absorbent to the absorption coil 31 is provided.

【0024】高濃度吸収液散布具32は、熱交換器Hを
介して低温再生器2の高濃度吸収液受け部23と連結さ
れた高濃度吸収液流路L2の開口部から吐出する高濃度
吸収液を受けて散布し、吸収コイル31内には、冷房運
転時に、冷却塔CTで冷却された排熱用冷却水が循環す
る。
The high-concentration absorbent spraying device 32 is provided with a high-concentration absorbent discharged from the opening of the high-concentration absorbent flow path L2 connected to the high-concentration absorbent reception section 23 of the low-temperature regenerator 2 via the heat exchanger H. The cooling liquid for exhaust heat cooled by the cooling tower CT is circulated in the absorption coil 31 during the cooling operation during receiving and scattering the absorbing liquid.

【0025】吸収器3では、高濃度吸収液が圧力差によ
り高濃度吸収液流路L2から流入し、流入した高濃度吸
収液は、高濃度吸収液散布具32により吸収コイル31
の上端に散布され、吸収コイル31の表面に付着して薄
膜状になり、重力の作用で下方に流下し、水蒸気を吸収
して低濃度吸収液となる。この水蒸気を吸収する際に吸
収コイル31の表面で発熱するが、吸収コイル31を循
環する排熱用冷却水により冷却される。尚、高濃度吸収
液に給湯される水蒸気は、後述する蒸発器4で冷媒蒸気
として発しするものである。吸収器3の底部33は、熱
交換器Hおよび吸収液ポンプP1が装着された低濃度吸
収液流路L3で加熱タンク11の底部と連結されてお
り、吸収液ポンプP1の作動により吸収器3内の低濃度
吸収液は加熱タンク11内へ供給される。
In the absorber 3, the high-concentration absorbent flows in from the high-concentration absorbent flow path L 2 due to the pressure difference, and the high-concentration absorbent flowing in is absorbed by the high-concentration absorbent dispersion device 32 by the absorption coil 31.
At the upper end of the coil 31 and adheres to the surface of the absorption coil 31 to form a thin film, flows downward by the action of gravity, absorbs water vapor, and becomes a low concentration absorbent. When absorbing the water vapor, heat is generated on the surface of the absorption coil 31, but is cooled by cooling water for exhaust heat circulating through the absorption coil 31. The steam supplied to the high-concentration absorbing liquid is emitted as refrigerant vapor in an evaporator 4 described later. The bottom 33 of the absorber 3 is connected to the bottom of the heating tank 11 by a low-concentration absorbent flow path L3 to which a heat exchanger H and an absorbent pump P1 are attached, and the absorber 3 is operated by the operation of the absorbent pump P1. The low-concentration absorbing liquid in the tank is supplied into the heating tank 11.

【0026】蒸発器4は、蒸発・吸収ケース30内の吸
収コイル31の外周に設けた縦型円筒形で連通口付きの
仕切壁40の外周に、内部を冷暖房用の冷温水が流れる
縦型円筒形の蒸発コイル41を配設し、その上方に冷媒
液散布具42を取り付けてなる。なお、蒸発器4の底部
43は、暖房用電磁弁6を有する暖房用吸収液流路L4
により中濃度吸収液分離筒12の貯留部121と連通し
ている。
The evaporator 4 is a vertical type in which cold and hot water for cooling and heating flows inside the outer circumference of a vertical cylindrical partition wall 40 having a communication port provided on the outer circumference of the absorption coil 31 in the evaporation / absorption case 30. A cylindrical evaporating coil 41 is provided, and a refrigerant liquid sprayer 42 is attached above the evaporating coil 41. In addition, the bottom part 43 of the evaporator 4 is provided with a heating absorbing liquid flow path L4 having a heating electromagnetic valve 6.
Communicates with the storage section 121 of the medium-concentration absorbing liquid separation cylinder 12 by means of.

【0027】蒸発器4では、冷房運転時に冷媒液散布具
42より冷媒液(水)を蒸発コイル41の上に滴下させ
ると、滴下された冷媒液は、表面張力で蒸発コイル41
の表面を濡らして膜状となり、重力の作用で下方へ降下
しながら低圧(例えば、6.5mmHg)となっている
蒸発・吸収ケース30内で蒸発コイル41から気化熱を
奪って蒸発し、蒸発コイル41内を流れる空調用の冷温
水を冷却する。
In the evaporator 4, when the refrigerant liquid (water) is dropped on the evaporating coil 41 from the refrigerant liquid sprayer 42 during the cooling operation, the dropped refrigerant liquid is subjected to surface tension to the evaporating coil 41.
Of the vaporizing coil 41 in the evaporating / absorbing case 30 at a low pressure (for example, 6.5 mmHg) while evaporating by evaporating and evaporating. The air-conditioning cold / hot water flowing in the coil 41 is cooled.

【0028】凝縮器5は、凝縮器ケース50の内部に冷
却塔CTで冷却された排熱用冷却水が内部を循環してい
る冷却コイル51を配設してなる。凝縮器ケース50
は、冷媒回収タンク10から凝縮器ケース50への冷媒
流量を制限するためのオリフィス(図示なし)が設けら
れた冷媒流路L5により冷媒回収タンク10の底部14
と連通するとともに、冷媒蒸気出口21および隙間5A
を介して低温再生器2と連通しており、いずれも圧力差
(凝縮器ケース内では約70mmHg)により冷媒が供
給される。
The condenser 5 is provided with a cooling coil 51 in which cooling water for exhaust heat cooled by the cooling tower CT circulates inside a condenser case 50. Condenser case 50
The bottom portion 14 of the refrigerant recovery tank 10 is provided by a refrigerant flow path L5 provided with an orifice (not shown) for restricting the flow rate of the refrigerant from the refrigerant recovery tank 10 to the condenser case 50.
And the refrigerant vapor outlet 21 and the gap 5A
And the refrigerant is supplied by a pressure difference (about 70 mmHg in the condenser case).

【0029】凝縮器5では、凝縮器ケース50内に供給
された冷媒蒸気は、冷却コイル51により冷却されて液
化する。凝縮器5の下部と蒸発器4の蒸発コイル41の
上方に配置された冷媒液散布具42とは、冷媒液供給路
L6で連通している。液化した冷媒液は、冷媒液供給路
L6に設けられた冷媒冷却器52を経て冷媒液散布具4
2に供給される。
In the condenser 5, the refrigerant vapor supplied into the condenser case 50 is cooled by the cooling coil 51 and liquefied. The lower part of the condenser 5 and the refrigerant liquid disperser 42 disposed above the evaporator coil 41 of the evaporator 4 communicate with each other through a refrigerant liquid supply path L6. The liquefied refrigerant liquid passes through the refrigerant cooler 52 provided in the refrigerant liquid supply passage L6, and is supplied to the refrigerant liquid sprayer 4.
2 is supplied.

【0030】以上の構成により、吸収液は、高温再生器
1→中濃度吸収液流路L1→低温再生器2→高濃度吸収
液流路L2→吸収器3→吸収液ポンプP1→低濃度吸収
液流路L3→高温再生器1の順に循環する。また、冷媒
は、高温再生器1(冷媒蒸気)→冷媒流路L5(冷媒蒸
気)又は低温再生器2(冷媒蒸気)→凝縮器5(冷媒
液)→冷媒供給路L6(冷媒液)→冷媒冷却器52(冷
媒液)→冷媒液散布具42(冷媒液)→蒸発器4(冷媒
蒸気)→吸収器3(吸収液)→吸収液ポンプP1→低濃
度吸収液流路L3→高温再生器1の順に循環する。
With the above configuration, the absorbing liquid is supplied from the high-temperature regenerator 1 → the medium-concentration absorbing liquid path L1 → the low-temperature regenerator 2 → the high-concentration absorbing liquid path L2 → the absorber 3 → the absorbing liquid pump P1 → the low-concentration absorbing liquid. The liquid circulates in the order of the liquid flow path L3 and the high temperature regenerator 1. The refrigerant is a high-temperature regenerator 1 (refrigerant vapor) → refrigerant flow path L5 (refrigerant vapor) or a low-temperature regenerator 2 (refrigerant vapor) → condenser 5 (refrigerant liquid) → refrigerant supply path L6 (refrigerant liquid) → refrigerant Cooler 52 (refrigerant liquid) → refrigerant liquid sprayer 42 (refrigerant liquid) → evaporator 4 (refrigerant vapor) → absorber 3 (absorbent liquid) → absorbent pump P1 → low concentration absorbent liquid flow path L3 → high temperature regenerator Circulate in the order of 1.

【0031】上記、吸収液と熱交換する吸収器3の吸収
コイル31と凝縮器5の冷却コイル51は、接続されて
連続コイルを形成しており、連続コイルは、冷却水流路
34によって冷却塔CTと接続されて冷却水循環路を形
成している。この冷却水循環路において、吸収コイル3
1の入口と冷却塔CTとの間の冷却水流路34には、連
続コイル内へ冷却水を送り込むための冷却水ポンプP2
が装着されており、冷却水ポンプP2の作動により連続
コイルを通過する冷却水は、吸収コイル31で吸収熱
を、冷却コイル51で凝縮熱をそれぞれ吸熱して比較的
高温となって、冷却塔CTに供給される。
The absorption coil 31 of the absorber 3, which exchanges heat with the absorption liquid, and the cooling coil 51 of the condenser 5 are connected to form a continuous coil. The cooling water circulation path is formed by being connected to the CT. In this cooling water circuit, the absorption coil 3
A cooling water pump P2 for sending cooling water into the continuous coil is provided in a cooling water flow path 34 between the inlet of the cooling tower CT and the cooling tower CT.
The cooling water which passes through the continuous coil by the operation of the cooling water pump P2 absorbs the heat of absorption by the absorption coil 31 and the heat of condensation by the cooling coil 51, and becomes relatively high in temperature. Supplied to CT.

【0032】冷却塔CTは、冷却水流路34によって吸
収器3および凝縮器5との間で循環路を形成しており、
吸収器3および凝縮器5を通って吸熱して高温となった
冷却水を冷却して、再び吸収器3および凝縮器5へ循環
させるもので、上部タンク81、散水配管82、分散器
83、多数の冷却用放熱板84、下部タンク85を枠材
(図示なし)で組み合わせたもので、送風機Sを備えて
いる。
The cooling tower CT forms a circulation path between the absorber 3 and the condenser 5 by a cooling water flow path 34,
The cooling water that has absorbed heat through the absorber 3 and the condenser 5 and has become high temperature is cooled and circulated again to the absorber 3 and the condenser 5. The upper tank 81, the watering pipe 82, the disperser 83, A large number of cooling radiating plates 84 and a lower tank 85 are combined with a frame material (not shown), and a blower S is provided.

【0033】上部タンク81は、冷却水流路34を介し
て凝縮器5を通って循環供給される冷却水を貯留し、貯
留した冷却水を3本の散水配管82に分岐させて供給す
る。散水配管82は、分散器83とともに散水器を構成
するもので、上部タンク81から供給される冷却水を各
冷却用放熱板84に流下させるために、その底部には、
図3に示すように、冷却水を流下させるための複数の散
水口821が、各冷却用放熱板84の配置箇所の上方に
対応して設けられている。
The upper tank 81 stores cooling water circulated and supplied through the condenser 5 through the cooling water flow path 34, and supplies the stored cooling water to three sprinkling pipes 82 in a branched manner. The water sprinkling pipe 82 constitutes a water sprinkler together with the disperser 83. In order to cause the cooling water supplied from the upper tank 81 to flow down to each cooling radiator plate 84, the water sprinkling pipe 82 has
As shown in FIG. 3, a plurality of water outlets 821 for letting the cooling water flow down are provided above the locations where the cooling radiating plates 84 are arranged.

【0034】各散水配管82と多数の冷却用放熱板84
との間には、各散水配管82の各散水口821から所定
の間隔を置き、且つ、各冷却用放熱板84の上端に接触
して分散器83がそれぞれ配置されている。各分散器8
3は、対応する各散水配管82の各散水口821の真下
に棟部831が位置し略半円筒形状を呈する屋根部83
2と、棟部831の裏側位置から下方に向かって屋根部
832から垂下した板状部材833とが一体形成された
もので、板状部材833の下端には、冷却用放熱板84
の端部をそれぞれ挿入するための複数の案内溝834が
等間隔で形成されている。
Each watering pipe 82 and a number of cooling radiating plates 84
The dispersers 83 are arranged at predetermined intervals from the water spouts 821 of the water sprinkling pipes 82 and in contact with the upper ends of the cooling radiating plates 84. Each disperser 8
3 is a roof part 83 having a substantially semi-cylindrical shape with a ridge part 831 located directly below each water spout 821 of each corresponding water sprinkling pipe 82.
2 and a plate-shaped member 833 hanging down from the roof portion 832 from the back side position of the ridge portion 831, and the cooling radiator plate 84 is provided at the lower end of the plate-shaped member 833.
A plurality of guide grooves 834 for respectively inserting the ends of are formed at equal intervals.

【0035】案内溝834は、散水配管82の散水口8
21から流下する冷却水が、均一に正しく各冷却用放熱
板84に対して流下するように、各冷却用放熱板84の
上端部の間隔を均一にするためのものであり、本実施例
では、図3に示すように、各散水口821の位置と各冷
却用放熱板84の上端部の位置とを整合させて各冷却用
放熱板84に流下する冷却水の量をより均一化させてい
る。また、各分散器83と各冷却用放熱板84との組み
付け時に、各冷却用放熱板84を各案内溝834に容易
に挿入することができるようにするために、各案内溝8
34の端部には、面取りが施された面取り部835とな
っている。
The guide groove 834 is connected to the sprinkling port 8 of the sprinkling pipe 82.
This is for equalizing the interval between the upper ends of the cooling heat radiating plates 84 so that the cooling water flowing down from 21 flows down uniformly to each cooling heat radiating plate 84. As shown in FIG. 3, the position of each water spout 821 and the position of the upper end of each cooling radiator plate 84 are matched to make the amount of cooling water flowing down to each cooling radiator plate 84 more uniform. I have. In addition, when assembling each disperser 83 and each cooling radiator plate 84, each guide groove 8 is provided so that each cooling radiator plate 84 can be easily inserted into each guide groove 834.
A chamfered portion 835 having a chamfered portion is provided at an end of 34.

【0036】なお、各分散器83と各冷却用放熱板84
との組み付け完了状態では、分散器83の屋根部832
の下縁と各冷却用放熱板84の上端部とが接触し、分散
器83の屋根部832の表面を流下した冷却水は、各冷
却用放熱板84の上端部から各冷却用放熱板84の表面
へ確実に伝わる。尚、散水口821と冷却用放熱板84
とは、上下に対応していなくても良く、従って、散水口
821と冷却用放熱板84との数が異なっていてもよ
い。
Each disperser 83 and each cooling radiator plate 84
Is completed, the roof portion 832 of the disperser 83 is
The cooling water flowing down the surface of the roof portion 832 of the disperser 83 contacts the lower edge of the cooling radiator plate 84 and the upper end of each cooling radiator plate 84. It surely reaches the surface. The water spout 821 and the cooling radiator plate 84
Does not have to correspond to the upper and lower sides, and therefore, the numbers of the water spouts 821 and the cooling radiating plates 84 may be different.

【0037】冷却用放熱板84は、剛性が大きくない塩
化ビニール樹脂により成形した薄膜状(厚み0.3m
m)の板であり、その表面に冷却水を流下させて、その
際に冷却水の蒸発により冷却水を自己冷却させる。冷却
用放熱板84は、図5に示すように、斜め方向の断面形
状が繰り返し折れ曲がった稲妻形(ジグザグ形)を呈す
る2組の櫛歯形状部材を、各稲妻形の方向が交差するよ
うに配置して各櫛歯を他方の櫛歯間に挿入接合させたよ
うな形状を呈している。冷却用放熱板84の各櫛歯形状
部材において、稲妻形の各折れ曲がり部分の外側(凸
側)の表面には、冷却水の流下方向を偏向させて案内す
る冷却水誘導部材を構成する突条841が、その折れ曲
がり部分に沿って表面から突出した塀を成して形成され
ている。
The cooling heat radiating plate 84 is a thin film (thickness of 0.3 m) formed of a vinyl chloride resin having a low rigidity.
m), and the cooling water is caused to flow down on the surface of the plate, and at that time, the cooling water is self-cooled by evaporation of the cooling water. As shown in FIG. 5, the cooling heat radiating plate 84 is formed by combining two sets of comb-shaped members having a lightning shape (a zigzag shape) in which a cross-sectional shape in an oblique direction is repeatedly bent such that the directions of the lightning shapes intersect. It has such a shape that it is arranged and each comb tooth is inserted and joined between the other comb teeth. In each of the comb-shaped members of the cooling heat radiating plate 84, on the outer (convex side) surface of each of the lightning-shaped bent portions, a ridge that forms a cooling water guide member that deflects and guides the flowing down direction of the cooling water. 841 is formed as a fence protruding from the surface along the bent portion.

【0038】以上の形状からなる冷却用放熱板84は、
分散器83の下方に垂直方向に配置された状態で多数が
配置され、それぞれ隣合う冷却用放熱板84との間に空
気が通過できる空間を設けて水平方向に重層された集合
体を形成されているが、この集合体を形成するために、
各冷却用放熱板84には、隣合う冷却用放熱板84との
重層間隔(10mm)を設定するために円筒形状に突出
させた大突起843と、大突起843とは反対の面側に
突出させた小突起844とが備えられている。そして、
隣合う大突起843と大突起843及び小突起844と
小突起844とが接着されて、冷却用放熱板84は一体
化された集合体となっている。
The cooling radiator plate 84 having the above-described shape is
A large number are arranged vertically below the disperser 83 in a state where a large number of them are arranged, and a space through which air can pass is provided between each adjacent cooling radiator plate 84 to form a horizontally stacked assembly. However, in order to form this aggregate,
Each cooling heat radiating plate 84 has a large projection 843 protruding in a cylindrical shape for setting an interval (10 mm) between adjacent cooling heat radiating plates 84, and a projecting surface opposite to the large projection 843. And a small projection 844 which is made to be small. And
The adjacent large projections 843 and large projections 843 and small projections 844 and small projections 844 are bonded to each other, and the cooling heat radiating plate 84 forms an integrated assembly.

【0039】上記の構成により、各冷却用放熱板84で
は、分散器83から流下する冷却水は、冷却用放熱板8
4の表面を流下する際に、各櫛歯形状部材の稲妻形の表
面に形成された突条841に沿って斜め方向に流れ下
り、他方の櫛歯形状部材との接合部位に相当する部分に
到達すると、流れ方向が反対になって流れ下りる。この
ため、単純に下方へ向かって流下する場合と比較して、
冷却水はより広い範囲の大きな表面積に広がり、また、
流れ下りる速さが緩やかになることになり、蒸発が促進
される。また、各櫛歯形状部材の接合相当部842で
は、冷却水の流れ方向の転換に伴って、流れの速さが抑
制されるため、時間を掛けて流下することになり、冷却
効果が向上する。尚、冷却用放熱板84の左右両端(図
5において)は、端部に向かって斜め上方に傾斜してい
る。これにより、冷却水が流れ落ちてしまう事は生じな
い。
With the above arrangement, the cooling water flowing down from the disperser 83 in each cooling radiator plate 84 is
When flowing down the surface of No. 4, it flows down obliquely along the ridges 841 formed on the lightning-shaped surface of each comb-tooth-shaped member, and at a portion corresponding to a joint portion with the other comb-tooth-shaped member. Upon reaching, the flow direction is reversed and flows down. For this reason, compared to the case of simply flowing downward,
Cooling water spreads over a larger area of large surface area,
The speed of flowing down becomes slow, and evaporation is promoted. In addition, in the joint equivalent portion 842 of each comb-shaped member, the flow speed of the cooling water is suppressed along with the change in the flow direction of the cooling water, so that the cooling water flows down over time, and the cooling effect is improved. . The left and right ends (in FIG. 5) of the cooling radiator plate 84 are inclined obliquely upward toward the ends. Thereby, the cooling water does not flow down.

【0040】下部タンク85は、多数の冷却用放熱板8
4の表面を流下しながら冷却された冷却水を貯留し、貯
留された冷却水は、冷却水ポンプP2により冷却水流路
34を介して再び吸収器3の吸収コイル31および凝縮
器5の冷却コイル51へ循環される。なお、下部タンク
85内には、適正な冷却水量を維持するための水位セン
サが備えられていて、下部タンク85内の水位が低下す
ると、電磁バルブが開いて冷却水が補充され、適量まで
補充されると電磁バルブが閉まる。
The lower tank 85 includes a large number of cooling radiators 8.
The cooling water cooled while flowing down the surface of the cooling water 4 is stored, and the stored cooling water is again returned to the absorption coil 31 of the absorber 3 and the cooling coil of the condenser 5 via the cooling water flow path 34 by the cooling water pump P2. Circulated to 51. The lower tank 85 is provided with a water level sensor for maintaining an appropriate amount of cooling water. When the water level in the lower tank 85 decreases, the electromagnetic valve opens to replenish the cooling water and replenish the cooling water to an appropriate amount. Then, the solenoid valve closes.

【0041】以上の構成により、冷却塔CTでは、凝縮
器5を通って循環供給される冷却水は、上部タンク81
を経て散水配管82の散水口821から流下し、分散器
83の棟部831で分流し、屋根部832の下端から冷
却用放熱板84の上端部へ伝わる。冷却用放熱板84の
表面では、上述したとおり、冷却水は、緩やかに広い範
囲に広がりながら流下し、その際、送風機Sの送風など
により一部が大気中に蒸発して、気化熱を奪い、残りの
冷却水を冷却する自己冷却がなされる。このように、冷
却水は、大気中に放熱して低温度になる排熱サイクルを
形成している。なお、送風機Sからの送風により、水の
蒸発を促進させている。
With the above configuration, in the cooling tower CT, the cooling water circulated through the condenser 5 is supplied to the upper tank 81
Through the water spout 821 of the water sprinkling pipe 82, split at the ridge 831 of the distributor 83, and transmitted from the lower end of the roof 832 to the upper end of the cooling radiator plate 84. As described above, on the surface of the cooling heat radiating plate 84, the cooling water flows down while spreading gently over a wide range, and at this time, a part of the cooling water evaporates into the atmosphere due to the blowing of the blower S and takes the heat of vaporization. Self-cooling is performed to cool the remaining cooling water. As described above, the cooling water forms an exhaust heat cycle in which the heat is released to the atmosphere and the temperature becomes low. Note that the air from the blower S promotes the evaporation of water.

【0042】冷却された冷却水は、下部タンク85で一
時貯留された後、冷却水ポンプP2により吸収器3およ
び凝縮器5へ送られ、再び熱を吸収した後、冷却塔CT
へ供給される。上記の構成により、冷房運転時には、冷
却水ポンプP2の作動により冷却塔CT内の冷却水が、
冷却塔CT→冷却水ポンプP2→吸収コイル31→冷却
コイル51→冷却塔CTの順に循環する。
After the cooled cooling water is temporarily stored in the lower tank 85, it is sent to the absorber 3 and the condenser 5 by the cooling water pump P2 to absorb heat again, and then the cooling tower CT
Supplied to With the above configuration, during the cooling operation, the cooling water in the cooling tower CT is operated by the operation of the cooling water pump P2,
It circulates in the order of cooling tower CT → cooling water pump P2 → absorption coil 31 → cooling coil 51 → cooling tower CT.

【0043】蒸発器4の蒸発コイル41には、室内機R
Uに設けられた空調熱交換器44がゴムホース等で形成
された冷温水流路47で連結されていて、冷温水流路4
7には、冷温水ポンプP3が設けられている。以上の構
成により、蒸発コイル41で低温度となった冷温水は、
蒸発コイル41→冷温水流路47→空調熱交換器44→
冷温水流路47→冷温水ポンプP3→蒸発コイル41の
順で循環する。
The evaporator coil 41 of the evaporator 4 includes an indoor unit R
U is connected by a cold / hot water flow path 47 formed of a rubber hose or the like.
7, a cold / hot water pump P3 is provided. With the above configuration, the cold / hot water that has become low in the evaporating coil 41 is
Evaporation coil 41 → cold and hot water channel 47 → air conditioning heat exchanger 44 →
The circulation is performed in the order of the cold / hot water flow path 47 → the cold / hot water pump P3 → the evaporating coil 41.

【0044】室内機RUには、空調熱交換器44が設け
られているとともに、この熱交換器44に対して、室内
空気を通過させて再び室内へ吹き出すブロワ46が備え
られている。
The indoor unit RU is provided with an air-conditioning heat exchanger 44 and a blower 46 for allowing the room air to pass through the heat exchanger 44 and blowing the indoor air again.

【0045】なお、吸収液流路L4および暖房用電磁弁
6は、暖房運転用に設けられたもので、暖房運転時に
は、暖房用電磁弁6を開弁し、吸収液ポンプP1を作動
させる。これにより、中濃度吸収液分離筒12内の高温
度の中濃度吸収液が、蒸発器4の底部43から蒸発器4
内へ流入し、蒸発コイル41内の冷温水が加熱され、加
熱された蒸発コイル41内の冷温水は、冷温水ポンプP
3の作動により冷温水流路47から空調用熱交換器44
へ供給され、暖房の熱源となる。蒸発器4内の中濃度吸
収液は、仕切板40の連通口から吸収器3側へ入り、低
濃度吸収液流路L3を経て、吸収液ポンプP1により加
熱タンク11へ戻される。
The absorbing liquid flow path L4 and the heating electromagnetic valve 6 are provided for heating operation. During the heating operation, the heating electromagnetic valve 6 is opened and the absorbing liquid pump P1 is operated. As a result, the high-temperature medium-concentration absorbing liquid in the medium-concentration absorbing liquid separation cylinder 12 flows from the bottom 43 of the evaporator 4 to the evaporator 4.
The hot and cold water in the evaporating coil 41 is heated by the cold and hot water in the evaporating coil 41.
3, the air-conditioning heat exchanger 44 is transferred from the cold / hot water flow path 47
And heat source for heating. The medium-concentration absorbent in the evaporator 4 enters the absorber 3 through the communication port of the partition plate 40, and is returned to the heating tank 11 by the absorbent pump P1 via the low-concentration absorbent flow path L3.

【0046】上記各実施例では、冷却水流路34の冷却
塔CTを、冷却水の一部を蒸発させて冷却水を自己冷却
する開放式のものとしたが、冷却水流路34を循環する
冷却水が、大気に開放されていない密閉回路を形成した
水冷装置でもよい。
In each of the above embodiments, the cooling tower CT of the cooling water flow path 34 is of an open type in which a part of the cooling water is evaporated to self-cool the cooling water. A water cooling device in which a closed circuit in which water is not opened to the atmosphere may be formed.

【0047】上記実施例では、室内機RUに空調熱交換
器44のみを設けたものを示したが、室内温度を下げな
いで除湿運転を行うために、空調熱交換器44で一旦冷
却した空気を加熱する加熱用熱交換器を空調熱交換器4
4と並設させるようにしてもよい。上記実施例では、吸
収式冷凍装置を用いた空調装置を示したが、冷蔵庫、冷
凍庫など、他の冷凍装置に用いてもよい。また、吸収式
冷凍装置以外の冷凍装置において用いられる冷却塔でも
よい。上記実施例では、分散器83に案内溝834付き
の板状部材833を設けて、冷却用放熱板84を挿入し
間隔を整えたが、屋根部832の下端に案内溝834を
設けて冷却用放熱板84を挿入してもよい。また、板状
部材833は、屋根部832の棟部831の真下でなく
てもよい。また、分散器83に屋根部832を設けた
が、半円柱型や山状の部材からなる分散器83としても
よい。
In the above embodiment, the indoor unit RU is provided with only the air conditioning heat exchanger 44. However, in order to perform the dehumidifying operation without lowering the indoor temperature, the air once cooled by the air conditioning heat exchanger 44 is used. Air-conditioning heat exchanger 4
4 may be juxtaposed. Although the air conditioner using the absorption refrigeration apparatus has been described in the above embodiment, the air conditioning apparatus may be used for other refrigeration apparatuses such as a refrigerator and a freezer. Further, a cooling tower used in a refrigerating device other than the absorption refrigerating device may be used. In the above-described embodiment, the disperser 83 is provided with the plate-shaped member 833 having the guide groove 834, and the cooling radiator plate 84 is inserted and the interval is adjusted. However, the guide groove 834 is provided at the lower end of the roof 832 to provide the cooling member. A heat sink 84 may be inserted. Further, the plate-shaped member 833 does not have to be directly below the ridge 831 of the roof 832. Further, although the roof portion 832 is provided in the disperser 83, the disperser 83 may be formed of a semi-cylindrical or mountain-shaped member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す空調装置の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of an air conditioner showing an embodiment of the present invention.

【図2】実施例の空調装置の外観を示す斜視図である。FIG. 2 is a perspective view showing an external appearance of the air conditioner of the embodiment.

【図3】本発明の実施例における散水器および冷却用放
熱板を示す冷却塔の部分斜視図である。
FIG. 3 is a partial perspective view of a cooling tower showing a water sprinkler and a cooling radiator plate in the embodiment of the present invention.

【図4】本発明の実施例における散水器および冷却用放
熱板を示す冷却塔の部分側面図である。
FIG. 4 is a partial side view of a cooling tower showing a water sprinkler and a cooling radiator plate in the embodiment of the present invention.

【図5】本発明の実施例における散水器および冷却用放
熱板を示す冷却塔の部分正面図である。
FIG. 5 is a partial front view of a cooling tower showing a water sprinkler and a cooling radiator plate in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

CT 冷却塔 82 散水配管(散水器) 821 散水口 83 分散器(散水器) 831 棟部 832 屋根部(屋根状部材) 833 板状部材(案内溝付き板部材) 834 案内溝(複数の案内溝) 835 面取り部(面取り) 84 冷却用放熱板(複数の冷却用放熱板) 841 突条(冷却水誘導部材) 843 大突起(凸部) S 送風機 CT cooling tower 82 water sprinkling pipe (sprinkler) 821 water sprinkler 83 disperser (sprinkler) 831 ridge 832 roof (roof-like member) 833 plate-like member (plate member with guide groove) 834 guide groove (plurality of guide grooves) ) 835 Chamfered portion (chamfered) 84 Cooling radiator plate (plurality of cooling radiator plates) 841 Ridge (cooling water guide member) 843 Large protrusion (convex portion) S Blower

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の冷却用放熱板を鉛直方向に配置
し、各冷却用放熱板間に空気通過用空間を形成して前記
複数の冷却用放熱板を水平方向に重層し、前記複数の冷
却用放熱板の上方に配置された散水器から流下される冷
却水を前記複数の冷却用放熱板に分散させて冷却水を冷
却する冷却塔において、 前記散水器に、前記複数の冷却用放熱板の各上端部をそ
れぞれ挿入して重層間隔を整えるための複数の案内溝を
形成したことを特徴とする冷却塔。
1. A plurality of cooling radiators are arranged in a vertical direction, an air passage space is formed between each cooling radiator, and the plurality of cooling radiators are layered in a horizontal direction. A cooling tower that cools the cooling water by dispersing cooling water flowing down from a sprinkler disposed above the cooling radiator plate to the plurality of cooling radiator plates; A cooling tower, wherein a plurality of guide grooves are formed for inserting respective upper ends of the plates to adjust the interval between layers.
【請求項2】 前記複数の案内溝の縁に、前記複数の冷
却用放熱板の各端部の挿入を容易にするための面取りを
施したことを特徴とする請求項1記載の冷却塔。
2. The cooling tower according to claim 1, wherein edges of said plurality of guide grooves are chamfered to facilitate insertion of respective ends of said plurality of cooling radiating plates.
【請求項3】 前記散水器は、 複数の散水口が前記複数の冷却用放熱板の重層方向に分
散して形成された散水配管と、 該散水配管の下方に該散水配管に沿って配置され、該散
水配管から流下される冷却水を分散させる屋根状部材か
らなる分散器とを具備し、 該分散器の下に、前記複数の案内溝が形成された案内溝
付き板部材が設けられたことを特徴とする請求項1また
は2に記載の冷却塔。
3. The water sprinkler, wherein the water sprinkling pipe is formed by dispersing a plurality of water sprinkling ports in the direction in which the plurality of cooling radiating plates are layered; and the water sprinkler is arranged along the water sprinkling pipe below the water sprinkling pipe. A disperser comprising a roof-like member for dispersing cooling water flowing down from the sprinkling pipe, and a plate member with a guide groove in which the plurality of guide grooves are formed is provided below the disperser. The cooling tower according to claim 1 or 2, wherein:
【請求項4】 前記分散器の前記屋根状部材は、略円弧
状の断面形状を呈することを特徴とする請求項3記載の
冷却塔。
4. The cooling tower according to claim 3, wherein the roof-like member of the disperser has a substantially arc-shaped cross-sectional shape.
【請求項5】 前記散水配管の前記複数の散水口の間隔
と、前記冷却用放熱板の重層間隔を同一にして、前記各
冷却用放熱板の配置位置を前記各散水口の位置に対応さ
せたことを特徴とする請求項3記載の冷却塔。
5. An interval between the plurality of water spouts of the water sprinkling pipe and an interval between layers of the cooling heat radiating plate are set to be the same so that the arrangement position of each cooling heat radiating plate corresponds to the position of each water sprinkling hole. 4. The cooling tower according to claim 3, wherein:
【請求項6】 冷媒を含む吸収液を加熱して該吸収液か
ら冷媒蒸気を分離させる再生器と、 該再生器によって分離した前記冷媒蒸気を冷却して凝縮
させる凝縮器と、 該凝縮器で凝縮した冷媒を低圧下で蒸発させる蒸発器
と、 該蒸発器で蒸発した冷媒蒸気を前記再生器から供給され
る吸収液に吸収させる吸収器と、 該吸収器から前記再生器へ吸収液を戻すポンプとから吸
収サイクルを形成した吸収式冷凍装置において、 前記凝縮器及び吸収器を冷却する冷却水の循環回路に前
記冷却塔を設けたことを特徴とする請求項1から5に記
載の冷却塔。
6. A regenerator for heating an absorbent containing a refrigerant to separate refrigerant vapor from the absorbent, a condenser for cooling and condensing the refrigerant vapor separated by the regenerator, An evaporator that evaporates the condensed refrigerant under a low pressure; an absorber that absorbs the refrigerant vapor evaporated by the evaporator into an absorbent supplied from the regenerator; and returns the absorbent from the absorber to the regenerator. The cooling tower according to any one of claims 1 to 5, wherein the cooling tower is provided in a circulation circuit of cooling water that cools the condenser and the absorber in an absorption refrigeration apparatus that forms an absorption cycle with a pump. .
JP17017896A 1996-06-28 1996-06-28 cooling tower Expired - Fee Related JP3260627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17017896A JP3260627B2 (en) 1996-06-28 1996-06-28 cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17017896A JP3260627B2 (en) 1996-06-28 1996-06-28 cooling tower

Publications (2)

Publication Number Publication Date
JPH1019495A true JPH1019495A (en) 1998-01-23
JP3260627B2 JP3260627B2 (en) 2002-02-25

Family

ID=15900143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17017896A Expired - Fee Related JP3260627B2 (en) 1996-06-28 1996-06-28 cooling tower

Country Status (1)

Country Link
JP (1) JP3260627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379006B1 (en) * 2012-04-19 2014-03-27 주식회사 원진 Water Division Cap and Recyling Evaporation Type Cooler Using The Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379006B1 (en) * 2012-04-19 2014-03-27 주식회사 원진 Water Division Cap and Recyling Evaporation Type Cooler Using The Same

Also Published As

Publication number Publication date
JP3260627B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US5349829A (en) Method and apparatus for evaporatively cooling gases and/or fluids
JP3269634B2 (en) Liquid distribution device, falling film heat exchanger, and absorption refrigerator
US7269966B2 (en) Heat and mass exchanger
US20030230092A1 (en) Air conditioning system
CN1985129B (en) Heat exchange device
AU2008299568A1 (en) An air conditioning apparatus
AU708106B2 (en) Method and apparatus for cooling fluid and dehumidifying and cooling gas
JP3260627B2 (en) cooling tower
TW202103774A (en) Dehumidifier achieving desirable results in both dehumidification amount of an evaporator and heat dissipation efficiency of a condenser
KR100331985B1 (en) Liquid distributor, falling film heat exchanger and absorption refrigerator
US2553143A (en) Method of and means for removing condensate from cooling elements of air-conditioning systems
JPH0894202A (en) Air conditioner
JP7516923B2 (en) Evaporative heat exchanger
JPH09152227A (en) Air conditioner using absorption type refrigerator
CN114688767B (en) Evaporative condenser for channel
JP3118003B2 (en) Dropping device for absorption refrigeration system
JP3780647B2 (en) Air-cooled absorption refrigeration system
JP2945972B1 (en) Absorption chiller / heater
JP3184072B2 (en) Air conditioner using absorption refrigeration system
JP3408116B2 (en) Absorption refrigeration equipment
KR0140627B1 (en) Refrigerant Heat Exchanger for Pressure Drop of Absorption Air Conditioner
JP3330845B2 (en) cooling tower
JPH04332353A (en) Heat exchanger
JP3017051B2 (en) Heat exchanger of absorption refrigeration system
CN110411077A (en) Evaporative condensing mechanism and evaporative water chilling unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101214

LAPS Cancellation because of no payment of annual fees