JPH10193049A - Method for removing inclusion in continuos casting tundish - Google Patents

Method for removing inclusion in continuos casting tundish

Info

Publication number
JPH10193049A
JPH10193049A JP14997A JP14997A JPH10193049A JP H10193049 A JPH10193049 A JP H10193049A JP 14997 A JP14997 A JP 14997A JP 14997 A JP14997 A JP 14997A JP H10193049 A JPH10193049 A JP H10193049A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
amount
inclusions
retained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14997A
Other languages
Japanese (ja)
Other versions
JP3470537B2 (en
Inventor
Toshio Ishii
俊夫 石井
Noriko Kubo
典子 久保
Atsushi Kubota
淳 久保田
Keiji Yoshioka
敬二 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP00014997A priority Critical patent/JP3470537B2/en
Publication of JPH10193049A publication Critical patent/JPH10193049A/en
Application granted granted Critical
Publication of JP3470537B2 publication Critical patent/JP3470537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing inclusion in a tundish by which the inclusion can inexpensively and surely be removed. SOLUTION: In the continuous casting tundish 1 for intermediately supplying molten steel 3 poured from a ladle 2 into a mold 4, the molten steel storing depth H of the tundish is defined as 0.5-2.5m and the molten steel storing width W of the tundish is defined as 0.5-2.0m. The molten steel resident quantity or the molten steel passing-through quantity in the tundish is controlled so that the value obtained by dividing the molten steel resident quantity V in the tundish by the molten steel passing-through quantity Q per one min becomes 10-20. At this time, the molten steel resident quantity in the tundish is desirable to be 30-100 ton.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、タンディッシュ内
に注入された溶鋼中の非金属介在物を安価に且つ確実に
除去することができる連続鋳造用タンディッシュにおけ
る介在物除去方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing inclusions in a tundish for continuous casting, which can reliably and inexpensively remove nonmetallic inclusions in molten steel poured into a tundish. .

【0002】[0002]

【従来の技術】溶鋼中の非金属介在物(以下、「介在
物」と記す)は、最終製品における表面疵等欠陥の発生
原因となるので、溶鋼中から極力分離して除去する必要
がある。従って、介在物の低減技術は連続鋳造法により
良質な鋳片を得るための重要な技術であり、従来から、
鋳型での磁場による流動制御に見られるように、種々の
対策が実施されてきた。
2. Description of the Related Art Non-metallic inclusions (hereinafter, referred to as "inclusions") in molten steel cause defects such as surface flaws in a final product, and must be removed as much as possible from the molten steel. . Therefore, the technology for reducing inclusions is an important technology for obtaining high-quality slabs by the continuous casting method.
Various countermeasures have been implemented, as seen in flow control by a magnetic field in a mold.

【0003】しかし、生産性向上のために鋳片引抜き速
度を高速度化させた最近の操業形態では、鋳型内での介
在物の分離・除去に限界があり、更に、近年の要求され
る品質の厳格化も加味されて、介在物の低減対策として
鋳型内に供給する以前に溶鋼の清浄性を向上させること
が極めて重要となっている。そのため、タンディッシュ
についても各種の介在物低減対策が提案されている。
However, in recent operation modes in which the slab drawing speed is increased in order to improve productivity, there is a limit in separating and removing inclusions in a mold, and furthermore, the quality required in recent years is reduced. Taking account of the stricter requirements, it is extremely important to improve the cleanliness of molten steel before supplying it into a mold as a measure to reduce inclusions. Therefore, various measures for reducing inclusions in tundish have been proposed.

【0004】例えば、特開平6−7904号公報(以
下、「先行技術1」と記す)には、タンディッシュ内溶
鋼に不活性ガスを吹き込み、ガス気泡により介在物を分
離・除去する方法が、特開平7−132353号公報
(以下、「先行技術2」と記す)には、タンディッシュ
内に3つの堰を設け、これらの堰により介在物を分離・
除去する方法が、又、特開平7−132354号公報
(以下、「先行技術3」と記す)には、タンディッシュ
の底面を注入部と流出部とが深い凹凸形状とすることで
介在物を分離・除去する方法が開示されている。
For example, Japanese Unexamined Patent Publication No. 6-7904 (hereinafter referred to as "prior art 1") discloses a method of blowing an inert gas into molten steel in a tundish to separate and remove inclusions by gas bubbles. Japanese Patent Application Laid-Open No. Hei 7-132353 (hereinafter referred to as "prior art 2") provides three weirs in a tundish and separates inclusions by these weirs.
Japanese Unexamined Patent Application Publication No. 7-132354 (hereinafter referred to as “prior art 3”) discloses a method for removing inclusions by forming the bottom surface of a tundish with a deep unevenness in an injection portion and an outflow portion. A method of separating and removing is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、先行技術1で
は、ガス気泡による介在物低減効果は期待できるが、ガ
ス吹き込みを行なうための耐火物や設備が必要であり、
又、安定的にガス吹き込みを行なうためには保守・保全
も必要となり、これらの費用により製造コストが増加す
る。
However, in the prior art 1, although the effect of reducing inclusions due to gas bubbles can be expected, refractories and equipment for injecting gas are required.
In addition, in order to stably inject gas, maintenance and maintenance are also required, and these costs increase the manufacturing cost.

【0006】又、先行技術2では、後述する溶鋼の循環
流領域の発生を堰により防止できるので介在物低減効果
は期待できるが、耐火物製の堰は消耗品のためタンディ
ッシュ耐火物のコストを上昇させると共に、更に、タン
ディッシュコストの削減を目的としたタンディッシュを
熱間のまま無補修で連続的に再使用する際には、人手で
は堰を設置できず、専用の設置用設備が必要となり、先
行技術1と同様に製造コストが増加する。
In the prior art 2, the effect of reducing inclusions can be expected because the occurrence of a circulating flow region of molten steel, which will be described later, can be prevented by the weir. However, since the refractory weir is a consumable product, the cost of the tundish refractory is low. When the tundish is continuously reused without any repairs while it is still hot, the weirs cannot be installed manually and dedicated installation equipment is required. It becomes necessary, and the manufacturing cost increases as in the prior art 1.

【0007】先行技術3では、タンディッシュ底面を凹
凸の激しい形状としているので後述する溶鋼の循環流領
域が発生し難く介在物の低減効果は優れているが、実際
の操業においては、鋳造終了時の注入部内の残溶鋼処理
の問題や、タンディッシュ耐火物施工上の問題、更には
溶鋼と耐火物との接触面積が多いことに起因する溶鋼の
熱損失の問題等、製造コストを上昇させる要因が多くあ
り現実的でない。
In the prior art 3, since the bottom surface of the tundish is formed to have a highly irregular shape, a circulating flow region of molten steel described later is unlikely to be generated, and the effect of reducing inclusions is excellent. Factors that increase manufacturing costs, such as the problem of residual molten steel treatment in the injection part of the steel, the problem of tundish refractory construction, and the problem of heat loss of molten steel due to the large contact area between molten steel and refractory There are many and not realistic.

【0008】このように従来のタンディッシュにおける
介在物除去方法は、その効果は期待できるものの、介在
物の少ない鋳片を安価に製造することは困難である。
As described above, the effect of the conventional method for removing inclusions in a tundish can be expected, but it is difficult to produce inexpensively a slab with few inclusions.

【0009】一方、発明者等は、実機において鋳片品質
と鋳造条件とを比較・検討して、従来は介在物の除去効
果が向上すると考えられた対策が必ずしも有効でないこ
とを確認した。即ち、従来のタンディッシュにおける介
在物除去の考え方は、タンディッシュ内に滞留する溶鋼
量(以下、「タンディッシュ内溶鋼滞留量」と記す)を
単位時間当たりにタンディッシュから鋳型に供給される
溶鋼量(以下、「溶鋼通過量」と記す)で除算して求め
られる平均滞留時間を、タンディッシュの大容量化によ
り延長させ、介在物の浮上時間を確保して除去するとい
うものである。しかし、実機においては平均滞留時間と
品質とは必ずしも比例関係にない。
[0009] On the other hand, the present inventors have compared and examined the slab quality and the casting conditions in an actual machine, and confirmed that measures conventionally considered to improve the effect of removing inclusions are not always effective. That is, the concept of the inclusion removal in the conventional tundish is based on the idea that the amount of molten steel retained in the tundish (hereinafter referred to as “the retained amount of molten steel in the tundish”) is defined as the amount of molten steel supplied from the tundish to the mold per unit time. The average residence time obtained by dividing by the amount (hereinafter, referred to as “amount of molten steel passing”) is extended by increasing the capacity of the tundish, and the floating time of the inclusions is secured and removed. However, in an actual machine, the average residence time and the quality are not necessarily in a proportional relationship.

【0010】そこで、数値解析によりタンディッシュ内
の溶鋼流動の調査を行ない、その結果、以下の事象が判
明した。
Therefore, the flow of molten steel in the tundish was investigated by numerical analysis, and as a result, the following events were found.

【0011】1.タンディッシュ内の溶鋼流動は、取鍋
から重力落下する注入流の慣性力による流れと、取鍋か
ら注入直後の溶鋼とタンディッシュ内に滞留する溶鋼と
の温度差に起因する対流と、タンディッシュ出口での鋳
型への供給流に起因する流れとが相互に且つ複雑に関連
して形成される。
1. The flow of molten steel in the tundish is caused by the inertial force of the injection flow that falls from the ladle by gravity, the convection caused by the temperature difference between the molten steel immediately after pouring from the ladle and the molten steel remaining in the tundish, and the tundish. The flow resulting from the supply flow to the mold at the outlet is formed in a mutually and complexly related manner.

【0012】2.タンディッシュ内には循環流領域、所
謂、死水領域が存在し、死水領域はタンディッシュ形状
や溶鋼温度、更に溶鋼通過量によって大きく左右され
る。
2. In the tundish, there is a circulating flow region, a so-called dead water region, and the dead water region is greatly affected by the shape of the tundish, the temperature of the molten steel, and the amount of the molten steel passed.

【0013】3.死水領域は停滞した領域であるので、
注入された溶鋼は死水領域を経由せずタンディッシュ出
口から排出される。そのため、死水領域の発生は、溶鋼
の実際のタンディッシュ内滞留時間(以下、「実滞留時
間」と記す)を減少させて、介在物の浮上・分離を阻害
する。
3. Since the dead water area is a stagnant area,
The injected molten steel is discharged from the tundish outlet without passing through the dead water area. Therefore, the generation of the dead water region decreases the actual residence time of the molten steel in the tundish (hereinafter, referred to as “actual residence time”), and hinders floating and separation of inclusions.

【0014】4.実滞留時間は死水領域の発生により平
均滞留時間より短くなる。 5.タンディッシュにおける介在物の除去効率を向上さ
せるためには、死水領域を減少させて有効滞留量(有効
滞留量とは、タンディッシュ内溶鋼滞留量から死水領域
の溶鋼量を除いた溶鋼量である)を増加させることが重
要である。
4. The actual residence time is shorter than the average residence time due to the occurrence of dead water areas. 5. In order to improve the removal efficiency of inclusions in the tundish, the dead water area is reduced and the effective retention amount (effective retention amount is the amount of molten steel in the tundish excluding the amount of molten steel in the dead water area from the retained amount of molten steel in the tundish. It is important to increase).

【0015】本発明は、上記知見に基づきなされたもの
で、その目的とするところは有効滞留量を増加させて実
滞留時間を延長させることで、安価に且つ確実に介在物
を除去することができるタンディッシュにおける介在物
除去方法を提供するものである。
The present invention has been made on the basis of the above-mentioned findings. It is an object of the present invention to increase the effective residence time and extend the actual residence time so that inclusions can be reliably removed at low cost. The present invention provides a method for removing inclusions in a tundish that can be performed.

【0016】[0016]

【課題を解決するための手段】本願請求項1に係る連続
鋳造用タンディッシュにおける介在物除去方法は、取鍋
から注入された溶鋼を鋳型に中継供給する連続鋳造用タ
ンディッシュにおいて、タンディッシュの溶鋼収容深さ
を0.5mないし2.5m、タンディッシュの溶鋼収容
幅を0.5mないし2.0mとし、タンディッシュ内溶
鋼滞留量を1分間当たりの溶鋼通過量で除算した値が1
0ないし20となるように、タンディッシュ内溶鋼滞留
量又は溶鋼通過量を制御することを特徴とするものであ
る。
According to a first aspect of the present invention, there is provided a method for removing inclusions in a tundish for continuous casting, wherein the molten steel injected from a ladle is relayed to a mold. The molten steel accommodation depth is 0.5 m to 2.5 m, the molten steel accommodation width of the tundish is 0.5 m to 2.0 m, and the value obtained by dividing the retained amount of molten steel in the tundish by the amount of molten steel passing per minute is 1
It is characterized in that the amount of molten steel retained in the tundish or the amount of molten steel passing therethrough is controlled to be 0 to 20.

【0017】又、本願請求項2に係る連続鋳造用タンデ
ィッシュにおける介在物除去方法は、請求項1の連続鋳
造用タンディッシュにおける介在物除去方法において、
タンディッシュ内溶鋼滞留量が30トンないし100ト
ンであることを特徴とするものである。
The method for removing inclusions in a tundish for continuous casting according to claim 2 of the present invention is the method for removing inclusions in a tundish for continuous casting according to claim 1.
The amount of molten steel retained in the tundish is 30 to 100 tons.

【0018】種々のタンディッシュ内溶鋼滞留量と溶鋼
通過量との条件下で、タンディッシュ内における3次元
の溶鋼流動をナビエ・ストークスの方程式を用いて数値
解析し、タンディッシュ内の溶鋼流動パターンを調査し
た。又、タンディッシュに注入される溶鋼に介在物を混
入させた数値解析も行い、介在物の浮上分離効率も合わ
せて調査した。尚、数値解析は、溶鋼通過量と同一の溶
鋼量をタンディッシュ内に注入し、タンディッシュ内溶
鋼滞留量を一定に保持する条件で行なった。
Under various conditions of the amount of molten steel retained in the tundish and the amount of molten steel passing therethrough, a three-dimensional molten steel flow in the tundish was numerically analyzed using the Navier-Stokes equation, and the molten steel flow pattern in the tundish was analyzed. investigated. In addition, a numerical analysis was conducted in which inclusions were mixed with molten steel injected into the tundish, and the flotation efficiency of inclusions was also investigated. The numerical analysis was performed under the condition that the same amount of molten steel as the amount of molten steel passed was injected into the tundish and the amount of retained molten steel in the tundish was kept constant.

【0019】タンディッシュを大容量化してタンディッ
シュ内溶鋼滞留量を多くすると、問題になるのは前述し
た死水領域が大きくなることである。この死水領域は、
不活性な溶鋼であるので、実滞留時間を短くすることは
あっても、延長させる効果はなく、そして更に、溶鋼温
度低下の原因となる。数値解析の結果、この死水領域の
発生原因は以下の通りであることが分かった。
If the capacity of the tundish is increased by increasing the capacity of the molten steel in the tundish, the problem is that the dead water region described above becomes large. This dead water area
Since it is an inert molten steel, the actual residence time can be shortened, but has no effect of extending the actual residence time, and further causes a decrease in the molten steel temperature. As a result of numerical analysis, it was found that the cause of the occurrence of the dead water region was as follows.

【0020】タンディッシュ内の溶鋼は、タンディッシ
ュ耐火物との伝導伝達とタンディッシュ内溶鋼表面での
放射伝達とにより冷却される。従って、タンディッシュ
内に注入された直後の溶鋼とタンディッシュに滞留する
溶鋼とには常に温度差があり、通常、注入された直後の
溶鋼は滞留する溶鋼に比べ5℃から10℃高い。この温
度差は、溶鋼の密度差を発生させる原因となり、そのた
め、タンディッシュに注入された直後の溶鋼は、周囲の
溶鋼より熱く軽いために浮力を受ける。
The molten steel in the tundish is cooled by conduction transmission with the refractory in the tundish and radiant transmission on the surface of the molten steel in the tundish. Therefore, there is always a temperature difference between the molten steel immediately after being injected into the tundish and the molten steel staying in the tundish. Usually, the molten steel immediately after being injected is 5 ° C. to 10 ° C. higher than the molten steel that stays. This temperature difference causes a difference in the density of the molten steel, so that the molten steel immediately after being poured into the tundish receives buoyancy because it is hotter and lighter than the surrounding molten steel.

【0021】図2に、数値解析により得られた溶鋼通過
量が適正な条件でのタンディッシュ内の溶鋼流動パター
ンを模式的に示す。ロングノズルを介して取鍋から注入
された溶鋼は、タンディッシュ底部に衝突した後、取鍋
からの重力落下による慣性力でタンディッシュ出口に向
かって水平方向に流れようとするが、浮力の影響を受け
てタンディッシュ壁に沿って上昇する。そのため、溶鋼
は上昇しながらタンディッシュ出口に向かって流れ、そ
して、タンディッシュ出口付近ではタンディッシュ出口
に向けて下降し、タンディッシュ出口より鋳型内に供給
される。その際、溶鋼は粘性流体であるため、粘性によ
り随伴流が形成される。これは鋳型に供給する量以上の
溶鋼がタンディッシュ出口に向かう流れを形成すること
を意味する。しかしながら、タンディッシュ出口では必
要量しか流出しないために、粘性により発生した随伴流
の大部分は流出できずに取鍋からの溶鋼注入部方向に方
向転回して戻ることになる。即ち、これが循環流の原因
であり、死水領域がタンディッシュ底部に発生する。
FIG. 2 schematically shows the flow pattern of molten steel in a tundish under the condition that the amount of molten steel passed through obtained by numerical analysis is appropriate. After the molten steel injected from the ladle through the long nozzle collides with the bottom of the tundish, it tries to flow horizontally to the tundish outlet due to the inertial force due to gravity drop from the ladle, but the influence of buoyancy Ascends and rises along the tundish wall. Therefore, the molten steel flows toward the tundish outlet while rising, and then descends toward the tundish outlet near the tundish outlet, and is supplied into the mold from the tundish outlet. At that time, since the molten steel is a viscous fluid, an accompanying flow is formed due to the viscosity. This means that more molten steel than is supplied to the mold forms a flow towards the outlet of the tundish. However, since only a required amount flows out at the outlet of the tundish, most of the accompanying flow generated due to the viscosity cannot be flowed out, but turns around in the direction of the molten steel injection portion from the ladle and returns. That is, this is a cause of the circulation flow, and a dead water region is generated at the bottom of the tundish.

【0022】又、この死水領域の発生に及ぼす溶鋼通過
量の影響を解析した結果は以下の通りである。
The result of analyzing the effect of the amount of molten steel passing on the generation of the dead water region is as follows.

【0023】図3は、数値解析により得られた溶鋼通過
量が少ない条件でのタンディッシュ内の溶鋼流動パター
ンを模式的に示した図である。この場合は、取鍋からの
注入流量が少ないために、タンディッシュ底部に衝突し
た後、取鍋からの重力落下による慣性力でタンディッシ
ュ底部をタンディッシュ出口に向かって水平方向に流れ
ようとする流れが弱く、そのため、注入された溶鋼は溶
鋼温度差による浮力を受けて溶鋼表面側に上昇する。更
に、タンディッシュ出口に向かって水平方向に流れよう
とする流れは、タンディッシュ出口から溶鋼注入部方向
に流れる循環流に衝突して減衰してしまうために、結果
的にタンディッシュ底部の死水領域が非常に拡大する。
FIG. 3 is a diagram schematically showing a flow pattern of molten steel in a tundish under a condition where the amount of molten steel passing through is small, obtained by numerical analysis. In this case, since the injection flow rate from the ladle is small, after colliding with the tundish bottom, the tundish bottom tends to flow horizontally toward the tundish outlet by the inertial force due to gravity drop from the ladle. The flow is weak, so the injected molten steel rises to the molten steel surface side due to the buoyancy caused by the molten steel temperature difference. Furthermore, the flow which tends to flow in the horizontal direction toward the outlet of the tundish collides with the circulating flow flowing from the outlet of the tundish toward the molten steel injection portion and is attenuated. Greatly expands.

【0024】又、図4は、数値解析により得られた溶鋼
通過量が多すぎる条件でのタンディッシュ内の溶鋼流動
パターンを模式的に示した図である。この場合は、タン
ディッシュでの抜熱が相対的に小さくなるので浮力の影
響が小さく、又、注入流のタンディッシュ出口に向かう
水平方向への慣性力も大きいため、タンディッシュ底部
に衝突した溶鋼流はそのままタンディッシュ底部をタン
ディッシュ出口に向かう流れとなり、その結果、小さい
死水領域が溶鋼表面側に発生する。
FIG. 4 is a diagram schematically showing the flow pattern of molten steel in a tundish under the condition that the amount of molten steel passing through is too large, obtained by numerical analysis. In this case, the influence of buoyancy is small because the heat removal in the tundish is relatively small, and the inertial force of the injected flow in the horizontal direction toward the tundish outlet is large, so that the molten steel flow colliding with the bottom of the tundish Flows as it is toward the tundish outlet through the bottom of the tundish, and as a result, a small dead water region is generated on the molten steel surface side.

【0025】このように、タンディッシュ内溶鋼滞留量
に対して溶鋼通過量が相対的に少ない場合には、死水領
域が拡大して有効滞留量が少なくなるため、実滞留時間
が短くなり、逆に、溶鋼通過量が相対的に多い場合に
は、死水領域は小さくなるので有効滞留量は多くなる
が、溶鋼通過量が多いので実滞留時間が短くなる。つま
り、タンディッシュ内溶鋼滞留量に応じて、適切な溶鋼
通過量が存在することが分かった。
As described above, when the amount of molten steel passing through is relatively small with respect to the amount of molten steel retained in the tundish, the dead water area is enlarged and the effective retained amount is reduced. In addition, when the amount of molten steel passing is relatively large, the dead water region becomes small and the effective retention amount increases, but the amount of molten steel passing increases and the actual residence time becomes short. That is, it was found that there was an appropriate amount of molten steel passing through in accordance with the amount of molten steel retained in the tundish.

【0026】介在物の浮上分離効率の調査結果から、死
水領域が小さく且つ実滞留時間を確保できるので、図2
の溶鋼流動パターンが最も介在物分離効率が良いことが
分かった。そして、タンディッシュ内溶鋼滞留量を1分
間当たりの溶鋼通過量で除算した値を10ないし20と
すると、タンディッシュ内は図2に示す溶鋼流動パター
ンとなることが分かった。前記除算値が10未満では溶
鋼通過量が少なすぎ、20を超えると多くなり過ぎるた
めである。
From the results of the investigation of the efficiency of flotation separation of inclusions, the dead water area is small and the actual residence time can be secured.
It was found that the flow pattern of molten steel showed the best inclusion separation efficiency. Then, when the value obtained by dividing the retained amount of molten steel in the tundish by the amount of molten steel passing per minute was 10 to 20, it was found that the molten steel flow pattern in the tundish was as shown in FIG. If the division value is less than 10, the amount of molten steel passing through is too small, and if it exceeds 20, it becomes too large.

【0027】又、介在物除去効率とタンディッシュ形状
との解析結果から、タンディッシュの溶鋼収容深さを
0.5mないし2.5m、タンディッシュの溶鋼収容幅
を0.5mないし2.0mとすると、介在物除去効率が
更に向上することが分かった。溶鋼収容深さが0.5m
未満では、タンディッシュ内溶鋼表面積が増加して溶鋼
の温度降下が大きくなり、又、2.5mを超えると介在
物の浮上距離が長くなり過ぎ、共に介在物の分離効率が
低下するからである。そして、溶鋼収容幅が0.5m未
満ではタンディッシュ耐火物との接触面積が増加して溶
鋼の温度低下が大きくなり、又、2.0mを超えるとタ
ンディッシュ内溶鋼滞留量が上限(100トン)のとき
でも必要な溶鋼収納長を確保できなくなり、共に介在物
の分離効率が低下するからである。
From the analysis results of the inclusion removal efficiency and the tundish shape, the molten steel accommodation depth of the tundish is 0.5 m to 2.5 m, and the molten steel accommodation width of the tundish is 0.5 m to 2.0 m. Then, it was found that the inclusion removal efficiency was further improved. 0.5m molten steel storage depth
If it is less than 2, the surface area of the molten steel in the tundish increases and the temperature drop of the molten steel increases, and if it exceeds 2.5 m, the floating distance of the inclusions becomes too long, and the separation efficiency of the inclusions decreases. . If the width of the molten steel is less than 0.5 m, the contact area with the tundish refractory increases, and the temperature of the molten steel decreases significantly. If the width exceeds 2.0 m, the amount of retained molten steel in the tundish becomes the upper limit (100 tons). This is because the required molten steel storage length cannot be ensured even in the case of), and the separation efficiency of inclusions is reduced.

【0028】更に、本発明ではタンディッシュ内溶鋼滞
留量が30トンないし100トンであることが好まし
い。タンディッシュ内溶鋼滞留量が30トン未満では溶
鋼の絶対量が少なく、タンディッシュ耐火物への熱ロス
が大きくなって介在物の浮上性で不利となり、又、10
0トンを超える容量は現在の製鋼炉の炉容積に比較して
大きすぎ、耐火物コストが増加して現実的でないためで
ある。
Further, in the present invention, the retained amount of molten steel in the tundish is preferably 30 to 100 tons. If the retained amount of molten steel in the tundish is less than 30 tons, the absolute amount of molten steel is small, heat loss to the refractory of the tundish becomes large, and the floating of inclusions becomes disadvantageous.
This is because the capacity exceeding 0 tons is too large compared to the furnace volume of the current steelmaking furnace, and the refractory cost increases, which is not practical.

【0029】[0029]

【発明の実施の形態】本発明を図面に基づき説明する。
図1は本発明を適用した連続鋳造用タンディッシュの概
要図であり、(a)は正面断面図、(b)は側面断面図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a tundish for continuous casting to which the present invention is applied, (a) is a front sectional view, and (b) is a side sectional view.

【0030】内面を耐火物で構築された直方体形状のタ
ンディッシュ1の上方には取鍋2が配置されており、取
鍋2内の溶鋼3は取鍋2の底部に設置したロングノズル
7を介してタンディッシュ1内の溶鋼注入部10に注入
される。注入された溶鋼3は、溶鋼収容深さをH、溶鋼
収容幅をW、溶鋼収容長をL、そして、タンディッシュ
内溶鋼滞留量をVとして、タンディッシュ1内に滞留す
る。
A ladle 2 is arranged above a rectangular solid tundish 1 having an inner surface made of a refractory, and molten steel 3 in the ladle 2 has a long nozzle 7 installed at the bottom of the ladle 2. Through the tundish 1 into the molten steel injection section 10. The poured molten steel 3 stays in the tundish 1 with the molten steel storage depth being H, the molten steel storage width being W, the molten steel storage length being L, and the molten steel retention amount in the tundish being V.

【0031】タンディッシュ1は、溶鋼収容深さ(H)
を0.5mないし2.5m、又、溶鋼収容幅(W)を
0.5mないし2.0mの範囲からそれぞれ任意の値を
選択して、その形状を決定する。その際に、タンディッ
シュ内溶鋼滞留量(V)が30トンないし100トンと
なるように、溶鋼収容深さ(H)、溶鋼収容幅(W)、
及び溶鋼収容長(L)を決めることが好ましい。
The tundish 1 has a molten steel storage depth (H).
Is selected from the range of 0.5 m to 2.5 m, and the molten steel accommodation width (W) is selected from the range of 0.5 m to 2.0 m, and the shape is determined. At that time, the molten steel storage depth (H), the molten steel storage width (W), and the molten steel retention amount (V) in the tundish become 30 to 100 tons.
It is preferable to determine the molten steel storage length (L).

【0032】タンディッシュ1の底部には、溶鋼注入部
10の反対側にタンディッシュ出口5が設置されてお
り、タンディッシュ1内に注入された溶鋼3は、タンデ
ィッシュ出口5からタンディッシュ出口5に接続する浸
漬ノズル6を介し、1分間当たりの溶鋼通過量をQとし
て鋳型4内に供給され、次いで、鋳型4内で冷却されて
凝固し鋳片8が形成される。その際に、取鍋2からの1
分間当たりの溶鋼注入量(Q’)を溶鋼通過量(Q)に
略等しく制御して、タンディッシュ内溶鋼滞留量をVの
一定値となるように制御する。
At the bottom of the tundish 1, a tundish outlet 5 is provided on the opposite side of the molten steel injection section 10, and the molten steel 3 injected into the tundish 1 is supplied from the tundish outlet 5 to the tundish outlet 5 Is supplied into the mold 4 with the amount of molten steel passing per minute as Q, and then cooled and solidified in the mold 4 to form a slab 8. At that time, 1 from ladle 2
The molten steel injection amount per minute (Q ') is controlled to be substantially equal to the molten steel passage amount (Q), and the molten steel retention amount in the tundish is controlled to be a constant value of V.

【0033】溶鋼注入部10、及び、タンディッシュ出
口5のタンディッシュ1の長手方向の位置は、タンディ
ッシュ1の溶鋼収納長(L)に対し、それぞれのタンデ
ィッシュ側壁9、9aからの距離がL/5以内であるこ
とが好ましい。これは、タンディッシュ側壁9、9aか
らの距離がL/5を超える場合には、溶鋼注入部10と
タンディッシュ側壁9との間、及びタンディッシュ出口
5とタンディッシュ側壁9aとの間に死水領域が生成す
ることがあるためである。
The longitudinal position of the tundish 1 at the molten steel injection part 10 and the tundish outlet 5 is different from the molten steel storage length (L) of the tundish 1 from the respective tundish side walls 9 and 9a. It is preferably within L / 5. This is because when the distance from the tundish side walls 9 and 9a exceeds L / 5, dead water exists between the molten steel injection part 10 and the tundish side wall 9 and between the tundish outlet 5 and the tundish side wall 9a. This is because an area may be generated.

【0034】そして鋳造中、タンディッシュ内溶鋼滞留
量(V)を1分間当たりの溶鋼通過量(Q)で除算した
値が10ないし20、好ましくは12ないし16となる
ようにタンディッシュ内溶鋼滞留量(V)又は1分間当
たりの溶鋼通過量(Q)を制御する。この除算した値が
12ないし16となる範囲が、後述するように、最も良
好な成績が得られるからである。
During the casting, the molten steel staying in the tundish is adjusted so that the value obtained by dividing the molten steel staying amount (V) in the tundish by the molten steel passing amount per minute (Q) is 10 to 20, preferably 12 to 16. The amount (V) or the amount of molten steel per minute (Q) is controlled. This is because the range in which the divided value is 12 to 16 provides the best results, as described later.

【0035】尚、図1に示すタンディッシュ1の形状は
直方体であるが、断面が台形の場合には、溶鋼収容幅
(W)は、最大幅が2.0m以下で、最小幅が0.5m
以上とすればよく、タンディッシュ1内で溶鋼収容深さ
(H)に差がある場合には、最も深い位置が2.5m以
下で、最も浅い位置が0.5m以上とすればよい。又、
図1に示すタンディッシュは単ストランドであるが、多
ストランドの場合にも同様に適用できることはいうまで
もない。
Although the shape of the tundish 1 shown in FIG. 1 is a rectangular parallelepiped, when the cross section is a trapezoid, the maximum width of the molten steel accommodation width (W) is 2.0 m or less and the minimum width of the molten steel is 0.1 mm. 5m
If there is a difference in the molten steel accommodation depth (H) in the tundish 1, the deepest position may be set to 2.5 m or less and the shallowest position may be set to 0.5 m or more. or,
Although the tundish shown in FIG. 1 is a single strand, it goes without saying that the same can be applied to the case of multiple strands.

【0036】[0036]

【実施例】図1に示す直方体形状のタンディッシュにて
本発明を実施した。使用したタンディッシュは、溶鋼収
容深さ(H)及び溶鋼収容幅(W)が共に1.5m、溶
鋼収納長(L)が4.9mで、タンディッシュ内溶鋼滞
留量が77トンであり、ロングノズルからの溶鋼注入部
をタンディッシュ側壁から0.8mの位置に、又、タン
ディッシュ出口をタンディッシュ側壁から0.6mの位
置に設置した。そして、低炭素Alキルド鋼を、厚み2
50mm、幅1850mmの鋳片サイズで、単ストラン
ドで鋳造した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention was carried out using a rectangular parallelepiped tundish shown in FIG. The used tundish had a molten steel storage depth (H) and a molten steel storage width (W) of 1.5 m, a molten steel storage length (L) of 4.9 m, and a retained amount of molten steel in the tundish of 77 tons. The molten steel injection part from the long nozzle was set at a position of 0.8 m from the tundish side wall, and the tundish outlet was set at a position of 0.6 m from the tundish side wall. Then, a low carbon Al killed steel is applied with a thickness of 2
A single strand was cast with a slab size of 50 mm and a width of 1850 mm.

【0037】鋳片引抜き速度を1.0m/min、1.
4m/min、1.8m/min、及び2.2m/mi
nの4条件とした。この鋳片引抜き速度から1分間あた
りの溶鋼通過量を鋳片比重を7.85として換算する
と、それぞれ3.63トン、5.08トン、6.54ト
ン、及び7.99トンとなり、タンディッシュ内溶鋼滞
留量を1分間あたりの溶鋼通過量で除算した値は、それ
ぞれ21.2、15.2、11.8、及び9.6とな
る。
The slab drawing speed was set at 1.0 m / min.
4 m / min, 1.8 m / min, and 2.2 m / mi
n conditions. Converting the amount of molten steel passing per minute from the slab pulling rate assuming a slab specific gravity of 7.85 gives 3.63 tons, 5.08 tons, 6.54 tons, and 7.99 tons, respectively. The values obtained by dividing the amount of retained molten steel by the amount of molten steel passing per minute are 21.2, 15.2, 11.8, and 9.6, respectively.

【0038】これらの条件で鋳造した鋳片を薄鋼板に圧
延し、薄鋼板において介在物による表面欠陥を調査し
た。その結果を図5に示す。尚、本実施例においては、
品質評価を品質インデックスで表示し、この品質インデ
ックスは介在物による表面欠陥が少ないほど大きな値で
示している。図5に示すように、本発明の範囲内である
鋳片引抜き速度が1.4m/min(実施例)と1.8
m/min(実施例)の場合に品質評価が良好であり、
そして特に、鋳片引抜き速度が1.4m/minのとき
が、品質インデックスは10となり、良好であった。こ
れに対し本発明の範囲外である鋳片引抜き速度が1.0
m/min(比較例)と2.2m/min(比較例)の
場合は、品質インデックスは低く3程度であり、品質評
価が劣っていた。
The slab cast under these conditions was rolled into a thin steel sheet, and the thin steel sheet was examined for surface defects due to inclusions. The result is shown in FIG. In this embodiment,
The quality evaluation is indicated by a quality index, and the quality index is indicated by a larger value as the number of surface defects due to inclusions is smaller. As shown in FIG. 5, the slab drawing speed within the scope of the present invention is 1.4 m / min (Example) and 1.8.
m / min (Example), the quality evaluation is good,
In particular, when the slab drawing speed was 1.4 m / min, the quality index was 10, which was good. On the other hand, when the slab drawing speed which is out of the range of the present invention is 1.0
In the case of m / min (Comparative Example) and 2.2 m / min (Comparative Example), the quality index was low, about 3, and the quality evaluation was inferior.

【0039】上記を含め種々のタンディッシュ内溶鋼滞
留量と溶鋼通過量との条件で鋳造し、得られた鋳片を薄
鋼板に圧延して薄鋼板において介在物による表面欠陥を
調査して品質評価を行なった。図6は、タンディッシュ
内溶鋼滞留量を溶鋼通過量で除算した値を横軸に、品質
インデックスを縦軸にして、両者の関係を本発明の範囲
と比較例とでまとめて整理した結果である。図6に示す
ように、本発明の範囲は、品質インデックスが5より高
く良好であり、そして、本発明の範囲内でも特に前記除
算値が12から16の範囲が、安定して品質インデック
スが高く、最も良好であった。
Casting was carried out under the conditions of various amounts of molten steel in the tundish including the above and the amount of molten steel passing therethrough. The obtained slab was rolled into a thin steel sheet, and the quality of the thin steel sheet was investigated by examining surface defects due to inclusions. An evaluation was performed. FIG. 6 is a result obtained by summarizing the value obtained by dividing the molten steel retained amount in the tundish by the molten steel passage amount on the horizontal axis and the quality index on the vertical axis, and summarizing the relationship between the scope of the present invention and the comparative example. is there. As shown in FIG. 6, in the range of the present invention, the quality index is higher than 5 and the quality index is higher than 5. Was the best.

【0040】図7は、連連鋳時の取鍋交換の際に鋳片引
抜き速度を1.0m/min(1分間当たりの溶鋼通過
量は3.63トン)に低下させた場合と、定常状態の
1.4m/min(1分間当たりの溶鋼通過量は5.0
8トン)の鋳片引抜き速度の場合とで、タンディッシュ
内溶鋼滞留量を変更して、前記品質インデックスの変化
を比較して示した図である。尚、図中の数字はタンディ
ッシュ内溶鋼滞留量を溶鋼通過量で除算した値である。
図7に示すように鋳片引抜き速度が1.4m/minの
場合には、タンディッシュ内溶鋼滞留量が77トンで最
も品質が良好であったが、鋳片引抜き速度が1.0m/
minの場合には、タンディッシュ内溶鋼滞留量を定常
状態より減少させて56トンとしたときが最も品質結果
が良好であった。
FIG. 7 shows the case where the slab withdrawal speed is reduced to 1.0 m / min (the amount of molten steel passing per minute is 3.63 tons) when the ladle is replaced during continuous casting, and the steady state. 1.4m / min (the amount of molten steel passing per minute is 5.0
FIG. 9 is a diagram showing a comparison of the change in the quality index by changing the retained amount of molten steel in the tundish when the slab drawing speed is 8 tons). The numbers in the figure are values obtained by dividing the retained amount of molten steel in the tundish by the amount of molten steel passing therethrough.
As shown in FIG. 7, when the slab withdrawal speed was 1.4 m / min, the quality was the best with the retained amount of molten steel in the tundish being 77 tons, but the slab withdrawal speed was 1.0 m / min.
In the case of min, the best quality result was obtained when the retained amount of molten steel in the tundish was reduced from the steady state to 56 tons.

【0041】このように、鋳造速度が変更される場合に
は、その都度タンディッシュ内溶鋼滞留量を適正な範囲
に制御することで、品質が安定して良好な鋳片を製造す
ることができる。
As described above, when the casting speed is changed, the stagnation amount of the molten steel in the tundish is controlled to an appropriate range each time, so that a good cast piece with stable quality can be manufactured. .

【0042】[0042]

【発明の効果】本発明によれば、堰の設置やガス吹き込
み等の介在物低減対策を施すことなく、単にタンディッ
シュ形状を介在物の分離・除去効率の良い形状とすると
共に、タンディッシュ内溶鋼滞留量と溶鋼通過量とを適
切な範囲に制御することで、介在物の除去効率を高める
ことができるので、介在物の少ない高品質の鋳片を安価
に安定して製造することが可能となる。
According to the present invention, the tundish shape can be simply changed to a shape with high efficiency in separating and removing inclusions without taking measures such as installing a weir or injecting gas into the tundish. By controlling the amount of retained molten steel and the amount of molten steel passing in appropriate ranges, the efficiency of inclusion removal can be increased, and high-quality slabs with few inclusions can be stably manufactured at low cost. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した連続鋳造用タンディッシュの
概要図であり、(a)は正面断面図、(b)は側面断面
図である。
FIG. 1 is a schematic view of a tundish for continuous casting to which the present invention is applied, (a) is a front sectional view, and (b) is a side sectional view.

【図2】数値解析により得られた溶鋼通過量が適正な条
件でのタンディッシュ内の溶鋼流動パターンを模式的に
示した図である。
FIG. 2 is a diagram schematically showing a flow pattern of molten steel in a tundish under a condition in which the amount of molten steel passing through obtained by numerical analysis is appropriate.

【図3】数値解析により得られた溶鋼通過量が少ない条
件でのタンディッシュ内の溶鋼流動パターンを模式的に
示した図である。
FIG. 3 is a diagram schematically showing a flow pattern of molten steel in a tundish under a condition in which the amount of molten steel passing through is small, obtained by numerical analysis.

【図4】数値解析により得られた溶鋼通過量が多すぎる
条件でのタンディッシュ内の溶鋼流動パターンを模式的
に示した図である。
FIG. 4 is a diagram schematically showing a flow pattern of molten steel in a tundish under a condition in which the amount of molten steel passing through is too large, obtained by numerical analysis.

【図5】タンディッシュ内溶鋼滞留量を一定として、鋳
片品質に及ぼす鋳片引抜き速度の影響を実施例と比較例
とで示した図である。
FIG. 5 is a diagram showing the effect of the slab drawing speed on the slab quality with the amount of molten steel retained in the tundish constant, for an example and a comparative example.

【図6】タンディッシュ内溶鋼滞留量を溶鋼通過量で除
算した値の品質に及ぼす影響を実施例と比較例とでまと
めて整理した図である。
FIG. 6 is a diagram summarizing the influence on the quality of a value obtained by dividing the retained amount of molten steel in the tundish by the amount of molten steel passing through the example and the comparative example.

【図7】本発明の実施例から、鋳片引抜き速度の変更に
より適切なタンディッシュ内溶鋼滞留量が変化すること
を示す図である。
FIG. 7 is a diagram showing that an appropriate amount of molten steel retained in a tundish is changed by changing a slab drawing speed according to the example of the present invention.

【符号の説明】[Explanation of symbols]

1 タンディッシュ 2 取鍋 3 溶鋼 4 鋳型 5 タンディッシュ出口 6 浸漬ノズル 7 ロングノズル DESCRIPTION OF SYMBOLS 1 Tundish 2 Ladle 3 Molten steel 4 Mold 5 Tundish outlet 6 Immersion nozzle 7 Long nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉岡 敬二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Keiji Yoshioka 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 取鍋から注入された溶鋼を鋳型に中継供
給する連続鋳造用タンディッシュにおいて、タンディッ
シュの溶鋼収容深さを0.5mないし2.5m、タンデ
ィッシュの溶鋼収容幅を0.5mないし2.0mとし、
タンディッシュ内溶鋼滞留量を1分間当たりの溶鋼通過
量で除算した値が10ないし20となるように、タンデ
ィッシュ内溶鋼滞留量又は溶鋼通過量を制御することを
特徴とする連続鋳造用タンディッシュにおける介在物除
去方法。
1. In a tundish for continuous casting in which molten steel injected from a ladle is relayed to a mold, the molten steel storage depth of the tundish is 0.5 m to 2.5 m, and the molten steel storage width of the tundish is 0. 5m to 2.0m,
A tundish for continuous casting characterized by controlling the amount of molten steel retained in a tundish or the amount of molten steel passing therethrough so that the value obtained by dividing the amount of molten steel retained in the tundish by the amount of molten steel passing per minute is 10 to 20. Inclusion removal method in the above.
【請求項2】 タンディッシュ内溶鋼滞留量が30トン
ないし100トンであることを特徴とする請求項1に記
載の連続鋳造用タンディッシュにおける介在物除去方
法。
2. The method for removing inclusions in a tundish for continuous casting according to claim 1, wherein the retained amount of molten steel in the tundish is 30 to 100 tons.
JP00014997A 1997-01-06 1997-01-06 Inclusion removal method in tundish for continuous casting Expired - Fee Related JP3470537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00014997A JP3470537B2 (en) 1997-01-06 1997-01-06 Inclusion removal method in tundish for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00014997A JP3470537B2 (en) 1997-01-06 1997-01-06 Inclusion removal method in tundish for continuous casting

Publications (2)

Publication Number Publication Date
JPH10193049A true JPH10193049A (en) 1998-07-28
JP3470537B2 JP3470537B2 (en) 2003-11-25

Family

ID=11465990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00014997A Expired - Fee Related JP3470537B2 (en) 1997-01-06 1997-01-06 Inclusion removal method in tundish for continuous casting

Country Status (1)

Country Link
JP (1) JP3470537B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104395484B (en) 2012-05-14 2016-08-24 Posco公司 High-cleanness molten steel manufacture method and purifier

Also Published As

Publication number Publication date
JP3470537B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
JP2007105745A (en) Continuous casting method of steel
Gushchin et al. Improved tundish refining of steel in continuous-casting machines
KR101239537B1 (en) Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP2005211936A (en) Method for continuously casting steel slab
JPH10193049A (en) Method for removing inclusion in continuos casting tundish
JPH0819842A (en) Method and device for continuous casting
JPH10193056A (en) Method for removing inclusion in continuous casting tundish
JP4998705B2 (en) Steel continuous casting method
JP2010089152A (en) Tundish for continuous casting
JP6668567B2 (en) Tundish for continuous casting and continuous casting method using the tundish
JPH10328793A (en) Method for removing inclusion in tundish for continuous casting
JPH10328794A (en) Method for removing inclusion in tundish for continuous casting
JP6668568B2 (en) Tundish for continuous casting and continuous casting method using the tundish
JPH04238658A (en) Immersion nozzle for continuous casting
RU2741876C1 (en) Method for continuous casting of slab bills
KR100946659B1 (en) Submerged entry nozzle for continuous casting
JP4474948B2 (en) Steel continuous casting method
JP2010274321A (en) Tundish for continuous casting
KR101312768B1 (en) casting apparatus and method of manufacturing stainless steel using the same
JP2010089153A (en) Tundish for continuous casting and method for continuous casting
KR102033642B1 (en) Processing apparatus for molten material
JP6672549B2 (en) Tundish for continuous casting and continuous casting method using the tundish
RU2148469C1 (en) Metal continuous casting plant
RU2100138C1 (en) Gear treating metal in process of continuous casting

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees