JPH10193380A - Heat-generating molding of thermoplastic resin - Google Patents

Heat-generating molding of thermoplastic resin

Info

Publication number
JPH10193380A
JPH10193380A JP9004355A JP435597A JPH10193380A JP H10193380 A JPH10193380 A JP H10193380A JP 9004355 A JP9004355 A JP 9004355A JP 435597 A JP435597 A JP 435597A JP H10193380 A JPH10193380 A JP H10193380A
Authority
JP
Japan
Prior art keywords
resin
thermoplastic resin
graphite
carbon fiber
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9004355A
Other languages
Japanese (ja)
Other versions
JP3714751B2 (en
Inventor
Toshiro Kido
敏郎 木戸
Shinji Hasegawa
伸司 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP00435597A priority Critical patent/JP3714751B2/en
Publication of JPH10193380A publication Critical patent/JPH10193380A/en
Application granted granted Critical
Publication of JP3714751B2 publication Critical patent/JP3714751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a molding having specific volume resistivity value, thermal conductivity, high conductivity without anisotropy, uniformly heating surface, light weight and much processability by molding resin to be granulated by extrusion covering carbon fiber roving after surface treating with predetermined emulsion with graphite-added thermoplastic resin. SOLUTION: Carbon fiber roving manufactured by polyacrylonitrile as raw material is dipped in thermoplastic resin or styrene-butadiene resin emulsion compatible with thermoplastic resin, then dried, extrusion covered with thermoplastic resin such as graphite-added general polystyrene, and cut to granulate pellets. The resin containing the carbon fiber and graphite is injection molded or extrusion molded. As a result, a molding having volume resistivity value of 0.01 to 100Ωcm, thermal conductivity of 0.15kcal/m.Hr. deg.C or more, high conductivity without anisotropy, uniformly heating surface, light weight and easy processability can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は熱可塑性樹脂に導電
材料を含有した樹脂成形品で、導電性と熱伝導性にに優
れた熱可塑性樹脂成形品に関する。更に詳しくは、黒鉛
と長繊維の炭素繊維を含有した熱可塑性樹脂を用いて、
高い導電性で、しかも良熱伝導性で表面が均一に発熱す
る軽い熱可塑性樹脂発熱成形品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin molded article containing a conductive material in a thermoplastic resin and having excellent conductivity and heat conductivity. More specifically, using a thermoplastic resin containing graphite and carbon fibers of long fibers,
The present invention relates to a lightly heat-formed thermoplastic resin molded article having high conductivity, good thermal conductivity and uniform heat generation on the surface.

【0002】[0002]

【従来技術】熱可塑性樹脂はその優れた成形加工性のゆ
えに多方面に利用されてきたが、その中でもスチレン系
樹脂は電機・電子機器及びOA機器のハウジング、日用
品、玩具、自動車部品等の幅広い分野で利用されてい
る。更に近年、この様な非導電性物質である熱可塑性樹
脂に導電材料を含有させることにより導電性に優れた樹
脂組成物が得られるようになり、面状発熱体としてフロ
アーヒーター、タンク保温ヒーター等の産業用、家庭用
発熱体として広く利用され始めている。
2. Description of the Related Art Thermoplastic resins have been used in various fields because of their excellent moldability. Among them, styrene resins are widely used in housings of electric / electronic equipment and OA equipment, daily necessities, toys, automobile parts and the like. Used in the field. In recent years, resin compositions having excellent conductivity have been obtained by adding a conductive material to a thermoplastic resin which is such a non-conductive substance. Floor heaters, tank heaters, etc. have been used as planar heating elements. It has begun to be widely used as an industrial and household heating element.

【0003】然しながら、導電材料としてアルミニウ
ム、ステンレス、黄銅等の金属箔あるいは金属繊維を使
用した場合は導電性改良効果には優れるものの、均一な
導電性改良効果を付与するためには多量の金属添加が必
要であり、成形品重量が重くなる欠点がある。これに対
して、カーボンブラックは比重が小さく、重量当たりの
添加量が少なくてすむことから好んで使用されている
が、非常に微粉であるため加工性に問題があり、添加量
を多くすると成形が困難となり、しかも成形品の機械的
物性が低下する。
[0003] However, when a metal foil or a metal fiber such as aluminum, stainless steel, brass or the like is used as a conductive material, the effect of improving conductivity is excellent, but a large amount of metal is added to impart a uniform conductivity improving effect. However, there is a disadvantage that the weight of the molded product is increased. On the other hand, carbon black is used favorably because it has a low specific gravity and requires a small amount of addition per weight.However, since it is a very fine powder, there is a problem in workability. , And the mechanical properties of the molded article are reduced.

【0004】そのため、例えば、特開昭60−1845
34号公報には、ポリオレフィン系樹脂と熱可塑性エラ
ストマーからなるポリマー成分にカーボンブラックと炭
素繊維を組合わせた導電性プラスチック組成物が提案さ
れている。特開昭62−42402号公報にはカーボン
ブラックと黒鉛を併用した導電性樹脂組成物の成形品が
提案されている。又、特開昭60−202154号公報
には長繊維炭素繊維を使用する方法、特開昭63ー10
5725号公報と特開平1ー300914号公報には金
属短繊維とカーボンブラックを添加する方法が提案され
ている。又、特開平5−217711号公報には導電性
粒子と熱伝導度をアップし発熱温度ムラを少なくするため
に無機窒化物粒子又は酸化マグネシウム粒子を添加した
組成物が提案されている。
[0004] Therefore, for example, Japanese Patent Application Laid-Open No. 60-1845.
No. 34 proposes a conductive plastic composition in which carbon black and carbon fibers are combined with a polymer component composed of a polyolefin resin and a thermoplastic elastomer. JP-A-62-42402 proposes a molded article of a conductive resin composition using both carbon black and graphite. Japanese Patent Application Laid-Open No. Sho 60-202154 discloses a method using long fiber carbon fibers.
JP-A-5725 and JP-A-1-300914 propose a method of adding short metal fibers and carbon black. JP-A-5-217711 proposes a composition to which inorganic nitride particles or magnesium oxide particles are added in order to increase the thermal conductivity and the heat generation unevenness with the conductive particles.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、カーボ
ンブラックと炭素繊維を組合わせた導電性プラスチック
組成物では10Ω・mm程度の導電性を得るためには導
電材料を30wt%以上添加する必要があり、しかも成
形品の導電性に異方性が発生する。カーボンブラックと
黒鉛を併用する場合でも高い導電性を得るためには高濃
度の添加が必要であり、組成物の加工性が低下し、成形
品の機械的物性が低下する。
However, in a conductive plastic composition in which carbon black and carbon fiber are combined, it is necessary to add a conductive material of 30 wt% or more in order to obtain a conductivity of about 10 Ω · mm. Moreover, anisotropy occurs in the conductivity of the molded product. Even in the case where carbon black and graphite are used in combination, a high concentration of addition is required to obtain high conductivity, so that the processability of the composition is reduced and the mechanical properties of the molded product are reduced.

【0006】一方、長繊維炭素繊維を使用する方法では
少量添加で高い導電性を得ることができるが、導電性の
異方性がある。金属短繊維とカーボンブラックを添加す
る方法は成形品の重量が重くなるうえ、成形機のスクリ
ュウやシリンダー等を磨耗させる。更に、熱伝導度をア
ップするために無機窒化物粒子又は酸化マグネシウム粒
子を添加した組成物は導電性が大幅に低下する。本発明
は、以上のような情況に鑑みなされたものであり、導電
材料の少量添加で高い導電性があり、導電性に異方性が
無く表面が均一に発熱し、軽くて容易に加工成形できる
熱可塑性樹脂発熱成形品を提供することを目的とする。
On the other hand, in the method using long-fiber carbon fibers, high conductivity can be obtained by adding a small amount, but there is anisotropy in conductivity. The method of adding short metal fibers and carbon black increases the weight of the molded product and wears the screws and cylinders of the molding machine. Further, the composition to which inorganic nitride particles or magnesium oxide particles are added in order to increase the thermal conductivity has significantly reduced conductivity. The present invention has been made in view of the above circumstances, has high conductivity by adding a small amount of conductive material, has no anisotropy in conductivity, generates heat uniformly on the surface, and is light and easily processed. It is an object of the present invention to provide a heat-molded thermoplastic resin product.

【0007】[0007]

【課題を解決するための手段】本発明者は前記課題を解
決するために鋭意検討を重ねた結果、特定のエマルジョ
ンで表面処理した炭素繊維ロービングに黒鉛を添加した
熱可塑性樹脂で押出被覆し造粒した樹脂を成形すること
によって、導電材料の少量添加で高い導電性があり、導
電性に異方性が無く表面が均一に発熱し、軽くて容易に
加工成形できる熱可塑性樹脂発熱成形品を提供できるこ
とを見出し、本発明を完成するに至った。すなわち、本
発明は、炭素繊維ロービングを押出被覆する熱可塑性樹
脂又は該熱可塑性樹脂と相溶性のある樹脂エマルジョン
を被覆付着させ、乾燥後、黒鉛を添加した熱可塑性樹脂
で押出被覆し、造粒した炭素繊維と黒鉛を含有する熱可
塑性樹脂を射出成形又は押出成形し、体積固有抵抗値が
0.01〜100Ω・cmで熱伝導度が0.15Kca
l/m・Hr・℃以上の熱可塑性樹脂発熱成形品に関す
る。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that a carbon fiber roving surface-treated with a specific emulsion is extrusion-coated with a thermoplastic resin to which graphite is added. By molding a granular resin, a thermoplastic resin extruded product that has high conductivity with a small amount of conductive material added, has no anisotropy in conductivity, generates heat uniformly on the surface, and is light and easy to process and mold. They have found that they can be provided, and have completed the present invention. That is, the present invention provides a method for extruding and coating a carbon fiber roving with a thermoplastic resin or a resin emulsion compatible with the thermoplastic resin, drying, extruding with a thermoplastic resin to which graphite is added, and granulating. Injection molding or extrusion molding of a thermoplastic resin containing carbon fiber and graphite, having a volume resistivity of 0.01 to 100 Ω · cm and a thermal conductivity of 0.15 Kca.
The present invention relates to an exothermic molded article of a thermoplastic resin having a temperature of 1 / m · Hr · ° C or more.

【0008】ここでいう熱可塑性樹脂については特に制
限はなく、従来成形材料として使用されているものから
任意のものを選択して使用することができる。熱可塑性
樹脂としては、例えばスチレン系樹脂、ポリフェニレン
エーテル系樹脂、ポリオレフィン系樹脂、ポリ塩化ビニ
ル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポ
リアセタール系樹脂、アクリル系樹脂等が挙げられる。
The thermoplastic resin used herein is not particularly limited, and any one can be selected from those conventionally used as molding materials. Examples of the thermoplastic resin include a styrene resin, a polyphenylene ether resin, a polyolefin resin, a polyvinyl chloride resin, a polyamide resin, a polyester resin, a polyacetal resin, and an acrylic resin.

【0009】スチレン系樹脂としては、例えばスチレ
ン、α−メチルスチレン等の単独重合体又はこれらの共
重合体、あるいはこれらと共重合可能な不飽和単量体と
の共重合体が挙げられる。具体的には、一般用ポリスチ
レン(GPPS)、耐衝撃性ポリスチレン(HIP
S)、耐熱性ポリスチレン(α−メチルスチレン重合
体)、アクリロニトリル−ブタジエン−スチレン共重合
体(ABS)、アクリロニトリル−ブタジエン−スチレ
ン−α−メチルスチレン共重合体(α−メチルスチレン
系耐熱ABS)、アクリロニトリル−ブタジエン−スチ
レン−フェニルマレイミド共重合体(フェニルマレイミ
ド系耐熱ABS)、アクリロニトリル−スチレン共重合
体(AS)、アクリロニトリル−塩素化ポリエチレン−
スチレン共重合体(ACS)、アクリロニトリル−エチ
レンプロピレンゴム−スチレン共重合体(AES)、ア
クリルゴム−アクリロニトリル−スチレン共重合体(A
AS)等が挙げられる。又、ポリマーブレンドで作るこ
とも可能である。
Examples of the styrene-based resin include homopolymers such as styrene and α-methylstyrene, copolymers thereof, and copolymers thereof with unsaturated monomers copolymerizable therewith. Specifically, general-purpose polystyrene (GPPS), impact-resistant polystyrene (HIP)
S), heat-resistant polystyrene (α-methylstyrene polymer), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-butadiene-styrene-α-methylstyrene copolymer (α-methylstyrene-based heat-resistant ABS), Acrylonitrile-butadiene-styrene-phenylmaleimide copolymer (phenylmaleimide-based heat-resistant ABS), acrylonitrile-styrene copolymer (AS), acrylonitrile-chlorinated polyethylene-
Styrene copolymer (ACS), acrylonitrile-ethylene propylene rubber-styrene copolymer (AES), acrylic rubber-acrylonitrile-styrene copolymer (A
AS) and the like. It can also be made of a polymer blend.

【0010】ポリフェニレンエーテル系樹脂(PPE)
としては、例えばポリ(2,6−ジメチル−1,4フェ
ニレン)エーテル、ポリ(2−メチル−6−エチル1,
4−フェニレン)エーテル、等のホモポリマーが挙げら
れ、これをスチレン系樹脂で変性したものを用いる事が
出来る。ポリオレフィン系樹脂としては、代表的にはエ
チレン、プロピレン、ブテン−1、3−メチルブテン−
1、3−メチルペンテン−1、4−メチルペンテン−1
等のα−オレフィンの単独重合体又はこれらの共重合
体、あるいはこれらと他の共重合可能な不飽和単量体と
の共重合体等が挙げられる。代表例としては、高密度、
中密度、低密度ポリエチレン、直鎖状低密度ポリエチレ
ン、超高分子量ポリエチレン、エチレン−酢酸ビニル共
重合体、エチレン−アクリル酸エチル共重合体等のポリ
エチレン類、アタクチック、シンジオタクチック、アイ
ソタクチックポリプロピレンや、プロピレンーエチレン
ブロック共重合体又はランダム共重合体等のポリプロピ
レン類、ポリ4−メチルペンテンー1等を挙げることが
できる。
[0010] Polyphenylene ether resin (PPE)
Are, for example, poly (2,6-dimethyl-1,4phenylene) ether, poly (2-methyl-6-ethyl1,
Homopolymers such as 4-phenylene) ether and the like can be used, and those obtained by modifying this with a styrene resin can be used. Typical polyolefin resins include ethylene, propylene, butene-1,3-methylbutene-
1,3-methylpentene-1,4-methylpentene-1
And the like, or a copolymer of these with another copolymerizable unsaturated monomer, or the like. Typical examples are high density,
Medium density, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, polyethylene such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, atactic, syndiotactic, isotactic polypropylene And polypropylenes such as a propylene-ethylene block copolymer or a random copolymer, and poly-4-methylpentene-1 and the like.

【0011】ポリ塩化ビニル系樹脂としては、例えば塩
化ビニル単独重合体や塩化ビニルと共重合可能な不飽和
単量体との共重合体等が挙げられる。具体的には、塩化
ビニル−アクリル酸エステル共重合体、塩化ビニル−メ
タクリル酸エステル共重合体、塩化ビニル−エチレン共
重合体、塩化ビニル−プロピレン共重合体、塩化ビニル
−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共
重合体等が挙げられる。更に、これらのポリ塩化ビニル
系樹脂を塩素化して塩素含有量を高めたものも使用でき
る。
Examples of the polyvinyl chloride resin include a vinyl chloride homopolymer and a copolymer of vinyl chloride with an unsaturated monomer copolymerizable with vinyl chloride. Specifically, vinyl chloride-acrylate copolymer, vinyl chloride-methacrylate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-vinyl acetate copolymer, And vinyl chloride-vinylidene chloride copolymer. Further, those obtained by chlorinating these polyvinyl chloride resins to increase the chlorine content can also be used.

【0012】ポリアミド系樹脂(PA)としては、例え
ば6−ナイロンや12−ナイロン等の環状脂肪族ラクタ
ムを開環重合したもの、6・6−ナイロン、6・10−
ナイロン、6・12−ナイロン等の脂肪族ジアミンと脂
肪族ジカルボン酸とを縮重合させたもの、11−ナイロ
ン等のアミン酸を縮重合させたものなどを挙げることが
できる。
Examples of the polyamide resin (PA) include those obtained by ring-opening polymerization of a cyclic aliphatic lactam such as 6-nylon or 12-nylon, 6.6-nylon, or 6-10-nylon.
Examples thereof include those obtained by polycondensation of an aliphatic diamine and an aliphatic dicarboxylic acid such as nylon and 6,12-nylon, and those obtained by polycondensation of an amine acid such as 11-nylon.

【0013】ポリエステル系樹脂としては、芳香族ジカ
ルボン酸とアルキレングリコールとを縮重合させたもの
が挙げられる。具体例としてはポリエチレンテレフタレ
ートやポリブチレンテレフタレート等が挙げられる。ポ
リアセタール系樹脂(POM)としては、例えば単独重
合体のポリオキシメチレン又はトリオキサンとエチレン
オキシドから得られるホルムアルデヒド−エチレンオキ
シド共重合体等が挙げられる。
Examples of the polyester resin include those obtained by condensation polymerization of an aromatic dicarboxylic acid and an alkylene glycol. Specific examples include polyethylene terephthalate and polybutylene terephthalate. Examples of the polyacetal-based resin (POM) include a polyoxymethylene homopolymer or a formaldehyde-ethylene oxide copolymer obtained from trioxane and ethylene oxide.

【0014】ポリカーボネート系樹脂としては、4・
4’−ジヒドロキシジアリールアルカン系ポリカーボネ
ートが挙げられる。具体的にはビスフェノールA系ポリ
カーボネート、変性ビスフェノールA系ポリカーボネー
ト、難燃化ビスフェノールA系ポリカーボネート等を用
いることができる。アクリル系樹脂としては、例えばメ
タクリル酸エステル重合体やアクリル酸エステル重合体
等が挙げられ、これらの単量体としては、メタクリル酸
又はアクリル酸のメチル、エチル、n−プロピル、イソ
プロピル、ブチルエステル等が用いられ、代表的にはメ
チルメタクリレート樹脂(PMMA)が挙げられる。
[0014] As the polycarbonate resin,
4'-dihydroxydiarylalkane-based polycarbonate is exemplified. Specifically, bisphenol A-based polycarbonate, modified bisphenol A-based polycarbonate, flame-retarded bisphenol A-based polycarbonate and the like can be used. Examples of the acrylic resin include methacrylic acid ester polymers and acrylic acid ester polymers. Examples of these monomers include methyl, ethyl, n-propyl, isopropyl, and butyl esters of methacrylic acid or acrylic acid. And a typical example is methyl methacrylate resin (PMMA).

【0015】これらの熱可塑性樹脂の中で、スチレン系
樹脂、PPE、ポリエチレン(PE)、ポリプロピレン
(PP)、PA、POM、PMMAが好適であり、更に
は、スチレン系樹脂とPPE即ち、GPPS、HIP
S、ABS、α−メチルスチレン系耐熱ABS、フェニ
ルマレイミド系耐熱ABS、AES,AAS、ASとP
PEが最も好ましい。又、これらの熱可塑性樹脂を単独
で用いても良く、2種以上を組み合わせて用いてもよ
い。
[0015] Among these thermoplastic resins, styrene resin, PPE, polyethylene (PE), polypropylene (PP), PA, POM, and PMMA are preferable. Further, styrene resin and PPE, that is, GPPS, HIP
S, ABS, α-methylstyrene heat-resistant ABS, phenylmaleimide heat-resistant ABS, AES, AAS, AS and P
PE is most preferred. These thermoplastic resins may be used alone or in combination of two or more.

【0016】本発明の組成物を構成する成分としての炭
素繊維ロービングは特に限定されるものでなく、ポリア
クリルニトリル、ピッチ等を原料として製造されたもの
を使用することができる。単繊維径としては熱可塑性樹
脂中での分散性又は毛玉の発生から2ミクロン以上であ
ることが好ましく,成形品中での繊維長を長く保持する
ために10ミクロン以下の径のものが好ましい。添加量
に関しては体積固有抵抗値と熱伝導度の点から1〜20
wt%、好ましくは3〜15wt%である。
The carbon fiber roving as a component constituting the composition of the present invention is not particularly limited, and those produced from polyacrylonitrile, pitch or the like can be used. The single fiber diameter is preferably 2 μm or more from the viewpoint of dispersibility in a thermoplastic resin or the generation of pills, and the diameter is preferably 10 μm or less to maintain a long fiber length in a molded product. . The amount of addition is 1 to 20 from the viewpoint of volume resistivity and thermal conductivity.
wt%, preferably 3 to 15 wt%.

【0017】熱可塑性樹脂又は熱可塑性樹脂と相溶性の
ある樹脂のエマルジョンとは、熱可塑性樹脂がポリスチ
レン、変性ポリフェニレンエーテル樹脂の場合は、スチ
レン−ブタジエン樹脂エマルジョン(SBラテック
ス)、水素添加スチレン−ブタジエン樹脂エマルジョン
等である。熱可塑性樹脂がAS、ABS、PMMA、P
ET、PC樹脂の場合は、スチレン−アクリル酸コポリ
マー及びスチレン−メチルメタクリレートコポリマー等
のアクリル系エマルジョン等である。熱可塑性樹脂がポ
リオレフィン樹脂、またはポリアセタール樹脂の場合
は、酢酸ビニル、エチレン−酢酸ビニルコポリマー、エ
チレン−メタクリル酸コポリマー及び部分金属塩のエマ
ルジョン等である。熱可塑性樹脂がポリアミド樹脂の場
合はウレタン系のエマルジョンである。
The thermoplastic resin or an emulsion of a resin compatible with the thermoplastic resin is a styrene-butadiene resin emulsion (SB latex) when the thermoplastic resin is a polystyrene or a modified polyphenylene ether resin, and a hydrogenated styrene-butadiene. It is a resin emulsion or the like. Thermoplastic resin is AS, ABS, PMMA, P
In the case of an ET or PC resin, an acrylic emulsion such as a styrene-acrylic acid copolymer and a styrene-methyl methacrylate copolymer is used. When the thermoplastic resin is a polyolefin resin or a polyacetal resin, examples thereof include an emulsion of vinyl acetate, an ethylene-vinyl acetate copolymer, an ethylene-methacrylic acid copolymer, and a partial metal salt. When the thermoplastic resin is a polyamide resin, it is a urethane emulsion.

【0018】該エマルジョンの固形濃度(主として樹
脂)は一般に市販されている30〜70%の範囲の物で
よく、特別なエマルジョンを用いる必要はない。エマル
ジョンで炭素繊維ロービングを表面処理するには、ま
ず、炭素繊維の表面にエマルジョンを付着する方法とし
て、炭素繊維にエマルジョンを噴霧するスプレー法、エ
マルジョン溶液に炭素繊維を浸漬する浸漬法等が採用で
き、必要によっては過剰に付着したエマルジョンを適当
な方法を用いて適切に絞る事も可能である。次に、炭素
繊維の良好な分散を得るために、エマルジョンが付着し
た繊維は樹脂が変質しない程度の温度で乾燥することが
必要である。樹脂が非晶性樹脂の場合、樹脂のガラス転
移温度+20℃以下で、また樹脂が結晶性樹脂の場合、
樹脂の融点+20℃以下の温度で乾燥することが好まし
い。
The solid concentration (mainly resin) of the emulsion may be in the range of 30 to 70% which is generally commercially available, and it is not necessary to use a special emulsion. In order to surface-treat the carbon fiber roving with the emulsion, first, as a method of attaching the emulsion to the surface of the carbon fiber, a spray method of spraying the emulsion on the carbon fiber, a dipping method of dipping the carbon fiber in the emulsion solution, and the like can be adopted. If necessary, the excessively adhered emulsion can be appropriately squeezed using an appropriate method. Next, in order to obtain a good dispersion of the carbon fibers, it is necessary to dry the fibers to which the emulsion is attached at a temperature at which the resin does not deteriorate. When the resin is an amorphous resin, the glass transition temperature of the resin is + 20 ° C. or lower, and when the resin is a crystalline resin,
It is preferable to dry at a temperature not higher than the melting point of the resin plus 20 ° C.

【0019】繊維表面を被覆する樹脂量は、熱可塑性樹
脂との相溶性の点からは乾燥基準で0.5wt%以上、
作業性、経済性の点からは50wt%以下が好ましく、
さらに好ましくは5〜20wt%である。黒鉛として
は、天然産を精製・微粉砕して得た天然黒鉛及び石油コ
ークス等を原料として2000℃以上の温度で黒鉛化し
た人造黒鉛等が使用できる。特に好ましいのは、熱可塑
性樹脂中で分散性が良く、又機械的強度の優れた平均粒
子径10ミクロン以下の微粉黒鉛が好ましい。最も好適
には、黒鉛を硫酸、硝酸、塩素酸等の強酸化剤に浸漬し
層間化合物を形成し、水洗後に500℃以上で発泡させ
た膨張黒鉛を粉砕したものが好ましい。添加量としては
特に制限は無いが、導電性の異方性を無くする程度で良
く、0.1〜10wt%が好ましい。
From the viewpoint of compatibility with the thermoplastic resin, the amount of resin coating the fiber surface is 0.5% by weight or more on a dry basis.
From the viewpoint of workability and economy, 50 wt% or less is preferable,
More preferably, it is 5 to 20 wt%. As the graphite, natural graphite obtained by purifying and finely pulverizing natural products and artificial graphite which is graphitized at a temperature of 2000 ° C. or more from petroleum coke or the like can be used. Particularly preferred is fine graphite having an average particle diameter of 10 μm or less, which has good dispersibility in a thermoplastic resin and excellent mechanical strength. Most preferably, graphite is immersed in a strong oxidizing agent such as sulfuric acid, nitric acid, chloric acid or the like to form an intercalation compound, and the expanded graphite which is foamed at 500 ° C. or higher after water washing is pulverized. Although there is no particular limitation on the amount of addition, it is sufficient that the anisotropy of conductivity is eliminated, and 0.1 to 10% by weight is preferable.

【0020】炭素繊維ロービングをエマルジョンで表面
処理し、熱可塑性樹脂で押出被覆し、造粒する場合のペ
レットの長さは導電性を保つ観点からは1.5mm以上で
あることが好ましく,一方ホッパー等でのブリッジ発生
による成形性低下防止の観点は15mm以下であること
が好ましい。さらに好ましくは、3〜8mmである。
又、本発明の熱可塑性樹脂には、熱安定剤、紫外線吸収
剤、光安定剤、酸化防止剤、可塑剤、離型剤、滑剤、難
燃剤、着色剤等を添加することも可能であり、体積固有
抵抗値、熱伝導度を調整するために他の導電材料、良熱
伝導材料を添加することもできる。
The carbon fiber roving is surface-treated with an emulsion, extruded with a thermoplastic resin, and granulated. The pellet length is preferably 1.5 mm or more from the viewpoint of maintaining conductivity. From the viewpoint of preventing a reduction in formability due to the occurrence of bridges in the above-described method, the thickness is preferably 15 mm or less. More preferably, it is 3 to 8 mm.
Further, it is also possible to add a heat stabilizer, an ultraviolet absorber, a light stabilizer, an antioxidant, a plasticizer, a release agent, a lubricant, a flame retardant, a colorant, etc. to the thermoplastic resin of the present invention. Other conductive materials and good heat conductive materials can be added to adjust the volume resistivity and the thermal conductivity.

【0021】本発明の成形品を得る成形方法は一般に用
いられる成形方法、例えば、押出成形、射出成形、ブロ
ー成形等を用いることができる。又、炭素繊維と黒鉛を
高濃度含有したマスターバッチペレットと熱可塑性樹脂
ペレットを混合して本発明の成形品を得ることもでき
る。
As a molding method for obtaining the molded article of the present invention, a commonly used molding method, for example, extrusion molding, injection molding, blow molding and the like can be used. The molded article of the present invention can also be obtained by mixing a masterbatch pellet containing a high concentration of carbon fiber and graphite with a thermoplastic resin pellet.

【0022】[0022]

【発明の実施の形態】以下、本発明を実施例により更に
詳細に説明する。なお、実施例、比較例において使用し
た材料と成形装置は下記に示す通りである。 <成形品外観評価装置> 射出成形機−1:IS55EPN 東芝機械(株)製 射出成形機−2:IP1050 小松製作所(株)製 <熱可塑性樹脂> HIPS:スタイロン<登録商標> EXG11 旭化成工業(株)製 PMMA:デルペット<登録商標> 80N 同上 AS :スタイラック<登録商標> AS783 同上 ABS :スタイラック<登録商標> ABS100 同上 PPE :ザイロン<登録商標> 100Z 同上 PE :サンテック<登録商標> HD<登録商標> J340 同上 POM :テナック<登録商標>−C4510 同上 PA :レオナ<登録商標> 1300S 同上 <エマルジョン材料> SBエマルジョン:スチレン−ブタジエン樹脂ラテックス(固形分=40wt% ) AS 〃 :アクリロニトリル−スチレン共重合体樹脂ラテックス(AN =25%、固形分=50wt%) EVA 〃 :エチレン−酢酸ビニルコポリマー樹脂ラテックス(酢酸ビニ ル=20%、固形分=50wt%) ウレタン 〃 :ウレタン樹脂ラテックス(固形分=40wt%) <導電材料> 炭素繊維ロービング(CF−R) :HTA−W12K 東邦レーヨン(株)製 黒鉛 :ACP−1000 日本黒鉛工業(株)製 膨張黒鉛(B−G) :KEX 日本黒鉛工業(株)製 チョップド炭素繊維(C−CF):A6000 三菱レーヨン(株)製 カーボンブラック(CB):ECX ライオンアクゾ(株)製 <測定・評価方法> (1)熱伝導度の測定 射出成形機−1を用いて、シリンダー温度を各々の熱可
塑性樹脂に適した成形温度に設定し、乾燥が必要な樹脂
は乾燥ペレットを通常の成形サイクルに従い、プレート
(幅50mm×長90mm×厚2.5mm)を成形す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. The materials and molding equipment used in Examples and Comparative Examples are as shown below. <Molded product appearance evaluation device> Injection molding machine-1: IS55EPN Toshiba Machine Co., Ltd. Injection molding machine-2: IP1050 Komatsu Ltd. <Thermoplastic resin> HIPS: Styron <Registered trademark> EXG11 Asahi Chemical Industry Co., Ltd. PMMA: Delpet <registered trademark> 80N Same as above AS: Styrac <registered trademark> AS783 Same as above ABS: Stylac <registered trademark> ABS100 Same as above PPE: Zylon <registered trademark> 100Z Same as above PE: Suntech <registered trademark> HD < Registered trademark> J340 Same as above POM: Tenac <Registered trademark> -C4510 Same as above PA: Leona <Registered trademark> 1300S Same as above <Emulsion material> SB emulsion: Styrene-butadiene resin latex (solid content = 40 wt%) AS 〃: Acrylonitrile-styrene Polymer Fat latex (AN = 25%, solid content = 50 wt%) EVA〃: Ethylene-vinyl acetate copolymer resin latex (vinyl acetate = 20%, solid content = 50 wt%) Urethane〃: Urethane resin latex (solid content = 40 wt%) <Conductive material> Carbon fiber roving (CF-R): HTA-W12K Graphite manufactured by Toho Rayon Co., Ltd .: ACP-1000 Expanded graphite (BG) manufactured by Nippon Graphite Industry Co., Ltd .: KEX Nippon Graphite Industry Co., Ltd. Chopped carbon fiber (C-CF): A6000 Carbon black (CB) manufactured by Mitsubishi Rayon Co., Ltd .: ECX manufactured by Lion Akzo Co., Ltd. <Measurement and evaluation method> (1) Measurement of thermal conductivity Injection molding machine-1 Set the cylinder temperature to a molding temperature suitable for each thermoplastic resin, and for resins that require drying, dry According cycles, forming a plate (width 50 mm × length 90 mm × thickness 2.5 mm).

【0023】このプレートを加熱源と冷却源に密着して
いる2本の太い銅棒に挟み銅棒の温度傾斜とプレートの
温度傾斜を測定して熱伝導度を算出する温度傾斜法で測
定する。 (2)体積固有抵抗の測定 前記プレートの長さ方向(成形時の樹脂の流れ方向)の
両端に銀ペーストを全面塗布し、乾燥後に、テスターで
抵抗値(RL)を測定し、R1=RL×AL/L(A
L:断面積、L:長さ)から体積固有抵抗値R1を計算
する。 (3)体積固有抵抗の異方性の測定 前記プレートの幅方向(成形時の樹脂の流れと垂直方
向)の両端に銀ペーストを全面塗布し、乾燥後に、テス
ターで抵抗値(RW)を測定し、R2=RW×AW/W
(AW:断面積、W:幅)から計算した体積抵抗値R2
と前記樹脂の流れ方向の体積固有抵抗値R1の比(R2
/R1)を算出する。 (4)炭素繊維の毛玉の評価 射出成形機−1を用いて、成形温度、乾燥に関しては前
記と同様にし、評価を容易にするために樹脂100重量
部に対して二酸化チタンを1重量部添加してグレー色に
着色されたペレットにてプレートを成形し、炭素繊維の
毛玉発生の有無を目視で判断し、(発生無し)を○、
(少々発生)を△、(多数発生有り)を、×とした。
This plate is sandwiched between two thick copper rods which are in close contact with a heating source and a cooling source, and the temperature gradient of the copper rod and the temperature gradient of the plate are measured to measure the thermal conductivity by the temperature gradient method. . (2) Measurement of Volume Specific Resistance Silver paste is applied to both sides of the plate in the length direction (the flow direction of the resin during molding), and after drying, the resistance value (RL) is measured with a tester, and R1 = RL. × AL / L (A
L: cross-sectional area, L: length) is used to calculate the volume resistivity R1. (3) Measurement of anisotropy of volume resistivity A silver paste is applied to both sides of the plate in the width direction (perpendicular to the flow of resin during molding), and after drying, the resistance value (RW) is measured with a tester. And R2 = RW × AW / W
(AW: sectional area, W: width) Volume resistance value R2 calculated from
And the ratio of the volume specific resistance R1 in the flow direction of the resin (R2
/ R1) is calculated. (4) Evaluation of pills of carbon fiber Using an injection molding machine-1, the molding temperature and drying were the same as described above, and 1 part by weight of titanium dioxide was added to 100 parts by weight of resin to facilitate evaluation. A plate is formed from the pellets added and colored in gray, and the presence or absence of pills on the carbon fiber is visually determined.
(Slight occurrence) was indicated by Δ, and (Many occurrences) was indicated by ×.

【0024】(5)発熱温度ムラの測定 射出成形機−2を用いて、成形温度、乾燥に関しては前
記と同様にし、帯状プレート(幅25mm×長550m
m×厚2.5mm)を成形する。このプレートの両端に
銀ペーストを塗布後乾燥させ、電極とする。これにスラ
イダックで40Wの電力を通電させ50mm間隔で合計
10箇所の表面温度を測定する。
(5) Measurement of heat generation temperature unevenness Using an injection molding machine-2, the molding temperature and drying were the same as described above, and a strip-shaped plate (width 25 mm × length 550 m) was used.
m × 2.5 mm thick). A silver paste is applied to both ends of the plate and dried to form electrodes. A power of 40 W is applied to this with a sliderac, and a total of 10 surface temperatures are measured at 50 mm intervals.

【0025】[0025]

【比較例1〜4、実施例1〜11】下記表1に示す通
り,熱可塑性樹脂、エマルジョン、導電材料の組合わせ
と組成で各々のサイズのペレットを作成した。ペレット
の作成の方法としては、比較例2、3及び4はABSと
添加剤をタンブラーで混合し、2軸押出機で押出し2.
7mmのペレットに切断した。比較例2、3及び4以外
は炭素繊維ロービング(CF−R)を各々のエマルジョ
ンに浸漬後乾燥し、それぞれの熱可塑性樹脂を押出被覆
し、5.5mmに切断した。
Comparative Examples 1 to 4 and Examples 1 to 11 As shown in Table 1 below, pellets of each size were prepared with combinations and compositions of thermoplastic resins, emulsions, and conductive materials. As a method for preparing pellets, in Comparative Examples 2, 3 and 4, ABS and an additive were mixed with a tumbler and extruded with a twin screw extruder.
It was cut into 7 mm pellets. Except for Comparative Examples 2, 3 and 4, carbon fiber rovings (CF-R) were immersed in the respective emulsions, dried, extruded with the respective thermoplastic resins, and cut into 5.5 mm.

【0026】次に、得られたペレットで、乾燥の必要な
樹脂は乾燥し、各々の評価方法に従って成形し、評価し
た結果を表1に示している。表1の実施例1〜4では熱
伝導度が0.2Kcal/m・Hr・℃以上、体積抵抗
値R1が14Ω・mm以下、異方性(R2/R1)が
1.4以下で炭素繊維の毛玉の発生もほとんど無く発熱
温度の温度ムラが±5℃以内の成形品が得られることが
わかる。比較例1と実施例3を比較するとCFーRを高
濃度に含有させると毛玉の発生が多くなり、黒鉛を添加
することによって異方性が改善され発熱温度ムラが小さく
なることが言える。比較例2、3と実施例3を比較する
ことによって、炭素繊維が同じ添加量でも本発明の長繊
維では熱伝導度と体積固有抵抗値が大幅にアップし異方
性が少なく、しかも発熱温度ムラが小さくなることが言
える。又、比較例4と実施例4から本発明は導電材料の
少量添加で大幅に熱伝導度と体積固有抵抗値がアップし
た成型品が得られ、発熱温度ムラを改善できることが言
える。又、実施例5〜11に示す如く、ABS以外の樹
脂、HIPS、PMMA、AS、PPE、PE、PO
M、PAに関しても同様な効果が得られることがいえ
る。
Next, in the obtained pellets, the resin that needs to be dried is dried, molded according to each evaluation method, and the evaluation results are shown in Table 1. In Examples 1 to 4 in Table 1, the carbon fiber has a thermal conductivity of 0.2 Kcal / m · Hr · ° C. or more, a volume resistance value R1 of 14 Ω · mm or less, an anisotropy (R2 / R1) of 1.4 or less. It can be seen that a molded product having a temperature variation of the exothermic temperature within ± 5 ° C. with almost no generation of pills can be obtained. Comparing Comparative Example 1 with Example 3, it can be said that when CF-R is contained in a high concentration, pills are generated more frequently, and by adding graphite, the anisotropy is improved and the heat generation temperature unevenness is reduced. By comparing Comparative Examples 2 and 3 with Example 3, the long fiber of the present invention has significantly increased thermal conductivity and volume resistivity, low anisotropy, and low exothermic temperature even with the same amount of carbon fiber added. It can be said that unevenness is reduced. Also, from Comparative Example 4 and Example 4, it can be said that the present invention can provide a molded article having significantly increased thermal conductivity and volume specific resistance value by adding a small amount of a conductive material, and can improve heat generation temperature unevenness. Further, as shown in Examples 5 to 11, resins other than ABS, HIPS, PMMA, AS, PPE, PE, PO
It can be said that similar effects can be obtained for M and PA.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上本発明により、導電材料の少量添加
で高い導電性があり、導電性に異方性が無く表面が均一
に発熱し、軽くて容易に加工成形できる熱可塑性樹脂発
熱成形品を製造することができる。従って、体積固有抵
抗値が0.01〜100Ω・mmで熱伝導度が0.15
Kcal/m・Hr・℃以上、比重2以下の熱可塑性樹
脂発熱成形品が得られる効果がある。
As described above, according to the present invention, a molded article made of a thermoplastic resin which has high conductivity by adding a small amount of a conductive material, does not have anisotropy in conductivity, generates heat uniformly on the surface, and is light and can be easily processed. Can be manufactured. Therefore, the volume resistivity is 0.01 to 100 Ω · mm and the thermal conductivity is 0.15
There is an effect that a thermoplastic resin exothermic molded product having a Kcal / m · Hr · ° C. or more and a specific gravity of 2 or less can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維ロービングに押出被覆する熱可
塑性樹脂又は該熱可塑性樹脂と相溶性のある樹脂エマル
ジョンを予め被覆付着させ、乾燥後、黒鉛を添加した熱
可塑性樹脂で押出被覆し、造粒した炭素繊維と黒鉛を含
有する熱可塑性樹脂を射出成形又は押出成形し、体積固
有抵抗値が0.01〜100Ω・cmで熱伝導度が0.
15Kcal/m・Hr・℃以上の熱可塑性樹脂発熱成
形品。
1. A carbon fiber roving is coated in advance with a thermoplastic resin or a resin emulsion compatible with the thermoplastic resin to be extrusion-coated, dried, and extruded with a thermoplastic resin to which graphite is added, and granulated. Injection molding or extrusion molding of the thermoplastic resin containing the carbon fiber and graphite thus obtained has a volume resistivity of 0.01 to 100 Ω · cm and a heat conductivity of 0.1 to 100 Ω · cm.
Exothermic molded product of thermoplastic resin of 15 Kcal / m · Hr · ° C or higher.
【請求項2】 炭素繊維を1〜20wt%と黒鉛を0.
1〜10wt%含有していることを特徴とする請求項1
記載の熱可塑性樹脂発熱成形品。
2. Carbon fiber of 1 to 20% by weight and graphite of 0.1 to 0.2% by weight.
2. The composition according to claim 1, wherein the content is 1 to 10 wt%.
An exothermic molded article of the thermoplastic resin described.
【請求項3】 熱可塑性樹脂がスチレン系樹脂又はポリ
フェニレンエーテル系樹脂からなることを特徴とする請
求項1及び2記載の熱可塑性樹脂発熱成形品。
3. The heat-molded thermoplastic resin article according to claim 1, wherein the thermoplastic resin comprises a styrene resin or a polyphenylene ether resin.
JP00435597A 1997-01-14 1997-01-14 Thermoplastic resin exothermic molded product Expired - Lifetime JP3714751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00435597A JP3714751B2 (en) 1997-01-14 1997-01-14 Thermoplastic resin exothermic molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00435597A JP3714751B2 (en) 1997-01-14 1997-01-14 Thermoplastic resin exothermic molded product

Publications (2)

Publication Number Publication Date
JPH10193380A true JPH10193380A (en) 1998-07-28
JP3714751B2 JP3714751B2 (en) 2005-11-09

Family

ID=11582105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00435597A Expired - Lifetime JP3714751B2 (en) 1997-01-14 1997-01-14 Thermoplastic resin exothermic molded product

Country Status (1)

Country Link
JP (1) JP3714751B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202154A (en) * 1984-03-27 1985-10-12 Asahi Chem Ind Co Ltd Injection-molded thermoplastic resin product
JPS62131033A (en) * 1985-12-03 1987-06-13 Asahi Chem Ind Co Ltd Thermoplastic resin molding
JPH01124988A (en) * 1987-11-09 1989-05-17 Hosokawa Seisakusho:Kk Formation of planar heater
JPH01300914A (en) * 1988-05-30 1989-12-05 Aisin Seiki Co Ltd Surface heating type stool seat
JPH0517593A (en) * 1991-07-11 1993-01-26 Asahi Chem Ind Co Ltd Heat-conductive molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202154A (en) * 1984-03-27 1985-10-12 Asahi Chem Ind Co Ltd Injection-molded thermoplastic resin product
JPS62131033A (en) * 1985-12-03 1987-06-13 Asahi Chem Ind Co Ltd Thermoplastic resin molding
JPH01124988A (en) * 1987-11-09 1989-05-17 Hosokawa Seisakusho:Kk Formation of planar heater
JPH01300914A (en) * 1988-05-30 1989-12-05 Aisin Seiki Co Ltd Surface heating type stool seat
JPH0517593A (en) * 1991-07-11 1993-01-26 Asahi Chem Ind Co Ltd Heat-conductive molded article

Also Published As

Publication number Publication date
JP3714751B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
CN101407637B (en) Fiber reinforced composite material and preparation thereof
US4713283A (en) Reinforced composite structures
MXPA06010483A (en) Method for preparing long glass fiber-reinforced composition and fabricated articles therefrom.
JPH0238109B2 (en)
US20200131419A1 (en) Polymer-polymer fiber composite for high thermal conductivity
JP5234914B2 (en) Dry mixture and production method thereof
US4778636A (en) Method of manufacturing electrically conductive pressure-formed plates comprised of plastic material
EP0337487A1 (en) Electroconductive polymer composition
CN103013057A (en) Preparation method of anti-static polyester material based on carbon nanotube
JP2000095947A (en) Conductive resin composition
US3218371A (en) Blends of (1) epsilon caprolactam, (2) rubbery butadiene-acrylonitrile copolymers, and (3) resinous styrene-acrylonitrile copolymers
US5213736A (en) Process for making an electroconductive polymer composition
JP3714751B2 (en) Thermoplastic resin exothermic molded product
JPH0526828B2 (en)
JPH08277342A (en) Vibration damping thermoplastic resin composition and molding obtained from the same
JPH10192192A (en) Heating molding for warmed toilet seat
JP3985908B2 (en) Silicone oil-containing thermoplastic resin molded product with excellent surface appearance
JP2002371197A (en) Conductive resin composition and method for manufacturing the same
JP2000230117A (en) Flame-retardant resin composition, its filament pellet and molding product thereof
JPH07156146A (en) Manufacture of thermoplastic resin molded body
JPH1143548A (en) Production of conductive molded product
JPH10219027A (en) Powdery glass fiber-reinforced resin composition
JPS6072935A (en) Electroconductive plastic composition
JPH10278065A (en) Polyamide molded article
JPH03134045A (en) Vinyl chloride resin composition and molded article thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term