JPH10194821A - Heat and corrosion resistant protective tube - Google Patents

Heat and corrosion resistant protective tube

Info

Publication number
JPH10194821A
JPH10194821A JP8351206A JP35120696A JPH10194821A JP H10194821 A JPH10194821 A JP H10194821A JP 8351206 A JP8351206 A JP 8351206A JP 35120696 A JP35120696 A JP 35120696A JP H10194821 A JPH10194821 A JP H10194821A
Authority
JP
Japan
Prior art keywords
ceramic
protective tube
pore
pores
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8351206A
Other languages
Japanese (ja)
Other versions
JP3336213B2 (en
Inventor
Shinichi Yamaguchi
新一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP35120696A priority Critical patent/JP3336213B2/en
Priority to EP19970116859 priority patent/EP0832862B1/en
Priority to DE69717226T priority patent/DE69717226T2/en
Priority to US08/940,239 priority patent/US6093461A/en
Publication of JPH10194821A publication Critical patent/JPH10194821A/en
Application granted granted Critical
Publication of JP3336213B2 publication Critical patent/JP3336213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat and corrosion resistance and to enable use over a long period of time by specifying the average diameter, occupying rate and aspect ratio of pores in the ceramic outer surface layer of a ceramic tubular body with its front end sealed. SOLUTION: A ceramic compsn. having >=2μm average grain diameter and <=3% pore diameter is prepd. by incorporating <=5wt.% impurity components such as SiO2 , CaO, Na2 O and Fe2 O3 into 100 pts.wt. ceramics consisting essentially of >=50mol.% Al2 O3 and <=50mol.% MgO so that the molar ratio of MgO to Al2 O3 is regulated to <=1 and having a crystal phase of MgAl2 O4 and/or Al2 O3 and m.p. of >=2,000 deg.C. The ceramic compsn. is compacted into a tubular body with its front end sealed to obtain a compact forming an inner surface layer 1b. The surface of the compact is coated with a ceramic slurry and the coated compact is fired to form pores having <=20μm average diameter, <=10% occupying rate and an aspect ratio of <=5 only in the outer surface layer 1b of the resultant tubular body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゴミ焼却炉や、ゴ
ミ焼却灰再処理溶融炉等の溶融炉、その他の各種炉等に
於いて、ヒーターやセンサー等を保護するための保護管
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection tube for protecting heaters and sensors in a melting furnace such as a refuse incinerator, a refuse incineration ash reprocessing melting furnace, and other various furnaces.

【0002】[0002]

【従来の技術】家庭、会社から捨てられたゴミは地方自
治体の焼却炉で燃やされ、その未燃分の焼却灰及び煙に
含まれる飛灰(含有元素;Si、Al、Fe、Ca、M
g、K、Mn、Cl、Na、S)には、重金属成分やダ
イオキシン、フラン等の有毒元素が含まれている。
2. Description of the Related Art Garbage discarded from households and companies is burned in incinerators of local governments, and the incinerated ash and fly ash contained in the smoke (elements contained: Si, Al, Fe, Ca, M).
g, K, Mn, Cl, Na, and S) contain heavy metal components and toxic elements such as dioxin and furan.

【0003】これまでは、地方自治体の焼却炉で燃やさ
れた後の未燃分の焼却灰は、最終処分場にそのまま埋め
られていたが、立地条件も厳しくなり、場所の確保が難
しくなっている。加えて、ダイオキシンやフラン等の有
毒汚染物質の無害化は法律や条例でかなり厳しく規制さ
れつつあるため、焼却灰、飛灰を回収し、これを再溶融
することにより有害物質を無害化する溶融炉の必要性が
年々高まっている。
Until now, unburned incineration ash after being burned in local government incinerators has been buried as it is in the final disposal site. However, location conditions have become severe, making it difficult to secure a place. I have. In addition, the detoxification of toxic contaminants such as dioxin and furan is being regulated quite strictly by laws and regulations, so incineration ash and fly ash are collected and re-melted to make harmless substances harmless. The need for furnaces is increasing year by year.

【0004】焼却炉で燃やされた後の未燃分の焼却灰
は、高温加熱処理でスラグ化すれば、 焼却灰の1/2〜1/4程度に体積を小さくすること
ができ、ダイオキシン等の有害汚染物質を高熱で分解
して無害化できる、等の理由により、この溶融炉での高
温加熱処理法が有望視されているのである。
[0004] The incinerated ash that has not been burned after being burned in an incinerator can be reduced in volume to about 1/2 to 1/4 of the incinerated ash if it is converted into slag by high-temperature heat treatment. The high-temperature heat treatment method in this melting furnace is considered promising, for example, because it can decompose harmful pollutants with high heat to make them harmless.

【0005】溶融炉での加熱処理工程を図2に示すよう
に、溶融炉12内に焼却灰11を入れ、電熱源である加
熱用ヒーター2で1300〜1600℃に加熱すると、
焼却灰11が溶融して含有する金属元素13が蒸発す
る。この金属元素13を取り出して冷却装置(不図示)
で急冷し凝縮させて微粒子とし、これをフィルタ15等
で回収して金属濃縮物16を回収する。一方ダイオキシ
ンやフラン等の有毒物質は熱破壊され、無害化されたガ
ス17はガス処理装置を経て大気中へ放出される。ま
た、溶融炉12内の残存物はスラグ(ガラス)状顆粒1
8として取り出され、有効利用または処分されるように
なっている。
[0005] As shown in FIG. 2, the incineration ash 11 is put into a melting furnace 12 and heated to 1300 to 1600 ° C. by a heating heater 2 which is an electric heating source.
The incinerated ash 11 is melted and the contained metal element 13 evaporates. This metal element 13 is taken out and cooled (not shown)
And rapidly condensed to obtain fine particles, which are collected by a filter 15 or the like to collect a metal concentrate 16. On the other hand, toxic substances such as dioxin and furan are destroyed by heat, and the detoxified gas 17 is released into the atmosphere via a gas treatment device. The residue in the melting furnace 12 is slag (glass) -like granules 1
8 to be effectively used or disposed of.

【0006】この溶融炉12には、加熱用ヒーター2と
温度管理のための熱電対3が必要であるが、溶融した焼
却灰11は溶融炉12内で溶融スラグ、溶融塩、あるい
はその蒸気成分として存在するため、これらの物質から
加熱用ヒーター2または熱電対3を保護する必要があ
る。
The melting furnace 12 requires a heater 2 for heating and a thermocouple 3 for temperature control. The melted incineration ash 11 is supplied into the melting furnace 12 by molten slag, molten salt, or a vapor component thereof. Therefore, it is necessary to protect the heating heater 2 or the thermocouple 3 from these substances.

【0007】そこで、耐熱性・耐食性に優れたセラミッ
クス製の保護管1で加熱用ヒーター2や熱電対3を覆う
ことが行われている。上記保護管1の材質としては例え
ば特開昭51−71312号公報に示されるように、M
gO−ZrSiO2 −Al23 の複合セラミックスが
使用されている。
Therefore, it has been practiced to cover the heating heater 2 and the thermocouple 3 with a protective tube 1 made of ceramics having excellent heat resistance and corrosion resistance. As the material of the protective tube 1, for example, as shown in Japanese Patent Application Laid-Open No. 51-71312,
composite ceramic of gO-ZrSiO 2 -Al 2 O 3 is used.

【0008】[0008]

【発明が解決しようとする課題】ところで、ゴミ焼却に
より発生する灰分を再加熱処理する際、灰に含まれるC
d、Pb、Zn等の金属元素類やダイオキシン、フラン
等の有害汚染物質を分解するため、電熱により1300
〜1600℃で加熱溶融処理を行い無害化するが、溶融
炉12で使用する保護管1は、焼却灰11が溶けてでき
る溶融塩、溶融スラグ、あるいは蒸気等にさらされるこ
とになる。そのため、これら成分中のSi、Al、F
e、Ca、Naは保護管1を成すセラミックス中に徐々
に侵入、浸食し、次第にセラミックスが変質して強度劣
化を起こすことから、クラックを生じたり、破損が生じ
やすくなって、長期にわたり使用できるものではなかっ
た。
By the way, when the ash generated by incineration of garbage is reheated, the carbon content of the ash is reduced.
In order to decompose metal elements such as d, Pb, and Zn, and harmful pollutants such as dioxin and furan, 1300 is applied by electric heating.
Detoxification is performed by heating and melting at 1600 ° C., but the protective tube 1 used in the melting furnace 12 is exposed to molten salt, molten slag, steam, or the like formed by melting the incineration ash 11. Therefore, Si, Al, F in these components
e, Ca, and Na gradually penetrate and erode into the ceramics forming the protective tube 1, and gradually deteriorate the strength of the ceramics, causing cracks and breakage, and can be used for a long time. It was not something.

【0009】[0009]

【課題を解決するための手段】上記に鑑みて本発明は、
セラミックスからなる先端を封止した管状体からなる耐
熱耐食性保護管において、上記セラミックスの少なくと
も外表面層に存在するポアの平均径が20μm以下、ポ
ア占有率が10%以下、ポアのアスペクト比(長径/短
径の比)が5以下であることを特徴とする。
In view of the above, the present invention provides
In a heat-resistant and corrosion-resistant protective tube formed of a tubular body whose tip is made of ceramic, the average diameter of pores present in at least the outer surface layer of the ceramic is 20 μm or less, the pore occupancy is 10% or less, and the aspect ratio of the pores (long diameter) / Ratio of minor axis) is 5 or less.

【0010】即ち、本発明では、保護管への金属元素の
浸食が主にポアから発生することを見出し、保護管に存
在するポアを平均径20μm以下と小さくするととも
に、ポア占有率10%以下となるように量を少なくする
ことによって、腐食を減らしたものである。しかも、本
発明では、ポアのアスペクト比を5以下とすることによ
って、ポアを丸い形状としてポアの表面積を小さくし、
上記金属元素の浸食を少なくしたものである。
That is, in the present invention, it has been found that erosion of the metal element into the protective tube mainly occurs from the pores. Corrosion is reduced by reducing the amount so that Moreover, in the present invention, by setting the aspect ratio of the pore to 5 or less, the pore is rounded to reduce the surface area of the pore,
The erosion of the metal element is reduced.

【0011】さらに本発明では、上記セラミックスが、
Al2 3 、MgAl2 4 の少なくとも一種の結晶相
を有することを特徴とする。即ち、これらのセラミック
スは特に耐熱性、耐食性に優れており、さらに寿命を長
くすることができる。
Further, according to the present invention, the ceramic is
It is characterized by having at least one crystal phase of Al 2 O 3 and MgAl 2 O 4 . That is, these ceramics are particularly excellent in heat resistance and corrosion resistance, and can further extend the life.

【0012】[0012]

【発明の実施の形態】以下本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0013】図1(a)に示すように、本発明の保護管
1は、セラミックスからなる先端を封止した管状体であ
り、円筒状の側面部と半球状の先端封止部が滑らかな曲
面で連続した形状となっている。
As shown in FIG. 1 (a), the protective tube 1 of the present invention is a tubular body whose tip is made of ceramics and has a cylindrical side surface and a hemispherical tip sealing portion which are smooth. It has a continuous shape on a curved surface.

【0014】そして、この保護管1は、例えば図2に示
すように、ゴミ焼却灰再処理用の溶融炉12中にて加熱
用ヒーター2や熱電対3を覆うように設置し、これらを
保護することができる。この時、本発明の保護管1は、
耐熱性、耐食性が高いことから長期間安心して使用する
ことができる。
As shown in FIG. 2, for example, this protective tube 1 is installed in a melting furnace 12 for reprocessing refuse incineration ash so as to cover the heating heater 2 and the thermocouple 3 to protect them. can do. At this time, the protection tube 1 of the present invention
Since it has high heat resistance and corrosion resistance, it can be used for a long time with peace of mind.

【0015】また、上記保護管1を成すセラミックスの
少なくとも外表面層に存在するポアは、平均径が20μ
m以下、ポア占有率が10%以下、ポアのアスペクト比
が5以下となっている。即ち、本発明の保護管1は、全
体にわたって存在するポアが上記範囲内となるか、また
は保護管1の外表面層のみについてポアが上記範囲内と
なってれば良い。
The pores present in at least the outer surface layer of the ceramics forming the protective tube 1 have an average diameter of 20 μm.
m, the pore occupancy is 10% or less, and the aspect ratio of the pore is 5 or less. That is, in the protective tube 1 according to the present invention, the pores existing throughout the protective tube 1 may be within the above range, or the pores of only the outer surface layer of the protective tube 1 may be within the above range.

【0016】後者の具体的な例としては、図1(b)に
示すように、保護管1の外表面層1aのみをポアが上記
範囲となるようにして耐食性を向上し、内表面層1bは
ポアの多い多孔質体として耐熱性を向上させることもで
きる。このような二重構造の保護管1は、例えば予め内
表面層1bを成す多孔質体で管状体を作製し、その表面
にスラリーを塗布して焼成することによって得ることが
できる。
As a specific example of the latter, as shown in FIG. 1 (b), only the outer surface layer 1a of the protective tube 1 has the pores within the above range to improve the corrosion resistance, and the inner surface layer 1b Can also improve heat resistance as a porous body having many pores. Such a protective tube 1 having a double structure can be obtained, for example, by preparing a tubular body from a porous body forming the inner surface layer 1b in advance, applying a slurry to the surface thereof, and firing the slurry.

【0017】ここで、ポアの平均径を20μm以下、ポ
ア占有率を10%以下としたのは、ポアの最大径が20
μmを超えるかまたはポア占有率が10%を超えると、
浸食元素が容易にセラミックス中に侵入し、保護管1の
寿命を著しく低下させるためである。
The reason why the average diameter of the pore is 20 μm or less and the occupation ratio of the pore is 10% or less is that the maximum diameter of the pore is 20 μm or less.
μm or the pore occupancy exceeds 10%,
This is because the erosion element easily penetrates into the ceramics and significantly reduces the life of the protection tube 1.

【0018】つまり、Si,Al,Fe,Ca,Na等
の浸食元素は、通常セラミックスの結晶粒界から侵入
し、結晶粒界部を劣化させ、粒界強度を弱めて母材から
結晶が離脱するなどして浸食が進行していくが、その浸
食経路中にポアが存在すると、ポアの空間中は浸食元素
が自由に移動可能となる。そのため、ポアの平均径が2
0μmを超えるかまたはポア占有率が10%を超える
と、上記浸食元素の侵入速度が著しく速くなり、保護管
の寿命が格段に悪くなるのである。また、セラミックス
中のポアが大きく、多くなるとセラミックス自体の強度
が低下するという問題も生じる。
That is, erosion elements such as Si, Al, Fe, Ca, and Na usually enter from the crystal grain boundaries of the ceramics, degrade the crystal grain boundary portions, weaken the grain boundary strength, and detach the crystals from the base material. The erosion progresses due to, for example, the erosion. If pores exist in the erosion path, the erosion elements can move freely in the pore space. Therefore, the average diameter of the pore is 2
If the thickness exceeds 0 μm or the pore occupancy exceeds 10%, the penetration rate of the eroding element becomes extremely high, and the life of the protection tube is significantly shortened. In addition, there is a problem that the pores in the ceramic are large and the strength of the ceramic itself is reduced as the number of pores increases.

【0019】これに対し、上述したように、保護管1を
成すセラミックスに存在するポアの平均径を20μm以
下、ポア占有率を10%以下としておけば、上記浸食元
素の侵入を遅くし寿命を長く維持できる。
On the other hand, as described above, if the average diameter of the pores existing in the ceramics forming the protective tube 1 is set to 20 μm or less and the pore occupancy is set to 10% or less, the penetration of the eroding elements is delayed and the life is shortened. Can be maintained for a long time.

【0020】また、本発明では、保護管1を成すセラミ
ックスに存在するポアのアスペクト比を5以下と規定し
たことを特徴とする。ここでポアのアスペクト比とは、
ポアの断面形状における最も長い距離を長径、最も短い
距離を短径として、 アスペクト比=長径/短径 で算出した値である。したがって、同一体積のポアが存
在した場合、アスペクト比が小さいほどポアが丸いこと
を意味しており、上記浸食元素の移動量を少なくできる
のである。そして、ポアのアスペクト比が5を超えると
浸食元素の移動量が大きくなって著しく保護管1の寿命
が格段に悪くなるため、アスペクト比を5以下と規定し
た。
Further, the present invention is characterized in that the aspect ratio of the pores present in the ceramics forming the protective tube 1 is specified to be 5 or less. Here, the aspect ratio of the pore is
Assuming that the longest distance in the cross-sectional shape of the pore is the long diameter and the shortest distance is the short diameter, it is a value calculated by the aspect ratio = long diameter / short diameter. Therefore, when pores having the same volume are present, the smaller the aspect ratio is, the more round the pores are, and the amount of movement of the erosion element can be reduced. When the aspect ratio of the pores exceeds 5, the amount of erosion elements transferred becomes large, and the life of the protection tube 1 is remarkably deteriorated. Therefore, the aspect ratio is specified to be 5 or less.

【0021】例えば、図3にアスペクト比が1.2のポ
ア(黒い部分)の模式図を示し、図4にアスペクト比が
6.6のポア(黒い部分)の模式図を示す。図4のよう
にポアのアスペクト比が5を超えたものでは、ポア中の
浸食元素の移動量が大きくなるが、図3のようにアスペ
クト比が5以下のポアであれば、全体に丸い形状とな
り、浸食元素の移動量を少なくすることができる。
For example, FIG. 3 shows a schematic diagram of a pore (black portion) having an aspect ratio of 1.2, and FIG. 4 shows a schematic diagram of a pore (black portion) having an aspect ratio of 6.6. When the aspect ratio of the pore exceeds 5 as shown in FIG. 4, the amount of movement of the erosion element in the pore increases, but when the aspect ratio of the pore is 5 or less as shown in FIG. And the amount of movement of the erosion element can be reduced.

【0022】なお、本発明においてポアの平均径、ポア
占有率、ポアのアスペクト比は以下のようにして測定す
る。
In the present invention, the average pore diameter, the pore occupancy, and the pore aspect ratio are measured as follows.

【0023】まず、保護管1の任意の外表面を鏡面研磨
した後、金属顕微鏡と画像解析装置からなるポア率測定
装置を用いて、測定面積2.25×105 μm2 を倍率
200倍にて測定し、この範囲内におけるポアの平均径
と、この面積中のポア占有率を測定する。また、同じ鏡
面研磨した表面を電子顕微鏡(SEM)で1000倍に
拡大した写真を撮り、この写真から任意のポアを10個
選び、それぞれ長径と短径を測定してアスペクト比を算
出し、10個の平均値により求める。
First, after an arbitrary outer surface of the protective tube 1 is mirror-polished, a measuring area of 2.25 × 10 5 μm 2 is magnified 200 times by using a pore ratio measuring device including a metal microscope and an image analyzer. The average diameter of the pores in this range and the occupancy of the pores in this area are measured. The same mirror-polished surface was photographed with an electron microscope (SEM) at a magnification of 1000 times. Ten arbitrary pores were selected from the photograph, and the major axis and minor axis were measured to calculate the aspect ratio. It is determined by the average value of the pieces.

【0024】なお、ポアの平均径、ポアの占有率、ポア
のアスペクト比は、保護管1を成すセラミックスの焼成
条件によって決定され、上記範囲内となるような条件で
焼成すれば良い。
The average diameter of the pores, the occupation ratio of the pores, and the aspect ratio of the pores are determined by the firing conditions of the ceramics forming the protective tube 1 and may be fired under the above-mentioned range.

【0025】次に、本発明の保護管1を成すセラミック
スとしては、さまざまなものを用いることができるが、
特にAl2 3 、MgOスピネル(MgAl2 4 )、
又はMgOを主成分とするものが好ましい。
Next, various ceramics can be used as the ceramic constituting the protective tube 1 of the present invention.
In particular, Al 2 O 3 , MgO spinel (MgAl 2 O 4 ),
Alternatively, those containing MgO as a main component are preferable.

【0026】より好ましくは、50モル%以下(28.
6重量%以下)のMgOと、50モル%以上(71.4
重量%以上)のAl2 3 を主成分とし、MgO/Al
2 3 のモル比を1以下(重量比を0.40以下)と
し、MgAl2 4 とAl2 3 の少なくとも一種以上
の結晶相を有するセラミックスを用いる。
More preferably, 50 mol% or less (28.
6 wt% or less) and 50 mol% or more (71.4).
(% By weight or more) of Al 2 O 3 as a main component, and MgO / Al
A ceramic having a molar ratio of 2 O 3 of 1 or less (a weight ratio of 0.40 or less) and at least one crystal phase of MgAl 2 O 4 and Al 2 O 3 is used.

【0027】また、この主成分を成すAl2 3 とMg
Oの合計100重量部に対し、SiO2 、CaO、Na
2 O、Fe2 3 等の不純物成分を合計5重量部以下含
有し、平均結晶粒径2μm以上、気孔率3%以下とする
ことが好ましい。
The main components of Al 2 O 3 and Mg
With respect to 100 parts by weight of O in total, SiO 2 , CaO, Na
It is preferable to contain a total of 5 parts by weight or less of impurity components such as 2 O and Fe 2 O 3 so that the average crystal grain size is 2 μm or more and the porosity is 3% or less.

【0028】これらのMgOスピネル(MgAl
2 4 )又はAl2 3 を主成分とするセラミックス
は、融点が2000℃以上と極めて高く、1500〜1
600℃の高温中でも安定した耐熱性、耐食性を有して
おり、保護管1として最適な材料である。
These MgO spinels (MgAl
Ceramics mainly composed of 2 O 4 ) or Al 2 O 3 have an extremely high melting point of 2000 ° C. or higher,
It has stable heat resistance and corrosion resistance even at a high temperature of 600 ° C., and is an optimal material for the protective tube 1.

【0029】なお、MgOスピネルとはMgAl2 4
で表され、理論定比はMgOとAl2 3 がモル比1:
1、重量比で28.6:71.4で結合した化合物のこ
とである。そして、MgOとAl2 3 の組成比率を種
々に変更すると、理論定比ではMgAl2 4 結晶のみ
が存在するが、理論定比よりもMgOを多くするとMg
O+MgAl2 4 の二相結晶構造となり、一方理論定
比よりもAl2 3 を多くするとAl2 3 +MgAl
2 4 の二相結晶構造となる。
The MgO spinel is MgAl 2 O 4
The theoretical stoichiometric ratio is a molar ratio of MgO and Al 2 O 3 of 1:
1, a compound bonded at a weight ratio of 28.6: 71.4. When the composition ratio of MgO and Al 2 O 3 is variously changed, only MgAl 2 O 4 crystals are present at the theoretical stoichiometric ratio.
O + MgAl 2 O 4 has a two-phase crystal structure. On the other hand, when Al 2 O 3 is increased more than the theoretical stoichiometric ratio, Al 2 O 3 + MgAl
A two-phase crystal structure of 2 O 4 results.

【0030】また、上記セラミックスでは、MgOスピ
ネル(MgAl2 4 )とAl2 3 の少なくとも一種
以上の結晶相を含むが、この結晶相は、X線回折により
容易に分析することができ、MgAl2 4 とAl2
3 の少なくとも一種以上の結晶相を含むとは、これらの
一種以上の結晶相のピークが存在することを意味する。
The above ceramics contains at least one crystal phase of MgO spinel (MgAl 2 O 4 ) and Al 2 O 3 , and this crystal phase can be easily analyzed by X-ray diffraction. MgAl 2 O 4 and Al 2 O
The phrase “comprising at least one or more crystal phases” in 3 means that peaks of one or more of these crystal phases exist.

【0031】さらに、溶融炉において、灰成分中のS
i、Al、Fe、Ca、Na等の浸食元素は保護管1を
成すセラミックス中の結晶粒界中に浸食してセラミック
スを腐食し変質させる。そのため、保護管1を成すセラ
ミックスとして、上記主成分100重量部に対して、S
iO2 、CaO、Na2 O、Fe2 3 等の不純物成分
を合計5重量部以下とすれば、結晶粒界を構成するガラ
ス成分を少なくし、浸食元素の侵入を防止することがで
きる。
Further, in the melting furnace, S in the ash component
Erosive elements such as i, Al, Fe, Ca, and Na erode into the crystal grain boundaries in the ceramics forming the protective tube 1 and corrode and alter the ceramics. Therefore, as the ceramics forming the protective tube 1, S is added to 100 parts by weight of the main component.
When the total amount of impurity components such as iO 2 , CaO, Na 2 O, and Fe 2 O 3 is 5 parts by weight or less, the glass components constituting the crystal grain boundaries can be reduced, and the penetration of erosion elements can be prevented.

【0032】なお、不純物成分を5重量部以下とするた
めには、予め高純度のMgO、Al2 3 の一次原料を
使用するとともに、製造工程において不純物の混入を防
止すれば良い。
In order to reduce the amount of the impurity component to 5 parts by weight or less, it is only necessary to use a high-purity primary material of MgO and Al 2 O 3 in advance and to prevent the impurity from being mixed in the manufacturing process.

【0033】また、上記セラミックスの平均結晶粒径を
2μm以上とすることが好ましい。これは、平均結晶粒
径が2μm未満であると浸食元素が粒界に侵入した場
合、結晶間の粒界部強度が弱まり母材から結晶が脱離し
て浸食が進行しやすく、この現象が繰り返し進むとスル
ーホール発生等により著しく保護管寿命を低下させるた
めである。この平均結晶粒径は、出発原料の粒径や焼成
条件等によって自由に調整することができる。
Further, it is preferable that the average crystal grain size of the ceramic is 2 μm or more. This is because, when the average grain size is less than 2 μm, when the erosion element enters the grain boundaries, the strength of the grain boundaries between the crystals is weakened, the crystals are detached from the base material, and the erosion easily progresses. This is because the life of the protection tube is significantly reduced due to the generation of through-holes and the like. This average crystal grain size can be freely adjusted depending on the grain size of the starting material, firing conditions, and the like.

【0034】さらに、保護管1の肉厚tはについては、
耐熱衝撃性や熱効率の点からは薄い方が好ましいが、保
護性や製造上の点からは厚い方が好ましく、一般に肉厚
tは3mm以上とすることが好ましい。さらに部分的に
肉厚tを変化させることも可能であり、例えば球面状の
先端封止部の肉厚を他の部分よりも大きく形成しておく
こともできる。
Further, regarding the thickness t of the protective tube 1,
It is preferable to be thin from the viewpoint of thermal shock resistance and thermal efficiency, but it is preferable to be thick from the viewpoint of protection and production, and it is generally preferable that the wall thickness t is 3 mm or more. It is also possible to partially change the thickness t. For example, the thickness of the spherical end sealing portion can be formed larger than other portions.

【0035】以上詳述した本発明の保護管1は、図2に
示すように、ゴミ焼却灰再処理用の溶融炉12中にて好
適に使用できるが、その他に金属溶融炉等のさまざまな
溶融炉において、ヒーターや各種センサー等を保護する
ための保護管として用いることができる。あるいはゴミ
焼却炉、セラミックス等の焼成炉等の各種炉や、その他
の高温腐食性雰囲気となるような装置にも好適に用いる
ことができる。
As shown in FIG. 2, the protective tube 1 of the present invention described above can be suitably used in a melting furnace 12 for reprocessing refuse incineration ash. In a melting furnace, it can be used as a protective tube for protecting a heater, various sensors, and the like. Alternatively, it can be suitably used in various furnaces such as a refuse incinerator, a firing furnace for ceramics and the like, and other devices that provide a high-temperature corrosive atmosphere.

【0036】[0036]

【実施例】実施例1 ゴミ焼却灰溶融炉内の環境を想定し、Al2 3 及びM
gOスピネルを主成分とするセラミックスからなる試料
を作製し、ゴミ焼却灰との反応試験を行った。
Example 1 Assuming the environment inside a refuse incineration ash melting furnace, Al 2 O 3 and M
A sample composed of ceramics containing gO spinel as a main component was prepared and subjected to a reaction test with incineration ash.

【0037】まず、焼却灰として、成分がAl,Ca,
Mg,Na,K,Si,Fe,Cl等からなる焼却灰を
焼却炉より回収し、乾式加圧成形機により直径12mm
×厚み1mmで重さ0.3gのタブレットを作製した。
First, as incineration ash, the components are Al, Ca,
The incineration ash consisting of Mg, Na, K, Si, Fe, Cl, etc. is collected from the incinerator, and the diameter is 12 mm by a dry press machine.
× A tablet having a thickness of 1 mm and a weight of 0.3 g was prepared.

【0038】次に、表1に示す各種組成のセラミックス
で、直径30mm×厚み10mmで、焼却灰タブレット
を入れるための座繰り穴(直径13mm×深さ1mm)
を有するタブレット試験片を作製した。なお、No.4
〜12では、MgAl2 4の結晶相のみを有し、組成
は同一であるが、焼結性や原料一次粒径の異なる材料を
混合することにより、ポア径等の異なるものを作製し
た。
Next, ceramics having various compositions shown in Table 1 having a diameter of 30 mm × thickness of 10 mm and a counterbore for inserting an incinerated ash tablet (diameter of 13 mm × depth of 1 mm).
The tablet test piece which has this was produced. In addition, No. 4
Nos. 12 to 12 have only the crystal phase of MgAl 2 O 4 and have the same composition, but have different pore diameters and the like by mixing materials having different sinterability and raw material primary particle size.

【0039】各試験片について、結晶相、嵩比重、気孔
率、曲げ強度、ポア平均径、ポア占有率、ポアアスペク
ト比を測定した。
With respect to each test piece, the crystal phase, bulk specific gravity, porosity, bending strength, average pore diameter, pore occupancy, and pore aspect ratio were measured.

【0040】ここで、結晶相については、X線回折装置
を用い、条件は、Cuの管球を用いて電圧50kV、電
流200mAとし、測定範囲は2θ=10〜90°でフ
ルスケール3×104 〜10×104 cpsとして分析
した。また、嵩比重、気孔率、曲げ強度はJIS法に基
づいて試験、測定した。
Here, for the crystal phase, an X-ray diffractometer was used, the conditions were as follows: a Cu tube was used, the voltage was 50 kV, the current was 200 mA, the measurement range was 2θ = 10-90 °, and the full scale was 3 × 10 Analysis was performed at 4 to 10 × 10 4 cps. The bulk specific gravity, porosity, and bending strength were tested and measured based on the JIS method.

【0041】さらに、ポア平均径、ポア占有率について
は、試験片の表面を鏡面研磨した後、金属顕微鏡と画像
解析装置からなるポア率測定装置を用いて、測定面積
2.25×105 μm2 を倍率200倍にて測定し、こ
の範囲内におけるポアの平均径と、この面積中のポア占
有率を測定した。また、ポアアスペクト比については、
同じ鏡面研磨した表面を電子顕微鏡(SEM)で100
0倍に拡大した写真を撮り、この写真から任意のポアを
10個選び、それぞれ長径と短径を測定してアスペクト
比を算出し、10個の平均値により求めた。
Further, with respect to the average pore diameter and the pore occupancy, the surface of the test piece was mirror-polished, and then the measurement area was 2.25 × 10 5 μm using a pore ratio measuring device comprising a metal microscope and an image analyzer. 2 was measured at a magnification of 200 times, and the average diameter of pores in this range and the pore occupancy in this area were measured. For the pore aspect ratio,
The same mirror-polished surface was measured with an electron microscope (SEM) for 100
A photograph magnified 0 times was taken, ten arbitrary pores were selected from the photograph, the major axis and the minor axis were measured, the aspect ratio was calculated, and the average value of the ten was determined.

【0042】次に、各試験片の座繰り穴に焼結灰タブレ
ットを置き、大気中1550℃で50時間の熱処理を加
えた。その後、各試験片について、外観を目視で観察
し、溶融あるいはクラックの有無を調べた。また、各試
験片を切断し、研磨した断面についてSEM(50〜2
00倍)でクラックの有無を調べるとともに、EPMA
分析装置で、加速電圧15kV、プローブ電流2.0×
10-7Aで、Si,Fe,Ca,Na,Kの各元素の検
出を行いマッピング形式で出力した後、これらの元素の
拡散深さを測定して反応層の有無を調べた。
Next, a sintered ash tablet was placed in the counterbore of each test piece and heat-treated at 1550 ° C. in the atmosphere for 50 hours. Thereafter, the appearance of each test piece was visually observed, and the presence or absence of melting or cracks was examined. In addition, each specimen was cut and polished on a cross section by SEM (50 to 2).
00 times) to check for cracks and EPMA
In the analyzer, acceleration voltage 15 kV, probe current 2.0 ×
After detecting elements of Si, Fe, Ca, Na, and K at 10 -7 A and outputting them in a mapping format, the diffusion depth of these elements was measured to check for the presence or absence of a reaction layer.

【0043】これらの結果は表1、2に示す通りであ
る。なお、表2中において、クラック・溶融、反応層に
ついては有るものを×、ないものを○で表した。
The results are shown in Tables 1 and 2. In Table 2, those having cracks / melting and reaction layers were represented by x, and those not present were represented by ○.

【0044】この結果より、ポア平均径、ポア占有率、
ポアアスペクト比のいずれかが本発明の範囲外であるも
の(No.1〜3,10〜12,15)は、反応層が発
生しており、浸食元素が侵入しやすいことがわかる。こ
れに対し、本発明の実施例(No.4〜9,13,1
4,16)では、溶融・クラックはなく、焼却灰成分と
の反応層も認められず、溶融炉の保護管1として好適に
使用できることがわかる。
From the results, the average pore diameter, the pore occupancy,
Those having any of the pore aspect ratios out of the range of the present invention (Nos. 1 to 3, 10 to 12, and 15) have a reaction layer, which indicates that the erosion elements easily enter. On the other hand, the embodiment of the present invention (Nos. 4 to 9, 13, 1)
In Nos. 4, 16), there was no melting or cracking, and no reaction layer with the incineration ash component was observed, indicating that it can be suitably used as the protective tube 1 of the melting furnace.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】実施例2 本発明実施例として表1中No.4、16の材質を用
い、比較例として表1中No.12の材質を用い、それ
ぞれ外径180mm、内径160mm、肉厚tが10m
m、長さ800mmの図1に示す保護管1を作製した。
この保護管1を図2に示すゴミ焼却灰溶融炉12で実機
試験を行い、温度1500℃における寿命を調べた。な
お、寿命は、腐食により保護管1にクラック又はスルー
ホール等が発生するまでの時間である。
Example 2 As an example of the present invention, No. 1 in Table 1 was used. Nos. 4 and 16 were used. Twelve materials, each having an outer diameter of 180 mm, an inner diameter of 160 mm, and a thickness t of 10 m
The protective tube 1 shown in FIG. 1 and having a length of 800 mm was prepared.
This protective tube 1 was subjected to an actual machine test in a refuse incineration ash melting furnace 12 shown in FIG. 2 to examine the life at a temperature of 1500 ° C. The life is a time until a crack or a through hole or the like occurs in the protection tube 1 due to corrosion.

【0048】結果を表3に示すように、本発明の保護管
1を用いれば、ゴミ焼却灰溶融炉において2000時間
にわたって使用可能であることが実証された。
As shown in Table 3, it was proved that the protective tube 1 of the present invention can be used in a refuse incineration ash melting furnace for 2000 hours.

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【発明の効果】以上のように本発明によれば、セラミッ
クスからなる先端を封止した管状体からなる耐熱耐食性
保護管において、上記セラミックスの少なくとも外表面
層に存在するポアの平均径が20μm以下、ポア占有率
が10%以下、ポアのアスペクト比(長径/短径の比)
が5以下であることによって、耐熱性、耐食性を高くし
て長期間良好に使用するこができる。
As described above, according to the present invention, in a heat-resistant and corrosion-resistant protective tube comprising a tubular body whose tip is made of ceramic, the average diameter of pores present in at least the outer surface layer of the ceramic is 20 μm or less. , Pore occupancy is 10% or less, pore aspect ratio (ratio of major axis / minor axis)
Is 5 or less, heat resistance and corrosion resistance can be increased and used for a long period of time.

【0051】特に、本発明の保護管を、ゴミ焼却灰再処
理用の溶融炉に用いれば、焼却灰中に含まれる金属元素
の浸食を防止し、長期間にわたって安全に使用すること
ができる。
In particular, if the protection tube of the present invention is used in a melting furnace for reprocessing refuse incineration ash, erosion of metal elements contained in the incineration ash can be prevented, and the protection tube can be used safely for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)(b)は本発明の耐熱耐食性保護管を示
す断面図である。
FIGS. 1A and 1B are cross-sectional views showing a heat and corrosion resistant protective tube of the present invention.

【図2】本発明の耐熱耐食性保護管を用いるゴミ焼却灰
再処理装置を示す概略図である。
FIG. 2 is a schematic view showing a refuse incineration ash reprocessing device using the heat and corrosion resistant protective tube of the present invention.

【図3】耐熱耐食性保護管を成すセラミックスのポアの
形状を示す模式図である。
FIG. 3 is a schematic view showing a shape of a ceramic pore forming a heat-resistant and corrosion-resistant protective tube.

【図4】耐熱耐食性保護管を成すセラミックスのポアの
形状を示す模式図である。
FIG. 4 is a schematic diagram showing the shape of a ceramic pore forming a heat-resistant and corrosion-resistant protective tube.

【符号の説明】[Explanation of symbols]

1:保護管 2:加熱用ヒーター 3:熱電対 11:焼却灰 12:溶融炉 13:金属元素 15:フィルター 16:重金属濃縮物 17:ガス 18:スラグ顆粒 1: Protection tube 2: Heating heater 3: Thermocouple 11: Incineration ash 12: Melting furnace 13: Metal element 15: Filter 16: Heavy metal concentrate 17: Gas 18: Slag granules

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミックスからなる先端を封止した管状
体であって、上記セラミックスの少なくとも外表面層に
に存在するポアの平均径が20μm以下、ポア占有率が
10%以下、ポアのアスペクト比(長径/短径の比)が
5以下であることを特徴とする耐熱耐食性保護管。
1. A tubular body of which the tip is made of ceramic and which has a closed end, wherein an average diameter of pores present in at least an outer surface layer of the ceramics is 20 μm or less, a pore occupancy is 10% or less, and an aspect ratio of the pores. A heat-resistant and corrosion-resistant protective tube having a ratio of (major axis / minor axis) of 5 or less.
【請求項2】上記セラミックスが、Al2 3 、MgA
2 4 の少なくとも一種の結晶相を有することを特徴
とする請求項1記載の耐熱耐食性保護管。
2. The method according to claim 1, wherein the ceramic is Al 2 O 3 , MgA.
heat corrosion protection tube according to claim 1, wherein the at least one crystal phase of l 2 O 4.
JP35120696A 1996-09-30 1996-12-27 Heat and corrosion resistant protective tube Expired - Fee Related JP3336213B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP35120696A JP3336213B2 (en) 1996-12-27 1996-12-27 Heat and corrosion resistant protective tube
EP19970116859 EP0832862B1 (en) 1996-09-30 1997-09-29 Heat- and corrosion-resisting protection tube
DE69717226T DE69717226T2 (en) 1996-09-30 1997-09-29 Heat and corrosion resistant protective tube
US08/940,239 US6093461A (en) 1996-09-30 1997-09-30 Heat-and corrosion-resisting protection tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35120696A JP3336213B2 (en) 1996-12-27 1996-12-27 Heat and corrosion resistant protective tube

Publications (2)

Publication Number Publication Date
JPH10194821A true JPH10194821A (en) 1998-07-28
JP3336213B2 JP3336213B2 (en) 2002-10-21

Family

ID=18415774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35120696A Expired - Fee Related JP3336213B2 (en) 1996-09-30 1996-12-27 Heat and corrosion resistant protective tube

Country Status (1)

Country Link
JP (1) JP3336213B2 (en)

Also Published As

Publication number Publication date
JP3336213B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
Dong et al. Preparation of porcelain building tiles using “K2O–Na2O” feldspar flux as a modifier agent of low-temperature firing
JP3336213B2 (en) Heat and corrosion resistant protective tube
KR20020060689A (en) Steel pipe with composite material coating and method for manufacturing the same
JP3485430B2 (en) Heat and corrosion resistant protective tube
JPH10103642A (en) Heat resistant corrosion resistant protective tube
JP3634963B2 (en) Heat and corrosion resistant protective tube
JP3215016B2 (en) Protection tube for melting furnace
JP3814449B2 (en) Discharge port member for melting furnace and manufacturing method thereof
JP3389436B2 (en) Heat and corrosion resistant protective tube
JP3389424B2 (en) Heat and corrosion resistant protective tube
US6227127B1 (en) Furnace material, heat resisting protection tube and protective member using the same sintered material
JPH11310453A (en) High-temperature heat-resistant material and furnace material for high-temperature furnace and heat-resistant protecting tube using the same
JPH11190593A (en) Furnace material for high-temperature furnace
JP2001220228A (en) Heat-resistant and corrosion resistant protective tube
Weinberg et al. Hot Corrosion Resistance of Aluminosilicate Refractories–Comparative Tests in the Secondary Combustion Chamber of a Hazardous Waste Incinerator
JPH11311498A (en) Heat transmitting tube for heat exchanger
EP0832862B1 (en) Heat- and corrosion-resisting protection tube
JP2001048650A (en) Heat transfer tube for heat exchanger
JP3678937B2 (en) Ceramic tube for heat exchanger
JP2000193221A (en) Heat-resistant and corrosion-resistant protecting tube
Vichaphund et al. Sintering of municipal solid waste incineration bottom ash
JP2003161434A (en) Combustion furnace with a furnace wall lined with corrosion resistant heat resistant cast steel
JP2003287395A (en) Ceramic pipe for heat exchanger and method of manufacture
JPH11199317A (en) Refractory for furnace wall and melting furnace using the same
JP2002284577A (en) Refractory and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees