JP2001220228A - Heat-resistant and corrosion resistant protective tube - Google Patents

Heat-resistant and corrosion resistant protective tube

Info

Publication number
JP2001220228A
JP2001220228A JP2000027298A JP2000027298A JP2001220228A JP 2001220228 A JP2001220228 A JP 2001220228A JP 2000027298 A JP2000027298 A JP 2000027298A JP 2000027298 A JP2000027298 A JP 2000027298A JP 2001220228 A JP2001220228 A JP 2001220228A
Authority
JP
Japan
Prior art keywords
protective tube
heat
resistant
temperature
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000027298A
Other languages
Japanese (ja)
Inventor
Shinichi Yamaguchi
新一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000027298A priority Critical patent/JP2001220228A/en
Publication of JP2001220228A publication Critical patent/JP2001220228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a protective tube having excellent resistance to thermal shock, and capable of being used without being damaged even in a case in which 500-1,000 deg.C difference of the temperature is caused under a thermally severe condition in a refuge incinerator or the like. SOLUTION: This heat-resistant and corrosion-resistant protective tube is composed of a partially stabilized zirconia ceramic consisting essentially of ZrO2, containing 3.0-3.8 wt.% MgO as a stabilizer, and further including 10-60 mol% monoclinic zirconia crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゴミ焼却炉やゴミ
焼却灰溶融炉等の溶融炉、またその他の各種炉等におい
て、ヒーターやセンサー等を保護するための保護管に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection tube for protecting a heater, a sensor and the like in a melting furnace such as a refuse incinerator and a refuse incineration ash melting furnace, and other various furnaces.

【0002】[0002]

【従来の技術】家庭、会社から捨てられたゴミは地方自
治体の焼却炉で燃やされ、その未燃分の焼却灰及び排煙
に含まれる飛灰(含有元素;Si、Al、Fe、Ca、
Mg、K、Mn、Cl、Na、S)には、重金属成分や
ダイオキシン、フラン等の有毒汚染物質が含まれてい
る。
2. Description of the Related Art Garbage discarded from homes and companies is burned in incinerators of local governments, and the incinerated ash and fly ash contained in the smoke (elements contained: Si, Al, Fe, Ca,
Mg, K, Mn, Cl, Na, and S) contain heavy metal components and toxic contaminants such as dioxin and furan.

【0003】これまでは、地方自治体の焼却炉で燃やさ
れた後の未燃分の焼却灰は、最終処分場にそのまま埋め
られていたが、立地条件も厳しくなり、場所の確保が難
しくなっており、加えて、ダイオキシンやフラン等の有
害汚染物質の無害化は法律や条例でかなり厳しく規制さ
れつつあるため、焼却灰、飛灰を回収しこれを再溶融す
ることにより有害汚染物質を無害化する溶融炉の必要性
は年々高まっている。
Until now, unburned incineration ash after being burned in local government incinerators has been buried as it is in the final disposal site. However, location conditions have become severe, making it difficult to secure a place. In addition, detoxification of harmful pollutants such as dioxin and furan is being regulated strictly by laws and regulations, so incineration ash and fly ash are collected and re-melted to detoxify harmful pollutants. The need for melting furnaces is growing year by year.

【0004】焼却炉で燃やされた後の未燃分の焼却灰
は、高温加熱処理でスラグ化すれば、焼却灰の1/2
〜1/10程度にその体積を小さくすることができる。
ダイオキシン等の有害汚染物質を高熱により分解し無
害化できる。等の理由により、この溶融炉での高温加熱
処理法が有望視されているのである。高温加熱処理法と
しては重油等を燃焼させる加熱法から電気を使った発熱
法である抵抗加熱方式やプラズマ・アーク方式が主流と
なりつつある。
[0004] The incinerated ash that has not been burned after being burned in an incinerator is reduced to half of the incinerated ash if it is converted into slag by high-temperature heat treatment.
The volume can be reduced to about 1/10.
Harmful pollutants such as dioxin can be decomposed by high heat and made harmless. For these reasons, high-temperature heat treatment in this melting furnace is considered promising. As a high-temperature heat treatment method, a resistance heating method or a plasma arc method, which is a heating method using electricity, from a heating method in which heavy oil or the like is burned is becoming mainstream.

【0005】溶融炉での加熱処理の代表例を図2に示
す。まず、溶融炉12内に焼却灰11を入れ、電熱源で
ある加熱用ヒーター2で1300〜1500℃に加熱す
ると、焼却灰11が溶融して含有している金属元素13
は蒸発する。この金属元素13を取り出して冷却装置
(不図示)で急冷し凝縮させて微粒子とし、これをフィ
ルタ14で回収して金属濃縮物15を回収する。一方ダ
イオキシンやフランなどの有毒汚染物質は熱破壊され、
無害化されたガス16はガス処理装置を経て大気中に放
出される。また、溶融炉12内の残存物はスラグ(ガラ
ス)状顆粒17として取り出され、有効利用または最終
処分されるようになっている。
FIG. 2 shows a typical example of a heat treatment in a melting furnace. First, the incineration ash 11 is put into the melting furnace 12 and heated to 1300 to 1500 ° C. by the heating heater 2 as an electric heat source.
Evaporates. The metal element 13 is taken out, rapidly cooled by a cooling device (not shown), and condensed into fine particles. The fine particles are collected by a filter 14 to collect a metal concentrate 15. On the other hand, toxic pollutants such as dioxin and furan are destroyed by heat,
The detoxified gas 16 is released into the atmosphere via a gas processing device. Further, the residue in the melting furnace 12 is taken out as slag (glass) -like granules 17 and is effectively used or finally disposed.

【0006】この溶融炉12には、加熱用ヒーター2と
温度管理のための熱電対3が必要であるが、溶融した焼
却灰11は溶融炉12内で溶融スラグ、溶融塩、あるい
はその蒸気成分として存在するため、これらの物質から
加熱用ヒーター2及び熱電対3を保護する必要がある。
The melting furnace 12 requires a heater 2 for heating and a thermocouple 3 for temperature control. The melted incineration ash 11 is supplied into the melting furnace 12 by molten slag, molten salt, or a vapor component thereof. Therefore, it is necessary to protect the heating heater 2 and the thermocouple 3 from these substances.

【0007】一方加熱用ヒーターは、大電圧・大電流を
印加するためヒーター保護管としては、短絡や漏電の観
点より高い絶縁性が必要である。また、熱電対保護管と
しては電気的ノイズを極力遮断しなければならないため
同様に絶縁性が必要である。
On the other hand, the heater for heating requires a high insulation property from the viewpoint of short-circuit and electric leakage as a heater protection tube for applying a large voltage and a large current. In addition, the thermocouple protection tube needs to be insulated as much as possible in order to cut off electrical noise as much as possible.

【0008】そこで、耐熱性、耐食性、絶縁性及び耐熱
衝撃性に優れたセラミックス製の保護管1で、加熱用ヒ
ーター2や熱電対3を覆うことが行われている。上記保
護管1の材質としては、例えば、MgO、Al23、M
gAl24などのセラミックスが使用されている。ま
た、形状としては、保護管先端を片側封止した形状が一
般的に広く用いられている。
Therefore, the heating heater 2 and the thermocouple 3 are covered with a ceramic protective tube 1 having excellent heat resistance, corrosion resistance, insulation and thermal shock resistance. The material of the protective tube 1 is, for example, MgO, Al 2 O 3 , M
Ceramics such as gAl 2 O 4 are used. As the shape, a shape in which the tip of the protective tube is sealed on one side is generally widely used.

【0009】MgO安定化ジルコニアとしては、例えば
特公平3−53271号公報や特公平3−64468号
公報に示されるように、7〜11モル%のMgOを含
み、単斜晶系のジルコニア結晶を55〜85モル%含ま
せ耐熱衝撃性を向上したものが主流であった。
As the MgO-stabilized zirconia, for example, monoclinic zirconia crystals containing 7 to 11 mol% of MgO as disclosed in JP-B-3-53271 and JP-B-3-64468 are disclosed. What contained 55-85 mol% and improved thermal shock resistance was the mainstream.

【0010】単斜晶系ジルコニア結晶の総量を増やす
と、焼結体中のマイクロクラックが増加し、また応力誘
起による正方晶から単斜晶への相変態機構が小さくなる
ことから、焼結体の機械的強度や破壊靱性が低下し、高
い強度を必要とされる用途には不適であるという問題点
があった。焼結体中のマイクロクラックが増加すると、
保護管として使用した際、腐食成分がマイクロクラック
より磁器中に侵入し、著しく耐食性を悪化させるという
問題点もあった。さらにジルコニアは約300℃〜50
0℃以上の高温では材料の体積固有抵抗が小さくなり絶
縁性が低下する為、電気による発熱法を使った炉では使
用できない問題もあった。
When the total amount of monoclinic zirconia crystals is increased, microcracks in the sintered body are increased, and the mechanism of stress-induced phase transformation from tetragonal to monoclinic is reduced. However, there is a problem that the mechanical strength and the fracture toughness of the steel are reduced, and they are not suitable for applications requiring high strength. When micro cracks in the sintered body increase,
When used as a protective tube, there is also the problem that corrosive components penetrate into the porcelain through microcracks and significantly degrade corrosion resistance. Further, zirconia is about 300 ° C-50
At a high temperature of 0 ° C. or higher, there is a problem that the volume resistivity of the material becomes small and the insulating property deteriorates, so that it cannot be used in a furnace using an electric heating method.

【0011】[0011]

【発明が解決しようとする課題】ところで、ゴミ焼却に
より発生する灰を加熱処理する際、灰に含まれるCd、
Pd、Zn等の金属元素類やダイオキシン、フラン等の
有害汚染物質を分解するため、電熱により1300〜1
500℃で加熱溶融処理を行い無害化するが、溶融炉1
2で使用する保護管1は、焼却灰11が溶けてできる溶
融塩、溶融スラグ、あるいは蒸気等にさらされることに
なる。そのためこれら成分中のSi、Al、Fe、C
a、Naは保護管1を成すセラミックス及び炉材中に徐
々に侵入・浸食し、次第にセラミックス及び炉材が変質
し、強度劣化を起こすことからクラックを生じたり、破
損が生じやすくなったり、部分的に溶融するなどして、
長期にわたり使用できるものではなかった。
By the way, when heat-treating ash generated by garbage incineration, Cd contained in the ash,
In order to decompose metal elements such as Pd and Zn and harmful pollutants such as dioxin and furan, 1300-1
Detoxification by heating and melting at 500 ° C.
The protective tube 1 used in 2 is exposed to molten salt, molten slag, steam, or the like formed by melting the incineration ash 11. Therefore, Si, Al, Fe, C
a, Na gradually penetrates and erodes into the ceramics and the furnace material forming the protective tube 1 and gradually deteriorates the ceramics and the furnace material and causes a deterioration in strength, so that cracks or breakage are likely to occur. Melting, etc.
It could not be used for a long time.

【0012】さらに原料としては、前述のように単斜晶
系ジルコニア結晶の総量を増やすと、焼結体中のマイク
ロクラックが増加し、また応力誘起による正方晶から単
斜晶への相変態機構が小さくなることから、焼結体の機
械的強度や破壊靱性が低下し、高い強度を必要とされる
用途には不適であるという問題点があった。焼結体中の
マイクロクラックが増加すると、保護管として使用した
際、腐食成分がマイクロクラックより磁器中に侵入し、
著しく耐食性を悪化させるという問題点もあった。
As a raw material, when the total amount of monoclinic zirconia crystals is increased as described above, microcracks in the sintered body increase, and a phase transformation mechanism from tetragonal to monoclinic due to stress induction. , The mechanical strength and fracture toughness of the sintered body are reduced, and the sintered body is not suitable for applications requiring high strength. When the microcracks in the sintered body increase, when used as a protective tube, corrosive components penetrate into the porcelain from the microcracks,
There is also a problem that the corrosion resistance is remarkably deteriorated.

【0013】[0013]

【課題を解決するための手段】本発明はZrO2を主成
分とし、安定化剤として3.0〜3.8重量%のMgO
を含み、かつ単斜晶系のジルコニア結晶を10〜60モ
ル%含む部分安定化ジルコニアセラミックスを管状体に
形成して耐熱耐食性保護管としたことを特徴とする。
The present invention comprises ZrO 2 as a main component, and as a stabilizer, 3.0 to 3.8% by weight of MgO.
And a tubular body made of a partially stabilized zirconia ceramic containing 10 to 60 mol% of monoclinic zirconia crystals to form a heat-resistant and corrosion-resistant protective tube.

【0014】また、上記部分安定化ジルコニアセラミッ
クスがボイド面積率0.8〜2.5%であることを特徴
とする。
Further, the partially stabilized zirconia ceramic has a void area ratio of 0.8 to 2.5%.

【0015】更に、上記部分安定化ジルコニアセラミッ
クスからなる管状体の外周面に温度500℃の時の体積
固有抵抗値が109Ω・cm以上のセラミックスで形成
した絶縁リングを備えたことを特徴とする。
Further, an insulating ring formed of a ceramic having a volume resistivity of at least 10 9 Ω · cm at a temperature of 500 ° C. is provided on the outer peripheral surface of the tubular body made of the partially stabilized zirconia ceramic. I do.

【0016】[0016]

【発明の実施の形態】以下本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0017】図1に示すように、本発明の保護管1は、
先端の閉じた管状体で、ZrO2を主成分とし安定化剤
としてMgOを含む部分安定化ジルコニアセラミックス
からなり、上記MgOの含有量が3.0〜3.8重量%
であり、且つ単斜晶系のジルコニア結晶を10〜60モ
ル%含み、ボイド面積率0.8〜2.5%である。
As shown in FIG. 1, the protection tube 1 of the present invention comprises:
A tubular body having a closed end, made of partially stabilized zirconia ceramics containing ZrO 2 as a main component and MgO as a stabilizer, and having a MgO content of 3.0 to 3.8% by weight.
And 10 to 60 mol% of monoclinic zirconia crystals, and a void area ratio of 0.8 to 2.5%.

【0018】この保護管1は図2に示すように、ゴミ焼
却灰溶融炉の溶融炉用12中に加熱用ヒーター2や熱電
対などのセンサー3を覆うように設置し、腐食成分を多
く含んだ炉内ガスからヒーターや熱電対を保護すること
ができる。保護管1は、セラミックスの一体物構造であ
るが、例えばステンレス鋼などの耐熱性材料と組み合わ
せた構造でも良い。また、本発明の保護管1は、上述し
たゴミ焼却灰の溶融炉12に限らず、金属溶融炉、高炉
等のさまざまな溶融炉や焼却炉において、ヒーターや各
種センサーを保護するための保護管として用いることが
できる。
As shown in FIG. 2, this protective tube 1 is installed in a melting furnace 12 of a refuse incineration ash melting furnace so as to cover a heater 3 and a sensor 3 such as a thermocouple, and contains a lot of corrosive components. Heaters and thermocouples can be protected from furnace gas. The protection tube 1 has an integral structure of ceramics, but may have a structure in which the protection tube 1 is combined with a heat-resistant material such as stainless steel. In addition, the protective tube 1 of the present invention is not limited to the above-described refuse incineration ash melting furnace 12, but may be a protective tube for protecting heaters and various sensors in various melting furnaces and incinerators such as a metal melting furnace and a blast furnace. Can be used as

【0019】本発明の保護管の形状としては図1に示す
ような先端を閉じた管状体に限らず、封止なしの円筒体
でも構わない。
The shape of the protective tube of the present invention is not limited to a tubular body having a closed end as shown in FIG. 1, but may be a cylindrical body without sealing.

【0020】また、本発明の部分安定化ジルコニアセラ
ミックスにより形成した保護管は、MgOを3.0〜
3.8重量%含有するセラミックス原料を所定形状に成
形した後、最高焼成温度1660〜1700℃で、冷却
速度を80〜150℃/時として焼成することによって
得ることができる。
The protective tube formed of the partially stabilized zirconia ceramics of the present invention has MgO of 3.0 to 3.0.
After forming a ceramic raw material containing 3.8% by weight into a predetermined shape, it can be obtained by firing at a maximum firing temperature of 1660 to 1700 ° C and a cooling rate of 80 to 150 ° C / hour.

【0021】本発明において、MgOの含有量を3.0
〜3.8重量%含有としたのは、3.0重量%未満であ
ると単斜晶系ジルコニア結晶の総量が多くなって曲げ強
度、破壊靱性、耐食性の低下が生じ、逆にMgOの含有
量が3.8重量%より多いと単斜晶系ジルコニア結晶の
総量が極端に少なくなって破壊靱性及び耐熱衝撃性が低
下するためである。MgOの含有量を3.6から3.8
重量%とすると高い強度を維持できるのでMgOの含有
量の特に望ましい範囲は3.6から3.8重量%であ
る。
In the present invention, the content of MgO is adjusted to 3.0.
When the content is less than 3.0% by weight, the total amount of the monoclinic zirconia crystal is increased, and the bending strength, fracture toughness, and corrosion resistance are reduced. If the amount is more than 3.8% by weight, the total amount of the monoclinic zirconia crystals becomes extremely small, and the fracture toughness and the thermal shock resistance decrease. MgO content from 3.6 to 3.8
A particularly desirable range of the content of MgO is from 3.6 to 3.8% by weight because high strength can be maintained when the content is made by weight.

【0022】また、本発明の部分安定化ジルコニア焼結
体製保護管は、MgO以外にAl23、SiO2などの
成分を、原料中の不純物または添加物として含むことが
できる。特にSiO2はZrO2と反応して珪酸ジルコニ
ウムを形成し、主に結晶粒界に存在してジルコニア結晶
の粒成長を抑制するため0.1〜0.5重量%の範囲で
含有することが好ましい。
The partially stabilized zirconia sintered body protective tube of the present invention can contain components such as Al 2 O 3 and SiO 2 in addition to MgO as impurities or additives in the raw material. In particular SiO 2 is to be contained in the range of 0.1 to 0.5 wt% because reacts with ZrO 2 to form a zirconium silicate, to inhibit the grain growth of primarily present to crystalline zirconia in the grain boundaries preferable.

【0023】さらに、本発明の部分安定化ジルコニア焼
結体において、単斜晶系ジルコニア結晶の総量を10〜
60モル%としたのは、焼結体中のマイクロクラックの
発生を抑制し、かつ適度な相変態機構を発現させるため
に、上記範囲内とすることが好ましいためである。そし
て、単斜晶系ジルコニア結晶の析出量を上記範囲内に制
御するためには、MgOの含有量を上記範囲内とし、か
つ焼成時の最高温度を1660〜1700℃の範囲に設
定するとともに、冷却速度を80〜150℃/時とすれ
ば良い。
Further, in the partially stabilized zirconia sintered body of the present invention, the total amount of the monoclinic zirconia crystals is 10 to 10.
The reason for setting the content to 60 mol% is that the content is preferably within the above range in order to suppress the generation of microcracks in the sintered body and to develop an appropriate phase transformation mechanism. And, in order to control the precipitation amount of the monoclinic zirconia crystal within the above range, the content of MgO is set within the above range, and the maximum temperature during firing is set in the range of 1660 to 1700 ° C. The cooling rate may be set to 80 to 150 ° C./hour.

【0024】さらに耐熱衝撃性を向上させるためには、
温度1150℃で8時間以下の時効処理を行えば良い。
8時間を超える時効処理は耐熱衝撃性向上に寄与しない
ことが確認されている。一方、時効処理温度は共晶温度
域以下の1150℃で行うのが効果的である。
In order to further improve the thermal shock resistance,
An aging treatment at a temperature of 1150 ° C. for 8 hours or less may be performed.
It has been confirmed that aging treatment for more than 8 hours does not contribute to improvement in thermal shock resistance. On the other hand, it is effective to carry out the aging treatment at 1150 ° C. which is lower than the eutectic temperature range.

【0025】なお、本発明の部分安定化ジルコニア焼結
体において、単斜晶系ジルコニア結晶以外は、正方晶お
よび/または立方晶のジルコニア結晶からなる。
The partially stabilized zirconia sintered body of the present invention comprises tetragonal and / or cubic zirconia crystals other than the monoclinic zirconia crystals.

【0026】また、ジルコニア焼結体の結晶粒径も強
度、靱性に大きく影響を及ぼすものである。そして、最
高焼成温度が1700℃より高い場合、平均結晶粒径が
30μm以上と粗大になりすぎて、強度、靱性の低下を
招き、逆に1640℃より低い場合は、結晶が成長せず
5μm程度で緻密化が不十分となり、強度、靱性が低下
する。そのため、本発明の部分安定化ジルコニア焼結体
の平均結晶粒径は、5〜30μmの範囲にあるのが好ま
しい。
Further, the crystal grain size of the zirconia sintered body greatly affects the strength and toughness. When the maximum sintering temperature is higher than 1700 ° C., the average crystal grain size becomes too coarse as 30 μm or more, resulting in a decrease in strength and toughness. Conversely, when the maximum firing temperature is lower than 1640 ° C., crystals do not grow and are about 5 μm. In this case, densification becomes insufficient, and strength and toughness decrease. Therefore, the average grain size of the partially stabilized zirconia sintered body of the present invention is preferably in the range of 5 to 30 μm.

【0027】更に、本発明のジルコニア焼結体におい
て、ボイド面積率は、耐熱衝撃性、耐摩耗性に大きく影
響するものであり、本発明においては部分安定化ジルコ
ニア焼結体のボイド面積率を0.8〜2.5%とするこ
とで耐熱衝撃性を向上したものである。即ち、強度、破
壊靱性、耐熱衝撃性の何れも満足させるためには、ボイ
ド面積率は上記範囲内に有らねばならず、適切な量のボ
イドを焼結体中に均一分散させることで、熱衝撃が加わ
った時の熱衝撃緩和に大きく寄与し、耐熱衝撃性を向上
させるとともに、強度、破壊靱性の向上をもたらすこと
ができる。
Further, in the zirconia sintered body of the present invention, the void area ratio has a large effect on thermal shock resistance and abrasion resistance. In the present invention, the void area ratio of the partially stabilized zirconia sintered body is determined. By setting the content to 0.8 to 2.5%, the thermal shock resistance is improved. That is, in order to satisfy both the strength, fracture toughness, and thermal shock resistance, the void area ratio must be within the above range, and by appropriately dispersing an appropriate amount of voids in the sintered body, It greatly contributes to relaxation of thermal shock when a thermal shock is applied, and can improve thermal shock resistance and strength and fracture toughness.

【0028】なおボイド面積率の制御は、原料粉末の粉
砕粒度を調整する方法、焼成条件を調整する方法、ある
いは所定の粒径の有機物を原料粉末に添加して焼成時に
消失させる方法などで行うことができる。例えば、粉砕
粒度を調整する場合、微粉砕するほど焼結体のボイドを
少なくすることができるが、過剰に微粉砕を行うとジル
コニア粒子の安定化機構が弱まり、焼結後単斜晶系ジル
コニア結晶が過剰に増え、曲げ強度や破壊靱性が低下し
てしまう。また、この場合焼結体中のボイドが著しく低
減するため、熱変化を伴う応力が焼結体に加わった時に
熱衝撃を緩和することができず破壊の原因となる。逆に
粉砕量が少なく粗大粒を含む場合は、焼成不良を生じ、
これもまた曲げ強度、破壊靱性の低下を引き起こす。そ
のため、好ましくは粉砕粒度の目安として中心粒径で
0.6〜1.2μmの範囲とすれば良い。
The void area ratio is controlled by a method of adjusting the pulverized particle size of the raw material powder, a method of adjusting the firing conditions, or a method of adding an organic substance having a predetermined particle size to the raw material powder and eliminating it during firing. be able to. For example, when adjusting the pulverized particle size, the finer the pulverization, the smaller the voids of the sintered body can be.However, if the pulverization is excessive, the stabilization mechanism of the zirconia particles weakens, and the monoclinic zirconia after sintering The crystals increase excessively, and the bending strength and the fracture toughness decrease. Further, in this case, voids in the sintered body are significantly reduced, so that when a stress accompanied by a thermal change is applied to the sintered body, the thermal shock cannot be relaxed, resulting in destruction. Conversely, if the amount of pulverization is small and contains coarse particles, firing failure occurs,
This also causes a decrease in bending strength and fracture toughness. Therefore, it is preferable to set the center particle size in the range of 0.6 to 1.2 μm as a standard of the pulverized particle size.

【0029】そして、上記条件を満たす部分安定化ジル
コニアセラミックスは、曲げ強度680MPa以上、破
壊靱性11MN/m3/2以上と共に高い数値を示すこと
が判る。また耐熱衝撃性△Tを450℃以上とすること
もできる。
The partially stabilized zirconia ceramics satisfying the above conditions show high values with a bending strength of 680 MPa or more and a fracture toughness of 11 MN / m 3/2 or more. Further, the thermal shock resistance ΔT can be set to 450 ° C. or more.

【0030】原料としては、ZrO2を主成分とする原
料粉末にMgO粉末を添加し、ボールミル等で粉砕・混
合して中心粒径で0.6〜1.2μmの範囲に調整した
後、成形助剤としてポリビニールアルコール、ポリエチ
レングリコール、アクリル酸エステル等の有機バインダ
ーを添加し、スプレードライヤーにて乾燥造粒すること
により所望の特性を具備した顆粒を得ることができる。
As a raw material, MgO powder is added to a raw material powder containing ZrO 2 as a main component, and the mixture is pulverized and mixed by a ball mill or the like to adjust the central particle diameter to a range of 0.6 to 1.2 μm. An organic binder such as polyvinyl alcohol, polyethylene glycol, acrylate or the like is added as an auxiliary agent, and the mixture is dried and granulated with a spray drier to obtain granules having desired characteristics.

【0031】以上の様に本発明の部分安定化ジルコニア
セラミックスは優れた材料であるが、300℃〜500
℃の温度域より体積固有抵抗が常温時に比べ低下する性
質がある。重油等を燃やして熱源とする炉では問題ない
が、ヒータなど電気を加熱源とする炉では、短絡や漏電
等の問題を起こす場合がある。
As described above, the partially stabilized zirconia ceramics of the present invention is an excellent material.
There is a property that the volume resistivity is lower than that at room temperature in the temperature range of ° C. Although there is no problem in a furnace that burns heavy oil or the like and uses it as a heat source, in a furnace such as a heater that uses electricity as a heating source, a problem such as short circuit or electric leakage may occur.

【0032】このような場合は、温度500℃時の体積
固有抵抗値が109Ω・cm以上のセラミックス、例え
ば純度99%以上のAl23またはMgAl24を主成
分とするセラミックスからなる絶縁リングを介して接続
すれば良い。
In such a case, ceramics having a volume specific resistance of 10 9 Ω · cm or more at a temperature of 500 ° C., for example, ceramics having a purity of 99% or more and containing Al 2 O 3 or MgAl 2 O 4 as a main component are used. What is necessary is just to connect via an insulating ring.

【0033】図3に一例を示すように、部分安定化ジル
コニアセラミックスからなる保護管1の外周面と、金属
管22内周面との間に、上記Al23またはMgAl2
4からなる絶縁リング24を介在させ無機接着剤で接
着させれば充分な絶縁性が確保できる。
As shown in FIG. 3, as an example, between the outer peripheral surface of the protective tube 1 made of partially stabilized zirconia ceramics and the inner peripheral surface of the metal tube 22, the above Al 2 O 3 or MgAl 2
If an insulating ring 24 made of O 4 is interposed and bonded with an inorganic adhesive, sufficient insulation can be ensured.

【0034】絶縁リング24の厚さは1mm以上10m
m以下とし、耐熱衝撃性を確保するためには3mm以下
とすることが好ましい。長さは保護管1と金属筒22と
の接触部全面積を覆うように介在させれば良い。また、
保護管1の落下防止のために絶縁リング24と同材質で
ピン23を製作し保護管1に形成した溝1aに差し込む
構造としても良い。
The thickness of the insulating ring 24 is 1 mm or more and 10 m.
m or less, and preferably 3 mm or less to ensure thermal shock resistance. The length may be interposed so as to cover the entire area of the contact portion between the protective tube 1 and the metal tube 22. Also,
In order to prevent the protection tube 1 from dropping, the pin 23 may be made of the same material as the insulating ring 24 and may be inserted into the groove 1 a formed in the protection tube 1.

【0035】[0035]

【実施例】実施例1 ゴミ焼却灰溶融炉内環境を想定し、様々なセラミックス
材料を製作し、ゴミ焼却灰との反応試験を行った。Zr
2については5重量%Y23と3重量%MgOを添加
した材料2種を製作し反応試験を実施した。
EXAMPLE 1 Assuming the environment inside a refuse incineration ash melting furnace, various ceramic materials were manufactured, and a reaction test with the refuse incineration ash was performed. Zr
As for O 2 , two kinds of materials to which 5% by weight of Y 2 O 3 and 3% by weight of MgO were added were prepared and subjected to a reaction test.

【0036】まずゴミ焼却灰として、成分がAl、C
a、Mg、Na、K、Zn、Pb、Si、Fe、Cl等
からなる灰を焼却炉より回収し、乾式加圧成形機により
直径12mm、厚さ1mmで重さ0.3gのタブレット
を作製した。
First, the incineration ash is composed of Al, C
a, Ash, consisting of Mg, Na, K, Zn, Pb, Si, Fe, Cl, etc., is collected from an incinerator, and a tablet having a diameter of 12 mm, a thickness of 1 mm and a weight of 0.3 g is produced by a dry press machine. did.

【0037】次に、表1に示す各種セラミックスで直径
30mm×10mmのタブレット試験片を乾式加圧成形
の後、1500℃以上の温度で適正雰囲気中にて焼成し
作製した。各試験片には焼却灰タブレットを入れるため
の座繰り穴(直径13mm×深さ1mm)を予め形成し
ておいた。各種セラミックスの特性値は以下の方法によ
り測定した。 ・結晶粒径;破断面のSEM写真を500倍〜1000
倍程度で撮影し、この写真からコード法を用いて測定し
た。 ・嵩比重、曲げ強度、体積固有抵抗はJIS法に基づい
て試験・測定した。 ・絶縁性;JIS試験法に準じて測定した。温度は室温
25℃と最高試験温度の500℃として、体積固有抵抗
値が109Ω・cm以上であれば○、そうでなければ×
とした。
Next, tablet test pieces having a diameter of 30 mm × 10 mm were formed from the various ceramics shown in Table 1 by dry press molding, and then fired at a temperature of 1500 ° C. or more in an appropriate atmosphere. A counterbore (diameter 13 mm × depth 1 mm) for accommodating the incinerated ash tablet was formed in advance on each test piece. The characteristic values of various ceramics were measured by the following methods.・ Crystal grain size: SEM photograph of fracture surface is 500 times to 1000 times
The photograph was taken at a magnification of about 2 times and measured from this photograph using the code method. -Bulk specific gravity, bending strength, and volume resistivity were tested and measured based on the JIS method. Insulation: Measured according to the JIS test method. The temperature is room temperature 25 ° C and the maximum test temperature is 500 ° C. If the volume resistivity value is 10 9 Ω · cm or more, ○, otherwise ×
And

【0038】反応試験は、それぞれのセラミックス試験
片の座繰り穴に灰タブレットを置き、大気中1550℃
で50時間の熱処理を加えた。
In the reaction test, an ash tablet was placed in a counterbore of each ceramic test piece, and the mixture was exposed to air at 1550 ° C.
For 50 hours.

【0039】その後、各試験片について外観を目視で観
察し、溶融あるいはクラックの有無を調べた。また、各
試験片を切断し研磨した断面について、SEM(50倍
〜200倍程度)でクラックの有無を調べ、波長分散型
EPMA分析装置で、加速電圧15kV、プローブ電流
2.0×10-7Aで、Si、Ca、Na、の各元素の検
出を行いマッピング形式で出力した後、これら元素の拡
散深さ(反応層)を調べた。
Thereafter, the appearance of each test piece was visually observed, and the presence or absence of melting or cracks was examined. The cross section of each test piece was cut and polished, and the presence or absence of cracks was examined by SEM (about 50 to 200 times), and the wavelength dispersion type EPMA analyzer was used to accelerate the voltage of 15 kV and probe current of 2.0 × 10 −7. In A, each element of Si, Ca, and Na was detected and output in a mapping format, and then the diffusion depth (reaction layer) of these elements was examined.

【0040】これらの結果は、表1に示す通りである。
なお表中において、クラック、溶融、反応層があるもの
は×、無いものは○で示した。
The results are shown in Table 1.
In the table, those with cracks, melting, and reaction layers are indicated by x, and those without cracks are indicated by o.

【0041】これらの結果から、Si34、Al23
は溶融またはクラックが発生するか、或いは反応層に問
題があり不適当であることが確認された。SiCはクラ
ック、溶融、反応層に問題ないが、絶縁性に問題があり
不適当である。
From these results, it was confirmed that Si 3 N 4 and Al 2 O 3 were unsuitable due to melting or cracking or a problem in the reaction layer. Although SiC has no problem with cracks, melting, and reaction layers, it has a problem with insulation properties and is unsuitable.

【0042】一方、Y23を添加したZrO2では、ク
ラックが発生し、灰成分との反応層が認められた。本発
明のMgOを添加したZrO2(部分安定化)では、溶
融・クラックの発生は無く、灰成分との反応層も認めら
れないため、耐熱耐食性保護管用材料として問題なく使
用できることがわかる。
On the other hand, cracks occurred in ZrO 2 to which Y 2 O 3 was added, and a reaction layer with the ash component was observed. ZrO 2 (partially stabilized) to which MgO is added according to the present invention has no melting or cracking and no reaction layer with the ash component. Thus, it can be seen that it can be used as a heat-resistant and corrosion-resistant protective tube material without any problem.

【0043】なお、MgO安定化ZrO2では500℃
以上の高温では絶縁性に問題を生じるが、絶縁性良好な
Al23等を絶縁材として介在させれば問題なく使用で
きる。
In the case of MgO-stabilized ZrO 2 , 500 ° C.
At the above-mentioned high temperature, a problem occurs in the insulating property. However, if Al 2 O 3 or the like having good insulating property is interposed as an insulating material, it can be used without any problem.

【0044】[0044]

【表1】 [Table 1]

【0045】実施例2 表2に示すように、ZrO2粉末に2.0〜4.5重量
%のMgOを添加し、ボールミル等で粉砕を行って平均
粒径1μmの粒度に調整した後、成形助剤としてポリビ
ニールアルコール等の有機バインダーを4〜8%程度添
加し、スプレードライヤーにて乾燥造粒した。次に、得
られた造粒粉末を成形圧力1t/cm2以上の圧力でプ
レス成形し、幅6mm、厚み5mm、長さ60mmの角
棒を得、これを大気炉中1660℃〜1700℃程度で
焼成した。
Example 2 As shown in Table 2, 2.0 to 4.5% by weight of MgO was added to ZrO 2 powder, and pulverized by a ball mill or the like to adjust the average particle diameter to 1 μm. About 4 to 8% of an organic binder such as polyvinyl alcohol was added as a molding aid, and dried and granulated with a spray dryer. Next, the obtained granulated powder was press-molded at a molding pressure of 1 t / cm 2 or more to obtain a square bar having a width of 6 mm, a thickness of 5 mm, and a length of 60 mm, which was placed in an atmospheric furnace at about 1660 ° C. to 1700 ° C. Was fired.

【0046】得られた焼成体を幅4mm、厚み3mmに
研磨加工し、曲げ強度、破壊靱性、見掛け比重、単斜晶
率を測定した。なお曲げ強度はJISR1601に基づ
き常温三点曲げ法にて、破壊靱性K1Cは圧痕法(I.
F.法)にて、単斜晶量はX線回折装置にて2θ=20
°〜40°の範囲を測定し、単斜晶ジルコニア、立方晶
ジルコニアのピーク強度から計算した。
The obtained fired body was polished to a width of 4 mm and a thickness of 3 mm, and the bending strength, fracture toughness, apparent specific gravity, and monoclinic ratio were measured. The flexural strength was determined by a normal temperature three-point bending method based on JISR1601, and the fracture toughness K 1C was determined by the indentation method (I.
F. Method), the monoclinic amount was 2θ = 20 with an X-ray diffractometer.
The angle was measured from the range of ° to 40 ° and calculated from the peak intensities of monoclinic zirconia and cubic zirconia.

【0047】ボイド面積率の測定は、鏡面加工を施した
試料表面のボイドを画像解析装置を用い、顕微鏡にて拡
大した300μm×300μmの面積を10ヶ所測定
し、それを平均演算して求めた。
The void area ratio was measured by measuring an area of 300 μm × 300 μm, which was obtained by magnifying the voids on the mirror-finished sample surface with a microscope using an image analyzer, and averaging the measured areas. .

【0048】耐食性は、ゴミ焼却灰との反応試験を行っ
た。まずゴミ焼却灰として、成分がAl、Ca、Mg、
Na、K、Zn、Pb、Si、Fe、Cl等からなる灰
を焼却炉より回収し、乾式加圧成形機により直径12m
m、厚さ1mmで重さ0.3gのタブレットを作製し
た。次に、表2に示す各種セラミックスで直径30mm
×10mmのタブレット試験片を乾式加圧成形の後、1
660℃〜1700℃程度の温度で適正雰囲気中にて焼
成し作製した。各試験片には焼却灰タブレットを入れる
ための座繰り穴(直径13mm×深さ1mm)を予め形
成しておいた。反応試験は、それぞれのセラミックス試
験片の座繰り穴に灰タブレットを置き、大気中1550
℃で50時間の熱処理を加えた。
For the corrosion resistance, a reaction test with incineration ash was conducted. First, as garbage incineration ash, the components are Al, Ca, Mg,
Ash made of Na, K, Zn, Pb, Si, Fe, Cl, etc. is collected from the incinerator and has a diameter of 12 m by a dry press machine.
m, a tablet having a thickness of 1 mm and a weight of 0.3 g was prepared. Next, various ceramics shown in Table 2 were used to obtain a diameter of 30 mm.
× 10mm tablet test piece, after dry pressure molding, 1
It was manufactured by firing at a temperature of about 660 ° C. to 1700 ° C. in an appropriate atmosphere. A counterbore (diameter 13 mm × depth 1 mm) for accommodating the incinerated ash tablet was formed in advance on each test piece. In the reaction test, an ash tablet was placed in the counterbore of each ceramic test piece, and 1550 in air.
A heat treatment at 50 ° C. for 50 hours was applied.

【0049】その後、各試験片について外観を目視で観
察し、溶融あるいはクラックの有無を調べた。また、各
試験片を切断し研磨した断面について、SEM(50倍
〜200倍程度)でクラックの有無を調べ、波長分散型
EPMA分析装置で、加速電圧15kV、プローブ電流
2.0×10-7Aで、Si、Ca、Na、の各元素の検
出を行いマッピング形式で出力した後、これら元素の拡
散深さ(反応層)を調べた。
Thereafter, the appearance of each test piece was visually observed, and the presence or absence of melting or cracks was examined. The cross section of each test piece was cut and polished, and the presence or absence of cracks was examined by SEM (about 50 to 200 times), and the wavelength dispersion type EPMA analyzer was used to accelerate the voltage of 15 kV and probe current of 2.0 × 10 −7. In A, each element of Si, Ca, and Na was detected and output in a mapping format, and then the diffusion depth (reaction layer) of these elements was examined.

【0050】これらの結果は、表2に示す通りである。The results are as shown in Table 2.

【0051】耐食性については、クラック、溶融、反応
層があるものは×、無いものは○で示した。
Regarding corrosion resistance, those having cracks, melting, and reaction layers were indicated by x, and those not having them were indicated by ○.

【0052】耐熱衝撃性は、焼成体を所定の温度で15
分保持した後に20℃の水中に投下し、強度劣化の見ら
れた温度差を△Tとし、△T450℃以上が得られたも
のを○、得られなかったものを×として表示した。
The thermal shock resistance of the fired body was measured at a predetermined temperature for 15 minutes.
After holding the sample for 20 minutes, the sample was dropped into water at 20 ° C., and the temperature difference at which the strength was deteriorated was indicated as ΔT.

【0053】[0053]

【表2】 [Table 2]

【0054】表2よりNo.1、2はMgO含有量が
3.0重量%よりも少ないために安定化されにくく、単
斜晶ジルコニア総量が多くなり、変態に伴う体積膨張が
大きくなりクラックが発生し、強度、靱性ともに低い値
となっている。逆にNo.6、7はMgO含有量が3.
8重量%よりも多いために安定化されすぎて単斜晶ジル
コニア量が減少し、相変態による強度強化機構が発現せ
ず、強度、靱性、耐熱衝撃性ともに低くなっている。
From Table 2, No. In Nos. 1 and 2, MgO content is less than 3.0% by weight, so that they are hardly stabilized, the total amount of monoclinic zirconia increases, volume expansion accompanying transformation increases, cracks occur, and both strength and toughness are low. Value. Conversely, No. 6 and 7 have an MgO content of 3.
Since it is more than 8% by weight, it is stabilized too much and the amount of monoclinic zirconia decreases, the strength strengthening mechanism by phase transformation does not appear, and the strength, toughness and thermal shock resistance are all low.

【0055】これらに対し、本発明実施例であるNo.
3〜5はMgO含有量が3.0〜3.8重量%で且つ単
斜晶ジルコニア総量が10〜60モル%の範囲内であ
り、曲げ強度680MPa以上、破壊靱性11MN/m
3/2以上と共に高い数値を示すことが判る。
On the other hand, in the embodiment of the present invention, No.
Nos. 3 to 5 have an MgO content of 3.0 to 3.8% by weight and a total monoclinic zirconia content of 10 to 60 mol%, a bending strength of 680 MPa or more, and a fracture toughness of 11 MN / m.
It turns out that a high numerical value is shown with 3/2 or more.

【0056】耐食性としてはMgO含有量が3.0〜
3.8重量%で、単斜晶量が60モル%より少ない場合
良好で、これより多くなると反応層がみられ保護管用材
料としては不適当である。
As for the corrosion resistance, the MgO content was 3.0 to 3.0.
It is good when the amount of monoclinic crystal is less than 60 mol% at 3.8% by weight, and when it is more than this, a reaction layer is observed and the material is unsuitable as a material for a protective tube.

【0057】従って強度、破壊靱性、耐食性を満足させ
るにはMgOの含有量は3.0〜3.8重量%の範囲に
あることが必要である。またボイド面積率は、0.8〜
2.5%が適正値である。 実施例3 本発明実施例として、表2中No.1と4の材料で製作
した保護管を実炉に組み込み、実機で比較試験を実施し
た。保護管形状は、外径30mm、内径20mm、肉厚
tが5mm、長さ500mmの図1に示す保護管1を製
作した。実機試験は、流動床ガス化溶融炉で行い、運転
温度1300℃とし、雰囲気組成はO25%、CO295
%でHCl濃度は1000ppm程度である。
Therefore, the content of MgO must be in the range of 3.0 to 3.8% by weight in order to satisfy the strength, fracture toughness and corrosion resistance. The void area ratio is 0.8 ~
2.5% is an appropriate value. Example 3 As an example of the present invention, No. 3 in Table 2 was used. The protective tubes made of the materials Nos. 1 and 4 were assembled in an actual furnace, and a comparative test was performed on an actual machine. The protective tube shape shown in FIG. 1 having an outer diameter of 30 mm, an inner diameter of 20 mm, a thickness t of 5 mm, and a length of 500 mm was manufactured. The actual test was performed in a fluidized-bed gasification and melting furnace at an operating temperature of 1300 ° C., and the atmosphere composition was O 2 5% and CO 2 95
% And the HCl concentration is about 1000 ppm.

【0058】実機試験の結果、No.1の保護管は約6
00時間で保護管にスルーホールが発生し寿命となった
のに対し、本発明のNo.4の保護管は約1200時間
の寿命を有していることが確認され、長期間使用できる
ことが実証できた。
As a result of the actual machine test, One protection tube is about 6
The through-hole was generated in the protective tube at 00 hours, and the life was shortened. It was confirmed that the protective tube of No. 4 had a life of about 1200 hours, which proved that it could be used for a long time.

【0059】[0059]

【発明の効果】以上のように本発明によれば、ZrO2
を主成分とし、安定化剤として3.0〜3.8重量%の
MgOを含み、かつ単斜晶系のジルコニア結晶を10〜
60モル%含む部分安定化ジルコニアセラミックスで耐
熱耐食性保護管を形成したことによって、優れた耐熱衝
撃性得ることができ、ゴミ焼却炉等の熱的に過酷な環境
下で500〜1000℃の温度差が生じる場合でも破損
することなく使用することができる。
As described above, according to the present invention, ZrO 2
As a main component, containing 3.0 to 3.8% by weight of MgO as a stabilizer, and monoclinic zirconia crystals of 10 to 10.
By forming the heat-resistant and corrosion-resistant protective tube with a partially stabilized zirconia ceramic containing 60 mol%, excellent thermal shock resistance can be obtained, and a temperature difference of 500 to 1000 ° C. in a thermally severe environment such as a garbage incinerator. It can be used without damage even if it occurs.

【0060】またこれを温度500℃の時の体積固有抵
抗値が109Ω・cm以上のセラミックスからなる絶縁
リングを介して接続したことにより、耐熱性、耐食性、
絶縁性及び耐熱衝撃性に優れ、長期間良好に使用するこ
とができる。
Further, by connecting this via an insulating ring made of ceramics having a volume specific resistance of 10 9 Ω · cm or more at a temperature of 500 ° C., heat resistance, corrosion resistance,
Excellent in insulation and thermal shock resistance, and can be used well for a long time.

【0061】そして、本発明の耐熱耐食性保護管は耐熱
性、耐食性、絶縁性及び耐熱衝撃性に優れ、長期間良好
に使用することができるため、廃棄物焼却炉、溶融炉や
廃棄物ガス化溶融炉及びその他焼却炉の1000℃を超
える温度領域で、雰囲気温度やスラグ温度を計測する熱
電対の保護管、あるいはその他センサーやヒータ類を保
護するための保護管として好適に使用できる。
The heat and corrosion resistant protective tube of the present invention is excellent in heat resistance, corrosion resistance, insulation and thermal shock resistance and can be used satisfactorily for a long period of time. It can be suitably used as a protective tube for a thermocouple for measuring the ambient temperature and slag temperature in a melting furnace and other incinerators in a temperature range exceeding 1000 ° C., or as a protective tube for protecting other sensors and heaters.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態であるゴミ焼却灰溶融炉用
保護管を示す断面図である。
FIG. 1 is a sectional view showing a protection tube for a refuse incineration ash melting furnace according to an embodiment of the present invention.

【図2】ゴミ焼却灰溶融炉を示す概略図である。FIG. 2 is a schematic view showing a refuse incineration ash melting furnace.

【図3】本発明の他の実施形態を示す断面図である。FIG. 3 is a cross-sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1;保護管 2;加熱用ヒーター 3;熱電対 11;焼却灰 12;溶融炉 13;金属元素 14;フィルタ 15;金属濃縮物 16;ガラス 17;スラグ(ガラス)状顆粒 22;金属筒 23;固定ピン 24;絶縁リング DESCRIPTION OF SYMBOLS 1; Protection tube 2; Heating heater 3; Thermocouple 11; Incineration ash 12; Melting furnace 13; Metal element 14; Filter 15; Metal concentrate 16; Glass 17; Slag (glass) -like granules 22; Metal cylinder 23; Fixing pin 24; insulating ring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ZrO2を主成分とし、安定化剤として
3.0〜3.8重量%のMgOを含み、かつ単斜晶系の
ジルコニア結晶を10〜60モル%含む部分安定化ジル
コニアセラミックスを管状体に形成したことを特徴とす
る耐熱耐食性保護管。
1. A The ZrO 2 as a main component, comprises 3.0 to 3.8 wt% of MgO as a stabilizer, and partially stabilized zirconia ceramics containing zirconia crystals monoclinic 10 to 60 mol% Is formed in a tubular body.
【請求項2】上記部分安定化ジルコニアセラミックスが
ボイド面積率0.8〜2.5%であることを特徴とする
請求項1記載の耐熱耐食性保護管。
2. A heat and corrosion resistant protective tube according to claim 1, wherein said partially stabilized zirconia ceramic has a void area ratio of 0.8 to 2.5%.
【請求項3】請求項1又は2記載の部分安定化ジルコニ
アセラミックスからなる管状体の外周面に、温度500
℃の時の体積固有抵抗値が109Ω・cm以上のセラミ
ックスで形成した絶縁リングを備えたことを特徴とする
耐熱耐食性保護管。
3. A tubular body made of the partially stabilized zirconia ceramic according to claim 1 or 2, which has a temperature of 500
A heat-resistant and corrosion-resistant protective tube comprising an insulating ring formed of a ceramic having a volume specific resistance at 10 ° C. of 10 9 Ω · cm or more.
JP2000027298A 2000-01-31 2000-01-31 Heat-resistant and corrosion resistant protective tube Pending JP2001220228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027298A JP2001220228A (en) 2000-01-31 2000-01-31 Heat-resistant and corrosion resistant protective tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027298A JP2001220228A (en) 2000-01-31 2000-01-31 Heat-resistant and corrosion resistant protective tube

Publications (1)

Publication Number Publication Date
JP2001220228A true JP2001220228A (en) 2001-08-14

Family

ID=18552886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027298A Pending JP2001220228A (en) 2000-01-31 2000-01-31 Heat-resistant and corrosion resistant protective tube

Country Status (1)

Country Link
JP (1) JP2001220228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2319944A1 (en) 2002-01-08 2011-05-11 Nippon Steel Corporation Method for manufacturing grain-oriented silicon steel sheets with mirror-like surface
KR101440142B1 (en) * 2013-03-27 2014-09-12 김필성 thermal decomposition apparatus with microwave

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2319944A1 (en) 2002-01-08 2011-05-11 Nippon Steel Corporation Method for manufacturing grain-oriented silicon steel sheets with mirror-like surface
KR101440142B1 (en) * 2013-03-27 2014-09-12 김필성 thermal decomposition apparatus with microwave

Similar Documents

Publication Publication Date Title
Schacht et al. Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures
JP2001220228A (en) Heat-resistant and corrosion resistant protective tube
JP3814449B2 (en) Discharge port member for melting furnace and manufacturing method thereof
JP3215016B2 (en) Protection tube for melting furnace
JP3634963B2 (en) Heat and corrosion resistant protective tube
JP3389424B2 (en) Heat and corrosion resistant protective tube
JP3485430B2 (en) Heat and corrosion resistant protective tube
JPH10103642A (en) Heat resistant corrosion resistant protective tube
JP3336213B2 (en) Heat and corrosion resistant protective tube
US6093461A (en) Heat-and corrosion-resisting protection tube
JP3389436B2 (en) Heat and corrosion resistant protective tube
JPH11190593A (en) Furnace material for high-temperature furnace
JP2000193221A (en) Heat-resistant and corrosion-resistant protecting tube
JP2001048650A (en) Heat transfer tube for heat exchanger
JP2005089267A (en) Refractory material
JP2006232653A (en) Refractory brick and waste material melting furnace
JPH11310453A (en) High-temperature heat-resistant material and furnace material for high-temperature furnace and heat-resistant protecting tube using the same
WO2003012155A1 (en) Material being resistant to chloride-containing molten salt corrosion, steel pipe for heat exchanger coated with the same, and method for production thereof
JP2003161434A (en) Combustion furnace with a furnace wall lined with corrosion resistant heat resistant cast steel
JPH11311498A (en) Heat transmitting tube for heat exchanger
JP2003287395A (en) Ceramic pipe for heat exchanger and method of manufacture
De Galan An evaluation of ceramic materials for use in non-cooled low-flow ICP torches
JPH11281048A (en) Melting furnace
JP2000233968A (en) Melting section member containing ceramic fiber
JP3548446B2 (en) Heat exchanger tubes for heat exchangers