JPH10190401A - Piezoelectric resonance element - Google Patents

Piezoelectric resonance element

Info

Publication number
JPH10190401A
JPH10190401A JP34902896A JP34902896A JPH10190401A JP H10190401 A JPH10190401 A JP H10190401A JP 34902896 A JP34902896 A JP 34902896A JP 34902896 A JP34902896 A JP 34902896A JP H10190401 A JPH10190401 A JP H10190401A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
piezoelectric
frequency
vibration
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34902896A
Other languages
Japanese (ja)
Inventor
Toshifumi Kiyohara
敏史 清原
Masanaga Inagaki
正祥 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34902896A priority Critical patent/JPH10190401A/en
Publication of JPH10190401A publication Critical patent/JPH10190401A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform a stabilized operation by a tertiary higher harmonic by arranging rectangular vibration electrodes facing each other so as to make the longitudinal direction be parallel to one diagonal of a piezoelectric substrate and make the width direction be parallel to the other diagonal. SOLUTION: The rectangular vibration electrodes 2a and 2b facing each other are formed on both main surfaces of a rectangular ceramic piezoelectric substrate 1. The vibration electrodes 2a and 2b are arranged so as to make the longitudinal direction be a direction parallel to one diagonal X of the piezoelectric substrate 1 and make the width direction be the direction parallel to the other diagonal Y of the piezoelectric substrate 1. When an alternating voltage is applied to the vibration electrodes 2a and 2b and the operation is performed, vibration leaked from the side of the vibration electrodes 2a and 2b is propagated to an end side for constituting the corner part of the piezoelectric substrate 1, and since intervals with the respective end sides are not uniform, a lot of spuriousness is generated. Thus, the peak valley of the resonance frequency of a fundamental wave component is reduced and an operating frequency is prevented from being moved from a tirtiary higher harmonic frequency to a fundamental wave frequency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電性セラミック
スの圧電効果を利用した圧電共振素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric resonance element utilizing the piezoelectric effect of piezoelectric ceramics.

【0002】[0002]

【従来技術】圧電共振素子は、圧電レゾネータとして、
電子機器に搭載されるICチップを動作させる発振子
に、また、通信機器に用いられる発振回路の発振子に多
用され、また、圧電フィルタとして、電子機器、通信機
器などの通信信号、音声信号などの処理回路に多用され
ている。
2. Description of the Related Art A piezoelectric resonance element is used as a piezoelectric resonator.
It is often used as an oscillator for operating an IC chip mounted on an electronic device, or as an oscillator for an oscillator circuit used in a communication device. As a piezoelectric filter, a communication signal, an audio signal, etc. of an electronic device, a communication device, etc. Is often used for the processing circuit.

【0003】特に、発振回路や信号処理等の回路の高周
波数化に伴い、例えば基本波周波数の例えば3倍の高調
波成分の共振周波数で動作させるようになっている。
In particular, as the frequency of an oscillation circuit or a circuit for signal processing or the like increases, the device is operated at a resonance frequency of a harmonic component, for example, three times the fundamental frequency.

【0004】この高調波成分の周波数で動作させるにあ
たり、高調波成分の共振周波数−基本波の共振周波数間
での周波数移動をなくして、安定動作させることが重要
である。
In operating at the frequency of the harmonic component, it is important to eliminate the frequency shift between the resonance frequency of the harmonic component and the resonance frequency of the fundamental wave and to perform stable operation.

【0005】従来の圧電共振素子は、図5に示すよう
に、圧電基板11の両主面に、互いに対向する振動電極
12a、12bを被着形成していた。尚、振動電極12
a、12bから所定プリント配線基板への接続は、圧電
共振素子の接続構造に伴い、必要に応じて、圧電基板1
1の端部に振動電極12a、12bと接続する引出電極
13a、13bなどを形成していた。尚、圧電基板11
の裏面側の振動電極は、外観斜視図の図5には現れな
い。
In a conventional piezoelectric resonance element, as shown in FIG. 5, opposing vibration electrodes 12a and 12b are formed on both main surfaces of a piezoelectric substrate 11. The vibration electrode 12
a and 12b are connected to the predetermined printed wiring board according to the connection structure of the piezoelectric resonance element.
At one end, extraction electrodes 13a and 13b connected to the vibration electrodes 12a and 12b were formed. The piezoelectric substrate 11
The vibrating electrode on the back side does not appear in FIG. 5 of the external perspective view.

【0006】前記圧電基板11は、量産性及びスプリア
ス特性を向上させる必要から矩形状平板体を用いてお
り、振動電極12a、12bは圧電基板1と相似形状と
なっていた。このような圧電基板1の互いに対向する振
動電極12a、12bに交番電圧を印加すると、共振周
波数fO で共振することになる。
The piezoelectric substrate 11 uses a rectangular flat plate because it is necessary to improve mass productivity and spurious characteristics, and the vibrating electrodes 12 a and 12 b have a similar shape to the piezoelectric substrate 1. Opposing vibrating electrode 12a of the piezoelectric substrate 1, when an alternating voltage is applied to 12b, so that resonates at the resonance frequency f O.

【0007】上述の圧電共振素子において、基本的な共
振周波数fO ではなく、3倍の周波数f3 を用いること
により、高周波動作させることができる。このような高
調波成分周波数で安定に動作させるために、3次高調波
での共振周波数f3 におけるメインピーク付近でスプリ
アスを抑制することが重要となる。具体的には、圧電基
板1の厚み、寸法、振動電極の寸法を適宜選択して動作
させていた。
In the above-described piezoelectric resonance element, high-frequency operation can be performed by using a triple frequency f 3 instead of the basic resonance frequency f O. In order to operate stably at such a harmonic component frequency, it is important to suppress spurious near the main peak at the resonance frequency f3 of the third harmonic. Specifically, the operation is performed by appropriately selecting the thickness and dimensions of the piezoelectric substrate 1 and the dimensions of the vibration electrode.

【0008】[0008]

【発明が解決しようとする課題】しかし、上述のように
3次高調波共振周波数f3 におけるメインピーク付近で
スプリアスを抑制し、ピークバレーを大きくすると、同
時に基本波共振周波数fO 付近のスプリアスも抑制さ
れ、基本波のピークバレーも比較的大きくなるため、3
次高調波共振周波数f3 から基本波共振周波数fO への
移動が発生してしまうという問題があった。
However, as described above, when the spurious is suppressed near the main peak at the third harmonic resonance frequency f 3 and the peak valley is increased, the spurious near the fundamental resonance frequency f O is also increased. Is suppressed and the peak valley of the fundamental wave becomes relatively large.
Movement from the next harmonic resonance frequency f 3 to the fundamental resonant frequency f O is a problem that occurs.

【0009】これは、圧電基板の対向する電極に交番電
圧を印加すると、ある周波数で電極から幅方向または長
さ方向に漏れた振動が、圧電基板の幅方向の端辺または
長手方向の端辺と共振し、スプリアスが発生する。しか
しながら、従来の構造においては、圧電基板の平面形状
が矩形であり、振動電極12a、12bが、圧電基板と
相似形状であるため、振動電極12a、12bの各辺と
圧電基板1の端部との間の距離が一定となるためスプリ
アスの発生が少なくなる。このことは3次高調波周波数
での振動のメインピークではスプリアスが少なく、良好
なインピーダンス特性と言えるが、同時に基本波周波数
までもスプリアスが少なく、大きなピークバレーを有す
る特性になってしまうためである。
This is because, when an alternating voltage is applied to the opposing electrodes of the piezoelectric substrate, vibrations leaking from the electrodes in the width direction or the length direction at a certain frequency cause the width edge or the length edge of the piezoelectric substrate to leak. Resonance occurs, and spurious is generated. However, in the conventional structure, the planar shape of the piezoelectric substrate is rectangular, and the vibrating electrodes 12a and 12b are similar in shape to the piezoelectric substrate, so that each side of the vibrating electrodes 12a and 12b and the end of the piezoelectric substrate 1 , The occurrence of spurious is reduced. This is because the main peak of the vibration at the third harmonic frequency has a small spurious characteristic and can be said to be a good impedance characteristic, but at the same time, the characteristic has a small spurious characteristic up to the fundamental frequency and has a large peak valley. .

【0010】本発明は上述の課題に鑑みて案出されたも
のであり、その目的は、3次高調波振動を発生させる平
板状圧電基板を用いたエネルギー閉じ込め型圧電振動子
において、3次高調波共振周波数で安定した動作が可能
な圧電共振素子を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide an energy trapping type piezoelectric vibrator using a flat piezoelectric substrate that generates third harmonic vibration. An object of the present invention is to provide a piezoelectric resonance element capable of performing a stable operation at a wave resonance frequency.

【0011】[0011]

【課題を解決をするための手段】本発明によれば、矩形
状圧電基板の両主面に、互いに対向する矩形状の振動電
極を形成してなる圧電共振素子において、前記振動電極
は、その長手方向が前記圧電基板の一方の対角線と平行
に、その幅方向が前記圧電基板の他方の対角線と平行に
なるように配置されていること特徴とする圧電共振素子
である。
According to the present invention, there is provided a piezoelectric resonance element in which rectangular vibration electrodes opposed to each other are formed on both main surfaces of a rectangular piezoelectric substrate. The piezoelectric resonance element is arranged so that a longitudinal direction is parallel to one diagonal line of the piezoelectric substrate and a width direction is parallel to the other diagonal line of the piezoelectric substrate.

【0012】[0012]

【作用】本発明の圧電共振素子によれば、矩形状の振動
電極に対して圧電基板の形状が概略菱形形状となって
る。即ち、矩形状の振動電極と圧電基板の端辺までの距
離が一様ではない。したがって、振動電極の端部から漏
れた振動が圧電基板の端辺で共振する長さを大きく変化
してスプリアスの発生が顕著となる。このスプリアスは
基本波周波数に多数発生し、結果として、基本波の波形
を劣化させ、特にピークバレーを小さくすることができ
る。これにより、動作する共振周波数が3次高調波周波
数から基本波周波数に移動することを防止し、3次高調
波周波数で安定して動作させることができる。尚、この
スプリアスの数の増加は3次高調波付近にも若干は見ら
れるが、3次高調波では振動変位分布が小さく電極の外
部へのエネルギーの漏れが少ないため、3次高調波自体
の波形は鈍ることはない。 さらに、本発明の圧電共振
素子は、概略菱形であっても、大型基板から分離切断す
る場合には、同一方向の切断分離線が互いに平行である
ため、ワイヤーソー等で一括に切断できるため、多数の
素子を容易に製造でき量産性にも優れている。
According to the piezoelectric resonance element of the present invention, the shape of the piezoelectric substrate is substantially rhombic with respect to the rectangular vibration electrode. That is, the distance between the rectangular vibration electrode and the edge of the piezoelectric substrate is not uniform. Therefore, the length of the vibration that leaks from the end of the vibrating electrode resonating at the end of the piezoelectric substrate greatly changes, and the occurrence of spurious becomes remarkable. Many of these spurious components are generated at the fundamental wave frequency, and as a result, the waveform of the fundamental wave is deteriorated, and particularly, the peak valley can be reduced. As a result, it is possible to prevent the operating resonance frequency from shifting from the third harmonic frequency to the fundamental frequency, and to stably operate at the third harmonic frequency. Although the increase in the number of spurious components is slightly observed near the third harmonic, the vibration displacement distribution is small and the energy leakage to the outside of the electrode is small in the third harmonic. The waveform does not dull. Furthermore, even if the piezoelectric resonance element of the present invention is roughly diamond-shaped, when separating and cutting from a large substrate, the cutting separation lines in the same direction are parallel to each other, so that it can be cut at a time by a wire saw or the like, A large number of elements can be easily manufactured and excellent in mass productivity.

【0013】[0013]

【発明の実施の形態】以下、本発明の圧電共振素子を図
面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a piezoelectric resonance device according to the present invention will be described with reference to the drawings.

【0014】図1は、本発明の圧電共振素子の外観斜視
図であり、図2は、その断面図である。
FIG. 1 is an external perspective view of a piezoelectric resonance element according to the present invention, and FIG. 2 is a sectional view thereof.

【0015】図において、10は圧電共振素子、1は圧
電基板、2a、2bは振動電極であある。
In FIG. 1, reference numeral 10 denotes a piezoelectric resonance element, 1 denotes a piezoelectric substrate, and 2a and 2b denote vibration electrodes.

【0016】圧電基板1は、例えばチタン酸ジルコン酸
鉛(Pb(ZrX TiX-1 )O3 (以後、PZTとい
う)) などの圧電セラミックからなり、概略矩形状とな
っている。尚、圧電基板1は、振動モードに応じた分極
処理が施されている。
The piezoelectric substrate 1 is, for example lead zirconate titanate (Pb (Zr X Ti X- 1) O 3 ( hereinafter referred to as PZT)) made of a piezoelectric ceramic such, has a substantially rectangular shape. The piezoelectric substrate 1 has been subjected to a polarization process according to the vibration mode.

【0017】振動電極2a、2bは、圧電基板1の両主
面にAg系(Ag単体やAg−PdなどのAg合金)を
主成分とする導電性ペーストの焼きつけにより形成され
る。
The vibrating electrodes 2a and 2b are formed on both main surfaces of the piezoelectric substrate 1 by baking a conductive paste mainly composed of Ag (Ag alone or an Ag alloy such as Ag-Pd).

【0018】この振動電極2a、2bは、矩形状となっ
ており、振動電極2a、2bの長辺LDが前記圧電基板
1の一方の対角線Xと平行に、その短辺WDが前記圧電
基板1の他方の対角線Yと平行になるように配置されて
いる。即ち、矩形状の振動電極2a、2bから見た時
に、圧電基板1は概略菱形形状となっている。
The vibrating electrodes 2a and 2b have a rectangular shape. The long side LD of the vibrating electrodes 2a and 2b is parallel to one diagonal line X of the piezoelectric substrate 1, and the short side WD is Are arranged in parallel with the other diagonal line Y. That is, when viewed from the rectangular vibration electrodes 2a and 2b, the piezoelectric substrate 1 has a substantially rhombic shape.

【0019】この振動電極2a、2bには、引出電極3
a、3bが形成されて、外部の回路との接続を容易にし
ている。引出電極で3a、3bは、何れも振動電極2
a、2bの形成と同時に被着形成されるものであり、例
えば、圧電基板1の一方主面に形成した振動電極2aに
は、圧電基板1の一方方向の角部にまで延出する引出電
極3aが形成されており、また、圧電基板1の他方主面
に形成した振動電極2bには、圧電基板1の一方方向の
角部と対を成す角部にまで延出する引出電極3bが形成
されている。尚、図では、引出電極3a、3bは圧電基
板1の対を成す角部に形成されているが、圧電基板1の
対をなす1対の端辺に夫々形成しても構わない。
The vibrating electrodes 2a and 2b are connected to the extraction electrode 3
a and 3b are formed to facilitate connection with an external circuit. Each of the extraction electrodes 3a and 3b is a vibrating electrode 2.
For example, a vibrating electrode 2a formed on one main surface of the piezoelectric substrate 1 has a lead electrode extending to a corner of the piezoelectric substrate 1 in one direction. A vibration electrode 2b formed on the other main surface of the piezoelectric substrate 1 is provided with a lead electrode 3b extending to a corner paired with a corner in one direction of the piezoelectric substrate 1. Have been. In the drawing, the extraction electrodes 3a and 3b are formed at corners forming a pair of the piezoelectric substrates 1, but may be formed at a pair of end sides forming a pair of the piezoelectric substrates 1, respectively.

【0020】このような圧電共振素子10は、対向する
振動電極2a、2b間に引出電極3a、3bを介して所
定交番電圧を印加して用いられる。
Such a piezoelectric resonance element 10 is used by applying a predetermined alternating voltage between the opposing vibrating electrodes 2a and 2b via the extraction electrodes 3a and 3b.

【0021】以上の構成の圧電共振素子10では、概略
菱形形状の圧電基板1に対して、その2つの対角線X、
Yに対して、各辺が平行となるような矩形状の振動電極
2a、2bが形成されている。従って、矩形状の振動電
極2a、2bの端辺と圧電基板1の端辺との間には、圧
電基板1の角部付近で概略三角形状の圧電セラミック露
出部分が発生することになる。
In the piezoelectric resonance element 10 having the above-described structure, the two diagonal lines X,
Rectangular vibration electrodes 2a and 2b are formed such that each side is parallel to Y. Therefore, between the edges of the rectangular vibration electrodes 2 a and 2 b and the edges of the piezoelectric substrate 1, substantially triangular piezoelectric ceramic exposed portions are generated near the corners of the piezoelectric substrate 1.

【0022】圧電共振素子10に所定交番電圧を印加し
て動作させた場合には、互いに対向する振動電極2a、
2bの辺から漏れた振動は、圧電基板1の角部を構成す
る端辺(振動電極2a、2bの一辺から見た時には2つ
の斜辺)に伝搬するが、夫々の端辺が傾斜しており、そ
の間の間隔が一様でないため、多数のスプリアスが発生
する。このスプリアスは、基本波成分の共振周波数の付
近に多数発生する。
When the piezoelectric resonance element 10 is operated by applying a predetermined alternating voltage, the vibration electrodes 2a,
The vibration leaked from the side 2b propagates to the edges (two oblique sides when viewed from one side of the vibrating electrodes 2a and 2b) constituting the corners of the piezoelectric substrate 1, but each edge is inclined. Since the intervals between them are not uniform, many spurs occur. Many spurs occur near the resonance frequency of the fundamental wave component.

【0023】これにより、基本波成分の共振周波数の付
近では、スプリアスが合成され、波形が鈍くなってしま
い、その結果、基本波成分の共振周波数のピークバレー
を減少させることができる。
As a result, in the vicinity of the resonance frequency of the fundamental wave component, spurious signals are synthesized, and the waveform becomes dull. As a result, the peak valley of the resonance frequency of the fundamental wave component can be reduced.

【0024】したがって、3次高調波成分で共振動作す
る圧電共振素子において、基本波成分の共振周波数部分
へ移動することが有効に抑えられ、3次高調波成分の共
振周波数で安定して動作させることができる。
Therefore, in the piezoelectric resonance element which resonates with the third harmonic component, the movement to the resonance frequency portion of the fundamental wave component is effectively suppressed, and the piezoelectric resonance element is stably operated at the resonance frequency of the third harmonic component. be able to.

【0025】次に、本発明の圧電共振素子の製造方法を
詳細に説明する。本発明の圧電共振素子は、例えば、所
定の電気特性が得られるように調合したPZT系セラミ
ック原料を湿式混合し、この混合物を脱水、乾燥した
後、800〜1200℃で1〜3時間仮焼し、当該仮焼
物を再びボールミルで粉砕する。
Next, a method for manufacturing the piezoelectric resonance element of the present invention will be described in detail. The piezoelectric resonance element of the present invention is obtained, for example, by wet-mixing a PZT-based ceramic raw material prepared so as to obtain predetermined electric characteristics, dehydrating and drying the mixture, and then calcining at 800 to 1200 ° C. for 1 to 3 hours. Then, the calcined product is pulverized again by a ball mill.

【0026】次に、この粉砕物に有機バインダーを混合
し、ドクターブレード法、あるいは押し出し成形法等で
所定厚みの大型シート体を形成する。
Next, an organic binder is mixed with the pulverized material, and a large-sized sheet body having a predetermined thickness is formed by a doctor blade method, an extrusion molding method or the like.

【0027】次に、この大型シート体の両主面の概略菱
形形状の素子領域に、矩形状の振動電極2a、2bとな
る導体膜及び引出電極3a、3bとなる導体膜をAg−
Pd等の導電性ペーストを印刷する。
Next, in the substantially rhombic element regions on both main surfaces of the large sheet body, a conductor film serving as the rectangular vibrating electrodes 2a and 2b and a conductor film serving as the lead electrodes 3a and 3b are Ag-coated.
Print a conductive paste such as Pd.

【0028】その後、大気中において所定温度で脱バイ
ンダーを行い、大気中で1200〜1300℃の温度に
て2〜6時間焼成し、多数個が取りが可能な大型共振素
子基板を作製する。次に大型共振素子基板の両端面に形
成された電極面に150℃程度で硬化するポリマーを含
んだAgペースト(導電性ポリマー)を印刷し、硬化後
所定温度のシリコンオイル中で3KV/mm程度の電界
を印加して分極処理を行い、その後、導電性ポリマーを
水洗して洗い落とす。
After that, the binder is removed at a predetermined temperature in the air, and baked in the air at a temperature of 1200 to 1300 ° C. for 2 to 6 hours to produce a large-sized resonant element substrate from which a large number can be obtained. Next, an Ag paste (conductive polymer) containing a polymer that cures at about 150 ° C. is printed on the electrode surfaces formed on both end faces of the large-sized resonance element substrate, and after curing, about 3 KV / mm in silicon oil at a predetermined temperature. The electric field is applied to perform the polarization treatment, and then the conductive polymer is washed off with water.

【0029】この分極処理を施した大型共振素子基板
を、所定の形状になるようにワイヤーソーやダイシング
ソーにより個々に切断して、図1に示す圧電共振素子と
する。
The large-sized resonant element substrate that has been subjected to the polarization processing is individually cut by a wire saw or a dicing saw into a predetermined shape to obtain a piezoelectric resonant element shown in FIG.

【0030】尚、分極を安定化させるために、分極処理
後150〜250℃で1時間の熱エージングを行っても
良い。
Incidentally, in order to stabilize the polarization, heat aging may be performed at 150 to 250 ° C. for 1 hour after the polarization treatment.

【0031】[0031]

【実施例】本発明者は、本発明品として、一辺の長さが
縦2.34mm、長い方の対角線の長さが4.50m
m、短い方の対角線の長さが1.30mm、厚みが0.
224mmの圧電基板1を用いて、両主面の中央部に、
一辺が0.5mmの矩形状の振動電極2a、2bを形成
した。この時、振動電極2a、2bの一方対の辺を、圧
電基板1の長い方の対角線Xに平行に、もう一方対の辺
を、圧電基板1の短い方の対角線Yに平行になるように
形成した。尚、振動電極2a、2bの厚みは、0.01
mmとした。また、従来品として、縦4.5mm、横
1.28mm、厚み0.224mmの矩形状の圧電基板
の両主面に、一辺が0.5mmの矩形状の振動電極をを
形成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The inventor of the present invention has a product having a length of one side of 2.34 mm and a longer diagonal of 4.50 m.
m, the length of the shorter diagonal is 1.30 mm, and the thickness is 0.3 mm.
Using a 224 mm piezoelectric substrate 1, at the center of both main surfaces,
The rectangular vibration electrodes 2a and 2b each having a side of 0.5 mm were formed. At this time, one side of the vibrating electrodes 2a, 2b is parallel to the longer diagonal line X of the piezoelectric substrate 1, and the other pair is parallel to the shorter diagonal line Y of the piezoelectric substrate 1. Formed. The thickness of the vibrating electrodes 2a and 2b is 0.01
mm. As a conventional product, a rectangular vibration electrode having a side of 0.5 mm was formed on both main surfaces of a rectangular piezoelectric substrate having a length of 4.5 mm, a width of 1.28 mm and a thickness of 0.224 mm.

【0032】それぞれの試料の振動電極に交番電流を印
加し、圧電共振素子のインピーダンス特性の評価を、イ
ンピーダンスアナライザーを用いて、基本波近辺と3次
高調波近辺について測定した。その結果を図3、図4に
示す。図3(a)は、本発明品の基本波付近のインピー
ダンス特性であり、図3(b)は、3次高調波付近のイ
ンピーダンス特性である。また、図4(a)は、従来品
の基本波付近のインピーダンス特性であり、図4(b)
は、3次高調波付近のインピーダンス特性である。
An alternating current was applied to the vibrating electrodes of each sample, and the impedance characteristics of the piezoelectric resonance element were evaluated for the vicinity of the fundamental wave and the vicinity of the third harmonic using an impedance analyzer. The results are shown in FIGS. FIG. 3A shows the impedance characteristics near the fundamental wave of the product of the present invention, and FIG. 3B shows the impedance characteristics near the third harmonic. FIG. 4A shows the impedance characteristics near the fundamental wave of the conventional product, and FIG.
Is the impedance characteristic near the third harmonic.

【0033】図3(a)と図4(a)とを比較して、本
発明品の図3(a)では、基本波成分付近で多数で且つ
複雑なスプリアスを発生させることができ、従来品の図
4(a)では、図3(a)に比較してスプリアスの発生
が少ないことがわかる。しかも、基本波のピークバーレ
については、本発明品の図3(a)では、多数で且つ複
雑なスプリアスによって、ピークバーレの値が小さく、
また不鮮明な状態となる。これに対して、従来品の図4
(a)では、ピークバーレの値が大きく、鮮明な状態で
あることが理解できる。
By comparing FIG. 3 (a) with FIG. 4 (a), FIG. 3 (a) of the product of the present invention can generate a large number of complicated spurs near the fundamental wave component, In FIG. 4 (a) of the product, it can be seen that the occurrence of spurious is less than in FIG. 3 (a). Moreover, as for the peak valley of the fundamental wave, in FIG. 3A of the product of the present invention, the value of the peak valley is small due to a large number of complicated spurious components.
In addition, it becomes unclear. On the other hand, FIG.
In (a), it can be understood that the value of the peak barre is large and the state is clear.

【0034】即ち、3次高調波で動作させる圧電共振素
子で、従来品では3次高調波から基本波へ周波数移動が
発生しやすく、本発明では3次高調波から基本波へ周波
数移動が発生しにくいことが理解できる。
That is, a piezoelectric resonance element operated by the third harmonic, the frequency shift easily occurs from the third harmonic to the fundamental wave in the conventional product, and the frequency shift occurs from the third harmonic to the fundamental wave in the present invention. It can be understood that it is difficult to do.

【0035】また、3次高調波のインピーダンス特性を
示す図3(b)と図4(b)で比較すると、本発明の図
3(b)では、3次高調波成分付近で若干のスプリアス
が発生しているが、その振幅は比較的小さく、3次高調
波成分のピークバレー値は、従来(図4(b))に比較
して遜色のないものであることが理解できる。
Further, comparing FIG. 3B and FIG. 4B showing the impedance characteristics of the third harmonic, FIG. 3B of the present invention shows that a slight spurious is found near the third harmonic component. Although it is generated, its amplitude is relatively small, and it can be understood that the peak valley value of the third harmonic component is comparable to the conventional one (FIG. 4B).

【0036】即ち、本発明品では、3次高調波成分の共
振周波数で安定して動作させることができ、基本波成分
の共振周波数に移動しにくい圧電共振素子であることが
理解できる。
That is, it can be understood that the product of the present invention is a piezoelectric resonance element which can be stably operated at the resonance frequency of the third harmonic component and is hard to move to the resonance frequency of the fundamental wave component.

【0037】上述の実施例では、圧電基板1と振動電極
2a、2bとの形状関係が明確になるように、圧電基板
1として菱形形状で説明したが、圧電基板1の形状は、
平行四辺形状(特別な場合として、正方形形状、長方形
状を含む)としても構わない。これは、大型シート体
(大型共振素子基板)から各素子を切断分離するにあた
り、大型シート体にロスが発生せず、生産効率を高める
ためである。
In the above embodiment, the piezoelectric substrate 1 has been described as having a rhombic shape so that the shape relationship between the piezoelectric substrate 1 and the vibrating electrodes 2a and 2b is clear.
The shape may be a parallelogram (including a square shape and a rectangular shape as a special case). This is because, when each element is cut and separated from the large sheet body (large resonance element substrate), no loss occurs in the large sheet body and the production efficiency is increased.

【0038】また、振動電極2a、2bが矩形状であ
り、且つその長辺LDが、前記圧電基板1の一方の対角
線Xに平行に、その短辺WDが前記圧電基板1の他方の
対角線Yに平行になるように配置するのは、上述のよう
に、振動電極2a、2bの周囲に露出する圧電基板1の
表面を異形(概略圧電基板の角部を頂点とする三角形と
みなせる形状)にして、基本波成分での特性を劣化させ
るここと、及び圧電基板1の両主面に振動電極2a、2
bとを所定面積で対向させる上で、両主面での振動電極
2a、2bの位置決めが必要であるためである。即ち、
本発明のように、幾何学的な基準を明確にすることによ
り、振動電極2a、2bの形成の位置決めが非常に簡単
になる。
The vibrating electrodes 2a and 2b are rectangular, and the long side LD is parallel to one diagonal line X of the piezoelectric substrate 1 and the short side WD is the other diagonal line Y of the piezoelectric substrate 1. As described above, the surface of the piezoelectric substrate 1 exposed around the vibrating electrodes 2a and 2b is formed in an irregular shape (a shape that can be regarded as a triangle having the corners of the piezoelectric substrate as vertices) as described above. Here, the vibrating electrodes 2a, 2b,
This is because the positioning of the vibrating electrodes 2a and 2b on both main surfaces is required in order to make the electrodes b and b have a predetermined area. That is,
Clarifying the geometric criteria, as in the present invention, greatly simplifies the positioning of the formation of the vibrating electrodes 2a, 2b.

【0039】[0039]

【発明の効果】以上のように本発明は、矩形状の振動電
極の周囲で、圧電基板の端辺との間で共振する振動を積
極的に発生させて、基本波近辺に多数のスプリアスを発
生させることにより、基本波の波形を鈍らせ、基本波の
ピークバレーの値を小さくすることで、発振周波数が3
次高調波から基本波に移動することを抑え、正常で安定
した3次高調波の圧電共振素子が得られる。
As described above, according to the present invention, a large number of spurious components are generated in the vicinity of the fundamental wave by positively generating vibration that resonates with the edge of the piezoelectric substrate around the rectangular vibration electrode. This causes the waveform of the fundamental wave to become dull, and the value of the peak valley of the fundamental wave to be reduced, so that the oscillation frequency becomes 3
It is possible to suppress the shift from the second harmonic to the fundamental wave, and obtain a normal and stable third harmonic piezoelectric resonance element.

【0040】また、圧電基板が実質的に矩形状であるた
め、生産性が非常に安定して生産効率が劣化することが
ない。
Further, since the piezoelectric substrate is substantially rectangular, the productivity is very stable and the production efficiency does not deteriorate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の圧電共振素子を示す外観斜視図であ
る。
FIG. 1 is an external perspective view showing a piezoelectric resonance element of the present invention.

【図2】本発明の圧電共振素子を示す断面図である。FIG. 2 is a sectional view showing a piezoelectric resonance element of the present invention.

【図3】本発明の圧電共振素子の周波数−インピーダン
ス特性を示し、(a)は基本波付近の特性図であり、
(b)は3次高調波成分付近の特性図である。
3A and 3B show frequency-impedance characteristics of the piezoelectric resonance element of the present invention, and FIG. 3A is a characteristic diagram near a fundamental wave;
(B) is a characteristic diagram around the third harmonic component.

【図4】従来の圧電共振素子の周波数−インピーダンス
特性を示し、(a)は基本波付近の特性図であり、
(b)は3次高調波成分付近の特性図である。
FIG. 4 shows a frequency-impedance characteristic of a conventional piezoelectric resonance element, where (a) is a characteristic diagram near a fundamental wave;
(B) is a characteristic diagram around the third harmonic component.

【図5】従来の圧電共振素子を示す外観斜視図である。FIG. 5 is an external perspective view showing a conventional piezoelectric resonance element.

【符号の説明】[Explanation of symbols]

10 ・・圧電共振素子 1 ・・・圧電基板 2a、2b・・・振動電極 3a、3b・・・引出電極 10 Piezoelectric resonance element 1 Piezoelectric substrate 2a, 2b Vibration electrode 3a, 3b Leader electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】矩形状圧電基板の両主面に、互いに対向す
る矩形状の振動電極を形成してなる圧電共振素子におい
て、 前記振動電極は、その長手方向が前記圧電基板の一方の
対角線と平行に、その幅方向が前記圧電基板の他方の対
角線と平行になるように配置されていること特徴とする
圧電共振素子。
1. A piezoelectric resonance element in which rectangular vibration electrodes opposed to each other are formed on both main surfaces of a rectangular piezoelectric substrate, wherein the vibration electrode has a longitudinal direction which corresponds to one diagonal line of the piezoelectric substrate. A piezoelectric resonance element, which is arranged in parallel so that its width direction is parallel to the other diagonal line of the piezoelectric substrate.
JP34902896A 1996-12-26 1996-12-26 Piezoelectric resonance element Pending JPH10190401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34902896A JPH10190401A (en) 1996-12-26 1996-12-26 Piezoelectric resonance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34902896A JPH10190401A (en) 1996-12-26 1996-12-26 Piezoelectric resonance element

Publications (1)

Publication Number Publication Date
JPH10190401A true JPH10190401A (en) 1998-07-21

Family

ID=18401008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34902896A Pending JPH10190401A (en) 1996-12-26 1996-12-26 Piezoelectric resonance element

Country Status (1)

Country Link
JP (1) JPH10190401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319720A (en) * 2001-04-20 2002-10-31 Murata Mfg Co Ltd Method for controlling temperature characteristic of piezoelectric ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319720A (en) * 2001-04-20 2002-10-31 Murata Mfg Co Ltd Method for controlling temperature characteristic of piezoelectric ceramic

Similar Documents

Publication Publication Date Title
KR100313694B1 (en) Surface micromachined acoustic wave piezoelectric crystal
US6362561B1 (en) Piezoelectric vibration device and piezoelectric resonance component
JP3206285B2 (en) Edge reflection type surface acoustic wave resonator
JPH06252688A (en) Piezoelectric resonator
US7745980B2 (en) Piezoelectric resonant element and piezoelectric resonator using the same
JP2001211052A (en) Piezoelectric resonator
JPH10190401A (en) Piezoelectric resonance element
JPH11168346A (en) Piezoelectric resonator, frequency adjustment method for piezoelectric resonator and communication equipment
US4455503A (en) Rectangular piezoelectric resonator with a slot in one surface
JPS6261170B2 (en)
JPH09181556A (en) Piezoelectric vibrator
JPH10215140A (en) Piezoelectric resonator and electronic component using the resonator
KR100340400B1 (en) A method for producing the monolithic filter
JP3239399B2 (en) Surface wave device
KR100298893B1 (en) A electode devision type piezo-electric filter
JP2727969B2 (en) Method of manufacturing piezoelectric ceramic transformer having comb-shaped electrode
JP3301901B2 (en) Piezoelectric resonator
JPH05226962A (en) Oscillator
JPS6165511A (en) Energy confinement type piezoelectric filter and its manufacture
JPH1075149A (en) Surface acoustic wave device, resonator, and filter
JP2004297457A (en) Piezoelectric resonator with built-in capacitor element, and piezoelectric oscillation apparatus
JPS58137319A (en) High frequency piezoelectric oscillator
JPH06260696A (en) Partially polarizing method for piezoelectric element
JPH0583079A (en) Piezoelectric element and its manufacture
JPS63107214A (en) Piezoelectric vibrating component and its manufacture