JPH09152227A - Air conditioner using absorption type refrigerator - Google Patents
Air conditioner using absorption type refrigeratorInfo
- Publication number
- JPH09152227A JPH09152227A JP8036460A JP3646096A JPH09152227A JP H09152227 A JPH09152227 A JP H09152227A JP 8036460 A JP8036460 A JP 8036460A JP 3646096 A JP3646096 A JP 3646096A JP H09152227 A JPH09152227 A JP H09152227A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- water
- heat exchanger
- cooling water
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B15/00—Sorption machines, plants or systems, operating continuously, e.g. absorption type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、臭化リチウムな
どの水溶液を吸収液とする吸収式冷凍装置を用いた空調
機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using an absorption type refrigerating apparatus which uses an aqueous solution such as lithium bromide as an absorption liquid.
【0002】[0002]
【従来の技術】吸収式冷凍装置を用いた空調機では、冷
房運転時は、再生器においてバーナで加熱して低濃度吸
収液を沸騰させ、高濃度吸収液と冷媒液とを生成する。
冷媒液は、蒸発器において、内部を空調用熱媒体として
の冷温水が流れる蒸発コイルに散布して蒸発コイルから
気化熱を奪って蒸発させ冷温水を冷却する。蒸発した冷
媒は、高濃度吸収液を内部を排熱用の冷却水が流れる冷
却コイルに散布する吸収器において散布された高濃度吸
収液に吸収される。冷媒蒸気の吸収時に発生する吸収熱
は、冷却水に吸熱されて温度が維持されるため、吸収コ
イルの表面における吸収能力が持続される。2. Description of the Related Art In an air conditioner using an absorption refrigerating apparatus, during cooling operation, a regenerator heats a low concentration absorbent by boiling with a burner to generate a high concentration absorbent and a refrigerant fluid.
In the evaporator, the refrigerant liquid is sprayed on the inside of the evaporation coil through which cold / hot water as a heat medium for air conditioning flows, and the heat of vaporization is taken from the evaporation coil to be evaporated to cool the cold / hot water. The evaporated refrigerant is absorbed by the high-concentration absorbent that has been sprayed in the absorber that sprays the high-concentration absorbent onto the cooling coil through which the cooling water for exhaust heat flows. The absorption heat generated when the refrigerant vapor is absorbed is absorbed by the cooling water and the temperature is maintained, so that the absorption capacity on the surface of the absorption coil is maintained.
【0003】冷媒を吸収して低濃度化した低濃度吸収液
は、吸収液ポンプを設けた低濃度吸収液流路から前記再
生器に戻る。冷温水は、冷温水配管を通じて冷温水ポン
プにより蒸発コイルから室内空調ユニットに循環され
る。室内空調ユニットは、熱交換器とブロワとからな
り、熱交換器により室内空気は熱交換されて室内に吹出
す。冷却水は、冷却水配管を通じて冷却水ポンプで冷却
コイルから冷却塔に循環され、冷却される。The low-concentration absorption liquid, which has absorbed the refrigerant to have a low concentration, returns to the regenerator from the low-concentration absorption liquid flow path provided with the absorption liquid pump. The cold / hot water is circulated from the evaporation coil to the indoor air conditioning unit by the cold / hot water pump through the cold / hot water pipe. The indoor air conditioning unit is composed of a heat exchanger and a blower, and the indoor air is heat-exchanged by the heat exchanger and blows out into the room. The cooling water is circulated from the cooling coil to the cooling tower by the cooling water pump through the cooling water pipe to be cooled.
【0004】[0004]
【発明が解決しようとする課題】この空調ユニットは、
冷房運転により室内空気の冷却は可能であるが、吹出温
度の低下を防止して湿度のみを低下させる除湿運転を行
うには、電熱ヒータなど別途に加熱源を付設する必要が
あり、除湿運転の運転コストが割高になる問題が生じ
る。この発明の目的は、除湿運転の運転コストの低減を
可能にした吸収式冷凍装置を用いた空調機の提供にあ
る。This air conditioning unit is
Although it is possible to cool the indoor air by the cooling operation, it is necessary to attach a separate heating source such as an electric heater to perform the dehumidification operation that prevents the temperature of the blowout air from decreasing and reduces only the humidity. There is a problem that the operating cost becomes expensive. An object of the present invention is to provide an air conditioner using an absorption refrigerating device that can reduce the operating cost of dehumidifying operation.
【0005】[0005]
【課題を解決するための手段】この発明は、再生器にお
いて低濃度吸収液を高濃度吸収液と冷媒とに分離し、蒸
発器において、内部を空調用熱媒体としての冷温水が流
れる蒸発コイルに冷媒液を散布して蒸発させるとともに
前記冷温水を冷却し、吸収器において、冷却塔に連結さ
れるとともに、内部を排熱用の冷却水が流れる冷却コイ
ルに吸収液を散布して蒸発した冷媒を吸収させ、冷媒を
吸収して低濃度化した低濃度吸収液を低濃度吸収液流路
に設けた吸収液ポンプにより前記再生器に戻す吸収式冷
凍装置と、前記蒸発コイルに連結され、前記冷温水が循
環する空調熱交換器およびブロワを備えた室内機とから
なる空調機において、前記空調機の空調熱交換器に対
し、ブロワによって発生する気流の下流側に、前記冷却
コイルから前記排熱用の冷却水が流れる除湿運転用熱交
換器を付設した。SUMMARY OF THE INVENTION The present invention separates a low-concentration absorbent into a high-concentration absorbent and a refrigerant in a regenerator, and in the evaporator, an evaporation coil through which cold / hot water as a heat medium for air conditioning flows. The refrigerant liquid is sprayed to evaporate and the cold and hot water is cooled, and in the absorber, the absorbent is sprayed and evaporated to the cooling coil which is connected to the cooling tower and through which the cooling water for exhaust heat flows. Absorption refrigerant, absorption-type refrigerating device that returns to the regenerator by an absorption liquid pump provided in a low-concentration absorption liquid flow path, which is a low-concentration absorption liquid that has absorbed the refrigerant and has a low concentration, and is connected to the evaporation coil In an air conditioner consisting of an indoor unit equipped with an air conditioning heat exchanger in which the hot and cold water circulates and a blower, with respect to the air conditioning heat exchanger of the air conditioner, on the downstream side of the air flow generated by the blower, from the cooling coil to the waste heat Coolant annexed dehumidifying operation heat exchanger flows in.
【0006】請求項2に記載の発明では、吸収式冷凍装
置は、分離された冷媒を液化するための冷却コイルを備
えた凝縮器を有し、冷却水は、冷却塔、吸収器の冷却コ
イル、凝縮器の冷却コイル、冷却塔を連結する冷却水流
路を循環する。請求項3に記載の発明では、冷却コイル
と冷却塔の上流とを連結する冷却水流路の中間に前記除
湿運転用熱交換器への分岐冷却水流路を設け、該分岐冷
却水流路を開閉するための除湿運転用電磁弁を設けた。According to another aspect of the invention, the absorption refrigeration system has a condenser provided with a cooling coil for liquefying the separated refrigerant, and the cooling water is a cooling tower and a cooling coil of the absorber. , A cooling coil of the condenser, and a cooling water flow path that connects the cooling tower. In the invention according to claim 3, a branch cooling water passage to the heat exchanger for dehumidification operation is provided in the middle of the cooling water passage connecting the cooling coil and the upstream of the cooling tower, and the branch cooling water passage is opened and closed. A solenoid valve for dehumidifying operation was provided for this purpose.
【0007】[0007]
【発明の作用・効果】この空調機では、冷却水の排熱を
利用して冷却され、凝縮により水分が低減された後の空
調空気を加熱することにより除湿運転を行っているの
で、伝熱ヒータなど別途に加熱源を設けることなく除湿
運転が可能である。よって、除湿運転を冷房運転と同程
度のコストで運転できる。In this air conditioner, the dehumidifying operation is performed by heating the conditioned air after being cooled by using the exhaust heat of the cooling water and having the water content reduced by condensation, so that the heat transfer is performed. Dehumidification operation is possible without separately providing a heating source such as a heater. Therefore, the dehumidifying operation can be operated at the same cost as the cooling operation.
【0008】[0008]
【発明の実施の形態】図1は空調機を示し、冷凍機本体
101およびクーリングタワー(冷却塔)CTからなる
吸収式冷凍装置100を室外機として備えるとともに、
室内機(クーリングユニット)CUが付設されている。
この空調機は、制御装置102により制御される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an air conditioner, which is equipped with an absorption type refrigerating apparatus 100 composed of a refrigerator body 101 and a cooling tower (cooling tower) CT as an outdoor unit,
An indoor unit (cooling unit) CU is attached.
This air conditioner is controlled by the control device 102.
【0009】冷凍機本体101は、高温再生器1および
低温再生器2を備え、高温再生器1の下方には、加熱源
としてのガスバーナBが配置されている。低温再生器2
の外周には吸収器3および蒸発器4が設けられ、蒸発器
4の上方には凝縮器5が設置されている。The refrigerator main body 101 comprises a high temperature regenerator 1 and a low temperature regenerator 2, and a gas burner B as a heating source is arranged below the high temperature regenerator 1. Low temperature regenerator 2
An absorber 3 and an evaporator 4 are provided on the outer periphery of the, and a condenser 5 is installed above the evaporator 4.
【0010】高温再生器1は、ガスバーナBによって加
熱され、内部の低濃度吸収液を沸騰させる加熱タンク1
1と、該加熱タンク11の頂部から上方に延長され、冷
媒蒸気と、該冷媒蒸気の蒸発により濃化した中濃度吸収
液とを分離する中濃度吸収液分離筒12とを有する。中
濃度吸収液分離筒12の外周には、冷媒蒸気を回収する
縦型円筒形の気密性冷媒回収タンク10が設けられてい
る。The high-temperature regenerator 1 is heated by the gas burner B to boil the low-concentration absorption liquid inside the heating tank 1.
1 and a medium-concentration absorbent separation column 12 that extends upward from the top of the heating tank 11 and separates the refrigerant vapor and the medium-concentration absorbent that has been concentrated by evaporation of the refrigerant vapor. A vertical cylindrical airtight refrigerant recovery tank 10 for recovering the refrigerant vapor is provided on the outer periphery of the medium-concentration absorbent separation column 12.
【0011】低温再生器2は、冷媒回収タンク10の外
周に偏心して設置した縦型円筒形の低温再生器ケース2
0を有する。低温再生器ケース20は、天井に冷媒蒸気
出口21が設けられるとともに、頂部が中濃度吸収液分
離筒12の底部121と中濃度吸収液流路L1 により連
結されている。The low temperature regenerator 2 is a vertical cylindrical low temperature regenerator case 2 installed eccentrically on the outer periphery of the refrigerant recovery tank 10.
Has zero. The low temperature regenerator case 20 is provided with a refrigerant vapor outlet 21 on the ceiling and has a top portion connected to the bottom portion 121 of the medium concentration absorbent separation column 12 by the medium concentration absorbent flow path L1.
【0012】低温再生器ケース20内には、圧力差によ
り熱交換器Hを介して中濃度吸収液が供給され、冷媒回
収タンク10の外壁を熱源として再沸騰し、冷媒蒸気と
高濃度吸収液とに分離される。低温再生器ケース20の
外周には、縦型円筒形で気密性の蒸発・吸収ケース30
が同心的に配され、蒸発・吸収ケース30の上方は凝縮
器ケース50となっている。A medium-concentration absorption liquid is supplied into the low-temperature regenerator case 20 through the heat exchanger H due to a pressure difference, and re-boils using the outer wall of the refrigerant recovery tank 10 as a heat source to generate refrigerant vapor and high-concentration absorption liquid. And separated. The outer periphery of the low temperature regenerator case 20 has a vertical cylindrical airtight evaporation / absorption case 30.
Are arranged concentrically, and a condenser case 50 is provided above the evaporation / absorption case 30.
【0013】冷媒回収タンク10、低温再生器ケース2
0、蒸発・吸収ケース30は、底板13に一体に溶接さ
れて前記冷凍機本体101を形成している。低温再生器
ケース20の上部は、気液分離部22となっており、前
記冷媒蒸気出口21および隙間5Aを介して凝縮器ケー
ス50内と連通している。Refrigerant recovery tank 10, low temperature regenerator case 2
The evaporation / absorption case 30 is integrally welded to the bottom plate 13 to form the refrigerator main body 101. The upper part of the low temperature regenerator case 20 serves as a gas-liquid separating section 22, which communicates with the inside of the condenser case 50 through the refrigerant vapor outlet 21 and the gap 5A.
【0014】吸収器3は、蒸発・吸収ケース30内の内
側部分内に縦型円筒状に巻設した冷却コイル31を配置
し、その上方に該冷却コイル31に高濃度吸収液を散布
するための高濃度吸収液散布具32を装着してなる。吸
収器3は、冷房運転時に使用され、冷却コイル31内に
は、冷却塔CTで冷却された排熱用冷却水が循環してい
る。In the absorber 3, a cooling coil 31 wound in a vertical cylindrical shape is arranged in an inner portion of the evaporation / absorption case 30, and a high-concentration absorbent is sprayed above the cooling coil 31. The high-concentration absorbent sprayer 32 is attached. The absorber 3 is used during the cooling operation, and the exhaust heat cooling water cooled by the cooling tower CT circulates in the cooling coil 31.
【0015】低温再生器2の高濃度吸収液受け部23
は、熱交換器Hを介して高濃度吸収液供給路L2 によ
り、高濃度吸収液散布具32へ連結している。高濃度吸
収液散布具32へは、冷却された高濃度吸収液が圧力差
により流入し、流入した高濃度吸収液は、冷却コイル3
1の上端に散布され、冷却コイル31の表面に付着して
フィルム状になり、重力の作用で下方に流下して行く。
吸収器3の底部33と加熱タンク11の底部との間は、
熱交換器Hおよび吸収液ポンプP1 が装着された低濃度
吸収液流路L3 で連結されている。High-concentration absorbent receiving part 23 of the low temperature regenerator 2.
Is connected to the high-concentration absorbent dispersion device 32 through the high-concentration absorbent supply path L2 via the heat exchanger H. The cooled high-concentration absorption liquid flows into the high-concentration absorption liquid sprayer 32 due to the pressure difference, and the high-concentration absorption liquid that has flowed in is cooled by the cooling coil 3.
1 is sprayed on the upper end of the cooling coil 31, adheres to the surface of the cooling coil 31 to form a film, and flows downward by the action of gravity.
Between the bottom 33 of the absorber 3 and the bottom of the heating tank 11,
The heat exchanger H and the absorption liquid pump P1 are connected by a low-concentration absorption liquid flow path L3.
【0016】蒸発器4は、蒸発・吸収ケース30内の冷
却コイル31の外周に、縦型円筒形で連通口付き仕切壁
40を設け、該仕切壁40の外周に、内部を冷暖房用の
冷温水が流れる縦型円筒形の蒸発コイル41を配設し、
その上方に冷媒液散布具42を取り付けてなる。蒸発器
4の底部43は、暖房用電磁弁6を有する暖房用吸収液
流路L4 により中濃度吸収液分離筒12の底部121と
連通している。The evaporator 4 is provided with a vertical cylindrical partition wall 40 with a communication port on the outer periphery of the cooling coil 31 in the evaporation / absorption case 30, and the interior of the partition wall 40 is cooled and heated for cooling and heating. Arranged vertical cylindrical evaporation coil 41 through which water flows,
A refrigerant liquid spraying tool 42 is attached above it. The bottom portion 43 of the evaporator 4 communicates with the bottom portion 121 of the medium-concentration absorption liquid separation cylinder 12 through the heating absorption liquid flow path L4 having the heating electromagnetic valve 6.
【0017】冷媒液散布具42は、冷房運転時に使用さ
れ、冷媒液を蒸発コイル41の上に滴下させる。滴下さ
れた冷媒は、表面張力で蒸発コイル41の表面を濡らし
て膜状となり重力の作用で下方に降下しながら、低圧と
なっている蒸発・吸収ケース30内で蒸発コイル41か
ら気化熱を奪って蒸発し、蒸発コイル41内を流れる冷
暖房用の冷温水を冷却する。The refrigerant liquid sprinkler 42 is used during the cooling operation and drops the refrigerant liquid on the evaporation coil 41. The dripped refrigerant wets the surface of the evaporation coil 41 due to surface tension, becomes a film, and drops downward due to the action of gravity, while depriving the evaporation coil 41 of heat of vaporization in the evaporation / absorption case 30 at a low pressure. To evaporate and cool the hot and cold water for cooling and heating flowing in the evaporation coil 41.
【0018】凝縮器5は、冷房運転時に使用され、凝縮
器ケース50の内部に、内部を冷却塔CTで冷却された
排熱用冷却水が循環している冷却コイル51を配設して
なる。凝縮器ケース50は、冷媒流路L5 により冷媒回
収タンク10の底部14と連通するとともに、前記冷媒
蒸気出口21および隙間5Aを介して低温再生器2と連
通しており、いずれも圧力差により冷媒が供給される。The condenser 5 is used during a cooling operation, and has a cooling coil 51 in which the cooling water for exhaust heat cooled by the cooling tower CT is circulated inside the condenser case 50. . The condenser case 50 communicates with the bottom portion 14 of the refrigerant recovery tank 10 through the refrigerant flow path L5, and also communicates with the low temperature regenerator 2 through the refrigerant vapor outlet 21 and the gap 5A, both of which cause a refrigerant difference due to a pressure difference. Is supplied.
【0019】凝縮器ケース50に供給された冷媒は、冷
却コイル51により冷却されて液化する。凝縮器5の下
部と蒸発器4の蒸発コイル41の上方に設置された冷媒
液散布具42とは、冷媒液供給路L6 で連通している。
液化した冷媒液は、冷媒液供給路L6 に設けられた冷媒
冷却器52を経て冷媒液散布具42に供給される。The refrigerant supplied to the condenser case 50 is cooled by the cooling coil 51 and liquefied. The lower part of the condenser 5 and the refrigerant liquid spraying tool 42 installed above the evaporation coil 41 of the evaporator 4 communicate with each other through a refrigerant liquid supply passage L6.
The liquefied refrigerant liquid is supplied to the refrigerant liquid sprinkler 42 through the refrigerant cooler 52 provided in the refrigerant liquid supply path L6.
【0020】この実施例では、冷却コイル31は冷却コ
イル51に接続し、さらに冷却塔CTと冷却水流路34
で接続してある。冷却水流路34には、冷却水ポンプP
2 が装着され、冷却コイル31および冷却コイル51で
吸収熱及び凝縮熱を吸熱して比較的高温となった冷却水
が、冷却塔CTに供給される。冷却塔CTでは落下する
冷却水を大気中に一部蒸発させて、残りの冷却水を冷却
する自己冷却がなされており、上記吸熱により高温とな
った冷却水は、大気中に放熱して低温度になる排熱サイ
クルを形成している。なお、送風機Sからの送風によ
り、上記水の蒸発を促進させている。In this embodiment, the cooling coil 31 is connected to the cooling coil 51, and the cooling tower CT and the cooling water flow path 34 are further connected.
Connected by A cooling water pump P is provided in the cooling water passage 34.
2 is attached to the cooling tower CT, and the cooling water which has a relatively high temperature by absorbing the absorption heat and the condensation heat in the cooling coil 31 and the cooling coil 51 is supplied to the cooling tower CT. In the cooling tower CT, self-cooling is performed by partially evaporating the cooling water that falls into the atmosphere and cooling the remaining cooling water. Forming an exhaust heat cycle that reaches the temperature. The air blown from the blower S promotes the evaporation of the water.
【0021】冷却コイル51の出口と冷却塔CTとの間
の冷却水流路34に除湿運転用電磁弁である三方切り替
え電磁弁35が設けられ、分岐冷却水流路36が接続さ
れている。室内機CUは、空調熱交換器44、該空調熱
交換器44の、後述するブロワ46による気流の下流側
に並設された除湿運転用熱交換器45、およびブロワ4
6からなる。A three-way switching solenoid valve 35, which is a solenoid valve for dehumidification operation, is provided in a cooling water flow passage 34 between the outlet of the cooling coil 51 and the cooling tower CT, and a branch cooling water flow passage 36 is connected thereto. The indoor unit CU includes an air conditioning heat exchanger 44, a dehumidifying operation heat exchanger 45 arranged in parallel with the air conditioning heat exchanger 44 on the downstream side of an air flow by a blower 46 described later, and the blower 4.
It consists of 6.
【0022】本実施例では、ブロワ46は送風式のもの
が用いられ、風の流れに従ってブロワ46→空調熱交換
器44→除湿運転用熱交換器45の順に配置されてい
る。なお、ブロワ46を吸引式のものとすると、図2に
示すように空調熱交換器44→除湿運転用熱交換器45
→ブロワ46の順に配置する。蒸発コイル41の両端
は、ゴムホース等で形成された冷温水流路47で室内機
CUに設けられた空調熱交換器44に連結されている。In this embodiment, a blower 46 is used, and the blower 46, the air conditioning heat exchanger 44, and the dehumidifying operation heat exchanger 45 are arranged in this order in accordance with the flow of air. If the blower 46 is of a suction type, as shown in FIG. 2, the air conditioning heat exchanger 44 → the dehumidifying operation heat exchanger 45.
→ Place the blower 46 in that order. Both ends of the evaporation coil 41 are connected to an air conditioning heat exchanger 44 provided in the indoor unit CU by a cold / hot water flow path 47 formed of a rubber hose or the like.
【0023】冷温水流路47には、冷温水ポンプP3 が
設けられており、空調熱交換器44に低温度の冷温水を
循環させる。除湿運転用熱交換器45は、分岐冷却水流
路36に連結され、三方切り替え電磁弁35の作動によ
り、冷却塔CTで冷却される前の高温度の冷却水が供給
され、冷却塔CTへ流出する。A cold / hot water pump P3 is provided in the cold / hot water passage 47 to circulate cold / hot water of low temperature through the air conditioning heat exchanger 44. The heat exchanger 45 for dehumidification operation is connected to the branch cooling water flow path 36, and the high-temperature cooling water before being cooled in the cooling tower CT is supplied by the operation of the three-way switching electromagnetic valve 35 and flows out to the cooling tower CT. To do.
【0024】この構成により、冷房運転時には、冷却水
ポンプP2 により冷却水が、冷却塔CT→冷却コイル3
1→冷却コイル51→冷却塔CTの順に循環している。
なお、吸収液は、高温再生器1→低温再生器2→吸収器
3→吸収液ポンプP1 →高温再生器1の順に循環する。
また、低温度の冷温水は、蒸発コイル41→冷温水流路
47→空調熱交換器44→冷温水流路47→冷温水ポン
プP3 →蒸発コイル41の順で循環し、ブロワ46によ
り、室内が冷房される。With this configuration, during the cooling operation, the cooling water is supplied from the cooling water pump P2 to the cooling tower CT → the cooling coil 3
It circulates in the order of 1 → cooling coil 51 → cooling tower CT.
The absorbing liquid circulates in the order of the high temperature regenerator 1, the low temperature regenerator 2, the absorber 3, the absorbing liquid pump P1, and the high temperature regenerator 1.
Further, the low-temperature cold / hot water circulates in the order of the evaporation coil 41 → the cold / hot water passage 47 → the air conditioning heat exchanger 44 → the cold / hot water passage 47 → the cold / hot water pump P3 → the evaporation coil 41, and the room is cooled by the blower 46. To be done.
【0025】除湿運転が選択されると、吸収式冷凍装置
100は、冷温水流路47で室内機CUに設けられた空
調熱交換器44に低温度の冷温水を供給するとともに、
制御装置102の出力で三方切り替え電磁弁35が作動
し、除湿運転用熱交換器45へ分岐冷却水流路36から
高温度の冷却水の一部または全部を供給する。When the dehumidifying operation is selected, the absorption refrigeration system 100 supplies cold / hot water of low temperature to the air conditioning heat exchanger 44 provided in the indoor unit CU through the cold / hot water flow path 47, and
The three-way switching solenoid valve 35 is operated by the output of the control device 102, and a part or all of the high-temperature cooling water is supplied from the branch cooling water flow path 36 to the dehumidifying operation heat exchanger 45.
【0026】空調においては、高温度の冷却水を、全て
分岐冷却水流路36を介して除湿運転用熱交換器45へ
流してもよく、分岐冷却水流路36と分岐点下流側の冷
却水流路34の双方に流してもよい。この際、分岐冷却
水流路36への高温度の冷却水の流量制御は、分岐冷却
水流路36に絞り弁を設けて分配比を変更してもよく、
三方切り替え電磁弁35を間欠制御して分岐冷却水流路
36と冷却水流路34との分配比を変更してもよい。In the air conditioning, all the high temperature cooling water may flow to the dehumidifying operation heat exchanger 45 through the branch cooling water passage 36, and the branch cooling water passage 36 and the cooling water passage downstream of the branch point. It is also possible to flow to both of 34. At this time, in order to control the flow rate of the high-temperature cooling water to the branch cooling water passage 36, a distribution valve may be changed by providing a throttle valve in the branch cooling water passage 36,
The distribution ratio between the branched cooling water flow passage 36 and the cooling water flow passage 34 may be changed by intermittently controlling the three-way switching electromagnetic valve 35.
【0027】これにより、空調熱交換器44で冷却さ
れ、そして凝縮により水分が低減された空調空気は、除
湿運転用熱交換器45で加熱され、吹出温度の低下を伴
わない除湿空調がなされる。なお、三方切り替え電磁弁
35の代わりに、分岐冷却水流路36と分岐点下流側の
冷却水流路34のそれぞれに開閉弁を使用してもよく、
分岐冷却水流路36のみに1個のみ設けてもよい。As a result, the conditioned air that has been cooled by the air conditioning heat exchanger 44 and whose moisture content has been reduced by condensation is heated by the heat exchanger 45 for dehumidification operation, and dehumidification air conditioning is performed without lowering the blowout temperature. . Instead of the three-way switching solenoid valve 35, an on-off valve may be used for each of the branch cooling water flow passage 36 and the cooling water flow passage 34 on the downstream side of the branch point,
Only one branch cooling water flow path 36 may be provided.
【0028】暖房運転時は、暖房用電磁弁6を開弁し、
吸収液ポンプP1 を作動させる。高温度の中濃度吸収液
は蒸発器4に底部43から流入する。蒸発コイル41内
の冷温水は、加熱されて冷温水ポンプP3 により冷温水
流路47で室内機CUに供給され、暖房の熱源となる。
蒸発器4内の中濃度吸収液は、仕切壁40の連通口から
吸収器3側に入り、低濃度吸収液流路L3 を経て、吸収
液ポンプP1 により加熱タンク11へ戻される。During heating operation, the heating solenoid valve 6 is opened,
Operate the absorbent pump P1. The high-temperature medium-concentration absorption liquid flows into the evaporator 4 from the bottom portion 43. The cold / hot water in the evaporation coil 41 is heated and supplied to the indoor unit CU through the cold / hot water flow path 47 by the cold / hot water pump P3, and serves as a heat source for heating.
The medium-concentration absorption liquid in the evaporator 4 enters the absorber 3 side from the communication port of the partition wall 40, passes through the low-concentration absorption liquid flow path L3, and is returned to the heating tank 11 by the absorption liquid pump P1.
【0029】暖房運転時は、三方切り替え電磁弁35に
より分岐冷却水流路36は閉じられている。また、加熱
源はガスバーナB以外に、電熱ヒータなど他の熱源が使
用できる。During the heating operation, the branch cooling water passage 36 is closed by the three-way switching solenoid valve 35. In addition to the gas burner B, another heat source such as an electric heater can be used as the heating source.
【0030】図3は第3実施例にかかる空調機を示す。
この実施例では、冷却塔CT→冷却コイル31→冷却コ
イル51→冷却塔CTの順で冷却水が循環する冷却水流
路34は、前記第1実施例または第2実施例とは異な
り、冷却水が大気に開放されていない密閉回路となって
いる。冷却塔CTは、冷却水の放熱を行う水冷熱交換器
71と、水冷熱交換器71を水冷するための水冷装置7
0とからなる。FIG. 3 shows an air conditioner according to the third embodiment.
In this embodiment, the cooling water flow path 34 in which cooling water circulates in the order of cooling tower CT → cooling coil 31 → cooling coil 51 → cooling tower CT is different from the first or second embodiment. Is a closed circuit that is not open to the atmosphere. The cooling tower CT includes a water cooling heat exchanger 71 that radiates cooling water and a water cooling device 7 that cools the water cooling heat exchanger 71 with water.
It consists of 0.
【0031】水冷装置70は、該水冷熱交換器71の上
方に設置した放熱用水の散水タンク72、水冷熱交換器
71に付設した放熱フィン73、水冷熱交換器71の下
方に設置した水受けタンク74、水受けタンク74から
散水タンク72へ放熱用水を揚水する揚水ポンプP4 を
備えた揚水管路60および水源管路76からなる。The water cooling device 70 includes a water sprinkling tank 72 for radiating water installed above the water cooling heat exchanger 71, radiating fins 73 attached to the water cooling heat exchanger 71, and a water receiver installed below the water cooling heat exchanger 71. It comprises a tank 74, a pumping line 60 having a pumping pump P4 for pumping radiation water from the water receiving tank 74 to the sprinkling tank 72, and a water source pipe 76.
【0032】空調機の冷房または除湿運転中は、散水タ
ンク72から水冷熱交換器71に放熱用水が散布され、
一部が水冷熱交換器71から気化熱を奪って蒸発して冷
却水を冷却する。蒸発されずに残った冷却水は水受けタ
ンク74に流下する。揚水管路60は、水源管路76に
連結され、水受けタンク74に設けた水位センサ77に
より、水受けタンク74内の水量が設定レベルより低下
すると、水源管路76から水が供給される。水冷熱交換
器71の側方には、送風機78が設置され、放熱フィン
73からの水の蒸発を促進させる。During cooling or dehumidifying operation of the air conditioner, radiating water is sprayed from the sprinkling tank 72 to the water cooling heat exchanger 71,
A part of the water-cooling heat exchanger 71 removes heat of vaporization and evaporates to cool the cooling water. The cooling water remaining without being evaporated flows down to the water receiving tank 74. The pumping pipeline 60 is connected to the water source pipeline 76, and the water level sensor 77 provided in the water receiving tank 74 supplies water from the water source pipeline 76 when the amount of water in the water receiving tank 74 falls below a set level. . A blower 78 is installed on the side of the water-cooled heat exchanger 71 to accelerate evaporation of water from the heat radiation fins 73.
【0033】この実施例では、冷却水流路34を密閉回
路としているため、冷却水の一部を蒸発させて冷却水を
自己冷却する場合に較べ冷却水の補給、汚れなどによる
冷却水回路の詰まりが防止できるとともに、冷却水に防
錆剤を混入させることが容易になり、メンテナンス性が
向上できる。In this embodiment, since the cooling water flow path 34 is a closed circuit, the cooling water is clogged due to replenishment or dirt of the cooling water as compared with the case where the cooling water is self-cooled by partially evaporating the cooling water. In addition, it is easy to mix the rust preventive agent into the cooling water, and the maintainability can be improved.
【0034】図4は第4実施例にかかる空調機を示す。
この実施例では、第3実施例における水冷装置70を省
略して、冷却水流路34の一部を構成する空冷熱交換器
8と、この空冷熱交換器8に冷却空気を供給する送風機
81とにより、冷却水の放熱を行っている。この実施例
でも冷却水流路34を密閉回路としているため、上記と
同様の効果が得られるとともに、水冷装置70が不要で
あるため、冷却塔CTの構造が簡単にできる利点があ
る。FIG. 4 shows an air conditioner according to the fourth embodiment.
In this embodiment, the water cooling device 70 in the third embodiment is omitted, and an air-cooling heat exchanger 8 that constitutes a part of the cooling water flow passage 34, and a blower 81 that supplies cooling air to the air-cooling heat exchanger 8. Therefore, the cooling water is dissipated. Also in this embodiment, since the cooling water flow path 34 is a closed circuit, the same effect as described above can be obtained, and since the water cooling device 70 is unnecessary, there is an advantage that the structure of the cooling tower CT can be simplified.
【図1】吸収式冷凍装置を用いた空調機の概念図であ
る。FIG. 1 is a conceptual diagram of an air conditioner using an absorption refrigeration system.
【図2】第2実施例にかかる室内機の概略構成図であ
る。FIG. 2 is a schematic configuration diagram of an indoor unit according to a second embodiment.
【図3】第3実施例にかかる空調機の概念図である。FIG. 3 is a conceptual diagram of an air conditioner according to a third embodiment.
【図4】第4実施例にかかる空調機の概念図である。FIG. 4 is a conceptual diagram of an air conditioner according to a fourth embodiment.
1 高温再生器 2 低温再生器 3 吸収器 30 蒸発・吸収ケース 31 冷却コイル 34 冷却水流路 35 三方切り替え電磁弁(除湿運転用電磁弁) 4 蒸発器 40 仕切筒 41 蒸発コイル 44 空調熱交換器 45 除湿運転用熱交換器 46 ブロワ 47 冷却水流路 5 凝縮器 51 冷却コイル 70 水冷装置 71 水冷熱交換器 75 給水手段 78 送風機 100 吸収式冷凍装置 101 冷凍機本体 CU 室内機 CT 冷却塔 P1 吸収液ポンプ L3 低濃度吸収液流路 1 High-temperature regenerator 2 Low-temperature regenerator 3 Absorber 30 Evaporation / absorption case 31 Cooling coil 34 Cooling water flow path 35 Three-way switching solenoid valve (solenoid valve for dehumidification operation) 4 Evaporator 40 Partition cylinder 41 Evaporation coil 44 Air conditioning heat exchanger 45 Dehumidifying heat exchanger 46 Blower 47 Cooling water flow path 5 Condenser 51 Cooling coil 70 Water cooling device 71 Water cooling heat exchanger 75 Water supply means 78 Blower 100 Absorption type refrigeration device 101 Refrigerator body CU Indoor unit CT Cooling tower P1 Absorption liquid pump L3 low concentration absorbent flow path
Claims (5)
収液と冷媒とに分離し、蒸発器において、内部を空調用
熱媒体としての冷温水が流れる蒸発コイルに冷媒液を散
布して蒸発させるとともに前記冷温水を冷却し、吸収器
において、冷却塔に連結されるとともに、内部を排熱用
の冷却水が流れる冷却コイルに吸収液を散布して蒸発し
た冷媒を吸収させ、冷媒を吸収して低濃度化した低濃度
吸収液を低濃度吸収液流路に設けた吸収液ポンプにより
前記再生器に戻す吸収式冷凍装置と、 前記蒸発コイルに連結され、前記冷温水が循環する空調
熱交換器およびブロワを備えた室内機とからなる空調機
において、 前記空調機の空調熱交換器に対し、ブロワによって発生
する気流の下流側に、前記冷却コイルから前記排熱用の
冷却水が流れる除湿運転用熱交換器を付設したことを特
徴とする吸収式冷凍装置を用いた空調機。1. A regenerator separates a low-concentration absorption liquid into a high-concentration absorption liquid and a refrigerant, and in the evaporator, the refrigerant liquid is sprayed and evaporated on an evaporation coil through which cold / hot water as a heat medium for air conditioning flows. While cooling the cold and hot water, in the absorber, while being connected to the cooling tower, the absorption liquid is sprayed to the cooling coil through which the cooling water for exhaust heat flows to absorb the evaporated refrigerant and absorb the refrigerant. Absorption refrigeration device that returns the low-concentration absorption liquid that has been reduced in concentration to the regenerator by the absorption liquid pump provided in the low-concentration absorption liquid channel; In an air conditioner including an indoor unit including an exchanger and a blower, cooling water for exhaust heat flows from the cooling coil to a downstream side of an air flow generated by the blower with respect to an air conditioning heat exchanger of the air conditioner. Dehumidification operation Air conditioner using an absorption type refrigerating apparatus characterized by annexed heat exchanger.
は、前記分離された冷媒を液化するための冷却コイルを
備えた凝縮器を有し、前記冷却水は、前記冷却塔、前記
吸収器の冷却コイル、前記凝縮器の冷却コイル、前記冷
却塔を連結する冷却水流路を循環することを特徴とする
吸収式冷凍装置を用いた空調機。2. The absorption refrigeration apparatus according to claim 1, further comprising a condenser having a cooling coil for liquefying the separated refrigerant, wherein the cooling water is the cooling tower and the absorber. An air conditioner using an absorption type refrigerating device, which circulates through a cooling water flow path connecting the cooling coil of 1., the cooling coil of the condenser, and the cooling tower.
イルと前記冷却塔の上流とを連結する前記冷却水流路の
中間に前記除湿運転用熱交換器への分岐冷却水流路を設
け、該分岐冷却水流路を開閉するための除湿運転用電磁
弁を設けたことを特徴とする吸収式冷凍装置を用いた空
調機。3. The branch cooling water flow path to the heat exchanger for dehumidification operation according to claim 1, wherein a branch cooling water flow path is provided in the middle of the cooling water flow path connecting the cooling coil and the upstream of the cooling tower. An air conditioner using an absorption type refrigerating device, which is provided with a dehumidifying operation electromagnetic valve for opening and closing a cooling water flow path.
冷却塔は、内部を冷却水が流れる水冷熱交換器と、該水
冷熱交換器に放熱用水を供給する給水手段とからなり、
前記冷却水の循環路は大気に開放されない密閉回路を形
成していることを特徴とする吸収式冷凍装置を用いた空
調機。4. The cooling tower according to claim 1, wherein the cooling tower comprises a water-cooled heat exchanger through which cooling water flows, and a water supply means for supplying radiating water to the water-cooled heat exchanger.
An air conditioner using an absorption refrigeration system, wherein the cooling water circulation path forms a closed circuit that is not exposed to the atmosphere.
冷却塔は、内部を冷却水が流れる水冷熱交換器と、該水
冷熱交換器に放熱用空気を供給する送風機とからなり、
前記冷却水の循環路は大気に開放されない密閉回路を形
成していることを特徴とする吸収式冷凍装置を用いた空
調機。5. The cooling tower according to claim 1, wherein the cooling tower comprises a water-cooled heat exchanger in which cooling water flows, and a blower for supplying radiating air to the water-cooled heat exchanger.
An air conditioner using an absorption refrigeration system, wherein the cooling water circulation path forms a closed circuit that is not exposed to the atmosphere.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8036460A JPH09152227A (en) | 1995-09-29 | 1996-02-23 | Air conditioner using absorption type refrigerator |
KR1019960041989A KR100222104B1 (en) | 1995-09-29 | 1996-09-24 | Air cooling machine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-253319 | 1995-09-29 | ||
JP25331995 | 1995-09-29 | ||
JP8036460A JPH09152227A (en) | 1995-09-29 | 1996-02-23 | Air conditioner using absorption type refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09152227A true JPH09152227A (en) | 1997-06-10 |
Family
ID=26375524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8036460A Pending JPH09152227A (en) | 1995-09-29 | 1996-02-23 | Air conditioner using absorption type refrigerator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH09152227A (en) |
KR (1) | KR100222104B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6467539B1 (en) * | 1997-07-02 | 2002-10-22 | Hitachi, Ltd. | Universal equipment for the cooling fluid regeneration in heat exchange circuits |
CN102207343A (en) * | 2010-03-29 | 2011-10-05 | 三洋电机株式会社 | Exhaust chimney structure of exhaust heat recoverer |
ES2496393A1 (en) * | 2013-03-18 | 2014-09-18 | Bilega Energía, S.L. | Dehumidification system combined with energy use for air conditioning (Machine-translation by Google Translate, not legally binding) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101376768B1 (en) | 2011-06-30 | 2014-03-21 | 위니아만도 주식회사 | Drying device |
-
1996
- 1996-02-23 JP JP8036460A patent/JPH09152227A/en active Pending
- 1996-09-24 KR KR1019960041989A patent/KR100222104B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6467539B1 (en) * | 1997-07-02 | 2002-10-22 | Hitachi, Ltd. | Universal equipment for the cooling fluid regeneration in heat exchange circuits |
CN102207343A (en) * | 2010-03-29 | 2011-10-05 | 三洋电机株式会社 | Exhaust chimney structure of exhaust heat recoverer |
ES2496393A1 (en) * | 2013-03-18 | 2014-09-18 | Bilega Energía, S.L. | Dehumidification system combined with energy use for air conditioning (Machine-translation by Google Translate, not legally binding) |
Also Published As
Publication number | Publication date |
---|---|
KR100222104B1 (en) | 1999-10-01 |
KR970016412A (en) | 1997-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09152227A (en) | Air conditioner using absorption type refrigerator | |
JP3184072B2 (en) | Air conditioner using absorption refrigeration system | |
JPH0355742B2 (en) | ||
JP3226460B2 (en) | Regenerator for absorption refrigeration system | |
JP2846583B2 (en) | Absorption air conditioner | |
JP3920978B2 (en) | Absorption air conditioner | |
KR100321582B1 (en) | Absorption air conditioner | |
JP3328156B2 (en) | Absorption air conditioner | |
JP3660493B2 (en) | Absorption refrigeration system controller | |
WO1998019116A1 (en) | Liquid refrigerant dropping apparatus for absorption type refrigerators | |
JPH109622A (en) | Air conditioner using absorption type refrigerating machine | |
JPH1073336A (en) | Absorption type refrigerator | |
JPH109707A (en) | Absorption type refrigerating device | |
JP3886641B2 (en) | Double-effect absorption refrigeration system | |
JP3385302B2 (en) | Absorption refrigeration equipment | |
JP3260627B2 (en) | cooling tower | |
JP2520975Y2 (en) | Absorption cold water heater | |
JP3017056B2 (en) | Cooling and heating system using absorption refrigeration system | |
JP3790360B2 (en) | Absorption refrigeration system | |
KR0161033B1 (en) | Absorptive type airconditioner | |
JP3113195B2 (en) | Bleeding device for absorption refrigeration system | |
JPH0821669A (en) | Absorption type air conditioner | |
JPH0828998A (en) | Absorption type air conditioner | |
JPH1114188A (en) | Absorption type refrigerating device | |
JPH10332217A (en) | Absorption refrigerator |