JPH10190042A - Semiconductor photodetector and its manufacture - Google Patents

Semiconductor photodetector and its manufacture

Info

Publication number
JPH10190042A
JPH10190042A JP9052760A JP5276097A JPH10190042A JP H10190042 A JPH10190042 A JP H10190042A JP 9052760 A JP9052760 A JP 9052760A JP 5276097 A JP5276097 A JP 5276097A JP H10190042 A JPH10190042 A JP H10190042A
Authority
JP
Japan
Prior art keywords
layer
light
semiconductor
light receiving
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9052760A
Other languages
Japanese (ja)
Other versions
JP3620761B2 (en
Inventor
Hideki Fukano
秀樹 深野
Kazutoshi Kato
和利 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP05276097A priority Critical patent/JP3620761B2/en
Publication of JPH10190042A publication Critical patent/JPH10190042A/en
Application granted granted Critical
Publication of JP3620761B2 publication Critical patent/JP3620761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor photodetector which has high reliability although the photodetector is constituted to directly combine light rays made incident to the photodetector from the lateral direction at a high efficiency. SOLUTION: A semiconductor photodetector is constituted by providing grown layers composed of a first semiconductor layer 12 having a first conductivity, a second semiconductor layer 14 having a second conductivity, and a photodetector layer 13 held between the semiconductor layers 12 and 14 on a substrate 15. On the end faces of the layers 12, 13, and 14 and substrate 15, a light incident end face 11 tilted inward as becoming farther from the surface is provided so that incident light can be refracted on the end face 11 and can press through the photodetecting layer 13 obliquely to the thickness direction of the layer 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体受光素子及
びその製造方法に関する。
The present invention relates to a semiconductor light receiving device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の半導体受光素子は、図2(a)
(b)に示すように、光の入射方向によって異なる構造
となっている。
2. Description of the Related Art A conventional semiconductor light receiving element is shown in FIG.
As shown in (b), the structure differs depending on the incident direction of light.

【0003】即ち、図2(a)に示す面型半導体受光素
子では、光の入射方向は上面若しくは下面に限られ、光
ファイバや光導波路等と横方向から直接光結合を行うこ
とができない欠点がある。尚、図2(a)において、2
1aは光入射面、22aはp−InP層、23aはInG
aAs光吸収層、24aはn−InP層、25aはn−In
P基板、26aはp電極、27aはn電極である。
That is, in the surface type semiconductor light receiving element shown in FIG. 2A, the incident direction of light is limited to the upper surface or the lower surface, and it is not possible to perform direct optical coupling with an optical fiber, an optical waveguide, or the like from the lateral direction. There is. Incidentally, in FIG.
1a is a light incident surface, 22a is a p-InP layer, 23a is InG
aAs light absorbing layer, 24a is n-InP layer, 25a is n-In
A P substrate, 26a is a p electrode, and 27a is an n electrode.

【0004】一方、図2(b)に示す光導波路型半導体
受光素子では、光は横方向から入射でき、光ファイバや
光導波路と横方向から直接光結合を行うことができる。
尚、図2(b)において、21bは光入射端面、221
bはp−InP層、222bはp−InGaAsP光ガイド
層、23bはInGaAs光吸収層、24bはn−InGa
AsP光ガイド層、25bはn−InP基板、26bはp
電極、27bはn電極である。
On the other hand, in the optical waveguide type semiconductor light receiving device shown in FIG. 2 (b), light can be incident from the lateral direction, and can be directly optically coupled to the optical fiber or the optical waveguide from the lateral direction.
In FIG. 2B, reference numeral 21b denotes a light incident end face,
b is a p-InP layer, 222b is a p-InGaAsP light guide layer, 23b is an InGaAs light absorption layer, and 24b is n-InGa.
AsP light guide layer, 25b is n-InP substrate, 26b is p
The electrode 27b is an n-electrode.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、石英系
光ファイバや光導波路は光のスポット径が約10μm程度
あり、これらと高効率で直接光結合を行うためには、半
導体受光素子の半導体成長層厚が約10μm程度必要とな
る。
However, quartz optical fibers and optical waveguides have a light spot diameter of about 10 μm, and in order to perform direct optical coupling with these optical fibers with high efficiency, it is necessary to use a semiconductor growth layer of a semiconductor light receiving element. A thickness of about 10 μm is required.

【0006】このような、厚い混晶組成の半導体層の成
長は容易ではなく、組成のずれや格子欠陥、転移の発生
等により暗電流の増加や信頼性の劣化という問題点があ
る。
It is not easy to grow such a semiconductor layer having a thick mixed crystal composition, and there is a problem that the dark current increases and the reliability is deteriorated due to a composition shift, a lattice defect, a transition, or the like.

【0007】本発明の目的は、横方向からの光入射に対
し、直接光結合で高効率でありながら、信頼性の高い半
導体受光素子及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor light receiving element which is highly efficient by direct optical coupling with respect to light incident from the lateral direction and has high reliability, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】斯かる目的を達成する本
発明の請求項1に係る半導体受光素子は、第1の導電形
を有する第1の半導体層、第2の導電形を有する第2の
半導体層及び前記第1の半導体層と第2の半導体層に挟
まれた光受光層とからなる成長層を基板上に設けてなる
半導体受光素子において、前記成長層及び前記基板の端
面には、表面側から離れるに従い内側に傾斜した光入射
端面を設けることにより、該光入射端面で入射光を屈折
させて、前記光受光層を入射光が層厚方向に対し斜めに
通過するようにし、光吸収層で入射光が吸収され高効率
で電流として検出できるものである。
According to a first aspect of the present invention, there is provided a semiconductor light receiving device having a first semiconductor layer having a first conductivity type and a second semiconductor layer having a second conductivity type. A semiconductor light-receiving element in which a growth layer comprising a semiconductor layer and a light-receiving layer sandwiched between the first semiconductor layer and the second semiconductor layer is provided on a substrate; By providing a light incident end face that is inclined inward as away from the surface side, the incident light is refracted at the light incident end face so that the incident light passes through the light receiving layer obliquely to the layer thickness direction, The incident light is absorbed by the light absorbing layer and can be detected as a current with high efficiency.

【0009】このように、入射光が光入射端面で屈折し
て、光の吸収層に対し、斜めに光が通過することによ
り、実効的に光吸収長が長くなるため従来の面型半導体
受光素子に比べ吸収層厚が薄くて済む。また、横方向入
射型の導波路型半導体受光素子と比べても1/2から1
/3程度の半導体成長層厚で済む。このように、従来技
術とは、横方向光入射が可能でありながら、光ファイバ
や光導波路と直接光結合に対し薄い半導体成長層厚で高
効率な受光ができるという点が異なる。
As described above, the incident light is refracted at the light incident end face, and the light obliquely passes through the light absorbing layer, thereby effectively increasing the light absorption length. The thickness of the absorbing layer can be smaller than that of the device. In addition, compared with a lateral incidence type waveguide type semiconductor light receiving element, it is か ら to 1
A semiconductor growth layer thickness of about / 3 is sufficient. As described above, the present embodiment is different from the prior art in that light can be received in a highly efficient manner with a thin semiconductor growth layer with respect to direct optical coupling with an optical fiber or an optical waveguide, while allowing lateral light incidence.

【0010】更に、上記目的を達成する本発明の請求項
2又は3に係る半導体受光素子の製造方法は、真性又は
第1の導電形を有する第1の半導体層と、前記第1の半
導体層と同じく第1の導電形を有する第2の半導体層及
び前記第1の半導体層と第2の半導体層に挟まれた光受
光層とからなる成長層を基板上に設ける一方、表面側の
前記半導体層の主たる内側部分又は前記受光層の一部分
を含んで表面側の前記半導体層の主たる内側部分を、不
純物の拡散によって、或いは、イオン注入法及びその後
のアニールによって、選択的に第2の導電形に転換し、
更に、前記成長層及び前記基板の端面には、表面側から
離れるに従い内側に傾斜した光入射端面を設けることに
より、該光入射端面で入射光を屈折させて、前記光受光
層を入射光が層厚方向に対し斜めに通過するようにした
ことを特徴とする。
Further, the method of manufacturing a semiconductor light receiving device according to claim 2 or 3 of the present invention, which achieves the above object, comprises: a first semiconductor layer having an intrinsic or first conductivity type; A second semiconductor layer having the same first conductivity type and a growth layer comprising a light receiving layer sandwiched between the first semiconductor layer and the second semiconductor layer are provided on the substrate, The main inner part of the semiconductor layer or the main inner part of the semiconductor layer on the surface side including the part of the light receiving layer is selectively made to have a second conductive property by diffusion of impurities or by ion implantation and subsequent annealing. Convert to shape,
Further, by providing a light incident end face which is inclined inward as the distance from the front side is increased, the incident light is refracted at the light incident end face, so that the incident light passes through the light receiving layer. It is characterized by passing obliquely to the layer thickness direction.

【0011】このように、第1の半導体層の主たる内側
部分又は前記受光層の一部分を含んで表面側の前記半導
体層の主たる内側部分を第2の導電形に転換し、第1の
半導体層の端面部分を第1の導電形としておくことによ
り、半導体の表面若しくは端面を流れ易い暗電流が流れ
にくくなり、その値を二桁程度減少させることができ
る。
As described above, the main inner portion of the first semiconductor layer or the main inner portion of the semiconductor layer including the part of the light receiving layer on the front surface side is converted into the second conductivity type, and the first semiconductor layer is formed. By setting the end face portion of the first conductivity type, a dark current that easily flows on the surface or the end face of the semiconductor does not easily flow, and the value can be reduced by about two digits.

【0012】上記目的を達成する本発明の請求項4に係
る半導体受光素子は、第1の導電形を有する半導体層上
にあって、真性又は第1の導電形の半導体層、超格子半
導体層又は多重量子井戸半導体層よりなる光吸収層とシ
ョットキー電極との間に、前記光吸収層と前記ショット
キー電極との間のショットキー障壁よりも高いショット
キー障壁を前記ショットキー電極に対して有するショッ
トキーバリアハイトの高い半導体層を介在した多層構造
を基板上に構成してなる半導体受光素子において、前記
多層構造及び前記基板の端面に、表面側から離れるに従
い内側に傾斜した光入射端面を設けることにより、該光
入射端面で入射光を屈折させて、前記光吸収層を入射光
が層厚方向に対し斜めに通過するようにしたことを特徴
とする。
According to a fourth aspect of the present invention, there is provided a semiconductor light-receiving element having a first conductivity type, a semiconductor layer of an intrinsic or first conductivity type, and a superlattice semiconductor layer. Or, between the Schottky electrode and the light absorption layer made of a multiple quantum well semiconductor layer, a Schottky barrier higher than the Schottky barrier between the light absorption layer and the Schottky electrode with respect to the Schottky electrode In a semiconductor light receiving element having a multi-layer structure having a semiconductor layer having a high Schottky barrier height on a substrate, a light incident end surface inclined inward as the distance from the front surface increases is increased at an end surface of the multi-layer structure and the substrate. By providing the light incident end face, the incident light is refracted at the light incident end face so that the incident light passes through the light absorbing layer obliquely with respect to the thickness direction.

【0013】このように、光吸収層とショットキー電極
との間に、いわゆる、ショットキーバリアハイトの高い
半導体層を介在したため、受光素子全体をpn接合半導
体層なしで構成でき、不純物拡散等によるpn接合が不
要となり、pn接合部分が光吸収層を介して端面に露出
することもなくなるため、暗電流が小さくて済む利点が
ある他、入射光が光吸収層に対して斜めに通過するた
め、実効的に光吸収長が長くなり従来の面型半導体受光
素子に比べ吸収層厚が薄くて済む等請求項1記載の半導
体受光素子と同様な作用を奏する。
As described above, since the so-called semiconductor layer having a high Schottky barrier height is interposed between the light absorbing layer and the Schottky electrode, the entire light receiving element can be formed without the pn junction semiconductor layer, and the light receiving element is formed by impurity diffusion or the like. Since the pn junction is not required and the pn junction is not exposed to the end face via the light absorbing layer, there is an advantage that the dark current is small, and the incident light passes obliquely to the light absorbing layer. The same effect as the semiconductor light receiving element according to the first aspect is obtained, for example, the light absorption length is effectively increased and the absorption layer thickness is reduced as compared with the conventional surface type semiconductor light receiving element.

【0014】上記目的を達成する本発明の請求項5又は
6に係る半導体受光素子は、請求項4において、前記シ
ョットキーバリアハイトの高い半導体層は、In1-x-y
axAlyAs(0≦x≦1,0≦y≦1)よりなること、
In1-x-yGaxAlyAs(0≦x≦1,0≦y≦1)とそ
の上の薄いIn1-uGauAs1-vv(0≦u≦1,0≦v
≦1)よりなることを特徴とし、上記目的を達成する本
発明の請求項7に係る半導体受光素子は、請求項4〜6
において、前記光吸収層と前記ショットキーバリアハイ
トの高い半導体層との間に、前記光吸収層と同一の組成
から前記ショットキーバリアハイトの高い半導体層と同
一の組成へと連続的又は階段的に変化する組成勾配を有
する傾斜組成層を介装したことを特徴とする。
According to a fifth or sixth aspect of the present invention, there is provided a semiconductor light receiving device according to the fourth aspect of the present invention, wherein the semiconductor layer having a high Schottky barrier height is made of In 1-xy G.
a x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1)
In 1-xy Ga x Al y As (0 ≦ x ≦ 1,0 ≦ y ≦ 1) thin on the Part In 1-u Ga u As 1 -v P v (0 ≦ u ≦ 1,0 ≦ v
.Ltoreq.1), wherein the semiconductor light receiving element according to claim 7 of the present invention which achieves the above object is provided as claims 4-6.
Wherein between the light absorbing layer and the semiconductor layer having a high Schottky barrier height, a continuous or stepwise transition from the same composition as the light absorbing layer to the same composition as the semiconductor layer having a high Schottky barrier height A gradient composition layer having a composition gradient that changes to

【0015】上記目的を達成する本発明の請求項8に係
る半導体受光素子は前記光吸収層の層厚方向の基板側下
面と、半導体表面に平行方向をなし前記半導体受光素子
の光入射端面を介して光結合するように設けてなる光導
波路の光軸中心の高低差が、次式のZh+30%により与え
られる値程度より小さくなるようにしたことを特徴とす
る。 Zh+30%=nπω0 2(0.3)1/2/λsin(φ) ただし、nは波長λの光に対する半導体の屈折率、πは
円周率、ω0は光導波路のスポットサイズ(矩形導波路
等の場合は、その導波路を特徴づける等価的スポットサ
イズ)、φは屈折した光の光軸中心と光吸収層のなす角
である。
According to another aspect of the present invention, there is provided a semiconductor light receiving device, comprising: a lower surface on a substrate side in a thickness direction of the light absorbing layer; and a light incident end face of the semiconductor light receiving device which is parallel to the semiconductor surface. The height difference at the center of the optical axis of the optical waveguide provided so as to be optically coupled through the optical waveguide is smaller than the value given by Zh + 30% in the following equation. Zh + 30% = nπω 0 2 (0.3) 1/2 / λsin (φ) where n is the refractive index of the semiconductor with respect to light of wavelength λ, π is the circular constant, and ω 0 is the spot size of the optical waveguide ( In the case of a rectangular waveguide or the like, an equivalent spot size characterizing the waveguide), and φ is the angle between the optical axis center of the refracted light and the light absorbing layer.

【0016】[0016]

【発明の実施の形態】本発明では、入射光が入射面での
屈折により、光吸収層を斜めに通過するため、実効的な
光吸収長が長くなるため、従来の面型半導体受光素子に
比べ、吸収層厚が薄くて済む。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, since the incident light passes through the light absorbing layer obliquely due to refraction on the incident surface, the effective light absorption length becomes longer. In comparison, the thickness of the absorbing layer can be reduced.

【0017】このため、ウェハ成長において、成長組成
のずれや格子欠陥、転移の発生等が少なくなり、暗電流
の小さい、信頼性の高い素子の製作が可能となる。ま
た、吸収層厚が薄くて済むため、吸収層が低い電圧で完
全に空乏化され、低印加電圧で極めて高い受光感度が得
られる。
For this reason, in the growth of the wafer, the occurrence of a shift in the growth composition, lattice defects, dislocation, and the like are reduced, and a highly reliable device having a small dark current can be manufactured. In addition, since the absorption layer can be made thin, the absorption layer is completely depleted at a low voltage, and an extremely high light receiving sensitivity can be obtained at a low applied voltage.

【0018】更に、通常、下面から光を入射するタイプ
の受光素子では、基板厚である100μm程度の光路長
があるため、その間の光の広がりを考慮して素子サイズ
を大きくしておく必要があるが、本発明の場合は、光路
長としてせいぜい数十μm程度で済むため、素子サイズ
が小さくなり、素子容量が小さくできる。
Further, since a light receiving element of a type in which light is incident from the lower surface usually has an optical path length of about 100 μm which is the substrate thickness, it is necessary to increase the element size in consideration of the spread of light therebetween. However, in the case of the present invention, since the optical path length can be at most about several tens of μm, the element size can be reduced and the element capacitance can be reduced.

【0019】同様に、導波路型半導体受光素子でも、十
分な受光感度を得るためには、100μm程度以上の素
子長が必要となるが、本発明では、素子長が数十μm程
度で済むため、素子容量が小さくできる。
Similarly, in order to obtain a sufficient light-receiving sensitivity, a waveguide-type semiconductor light-receiving element also needs an element length of about 100 μm or more. However, in the present invention, the element length is about several tens μm. In addition, the element capacitance can be reduced.

【0020】更に、光吸収層とショットキー電極との間
に、いわゆる、ショットキーバリアハイトの高い半導体
層を介在したときには、受光素子全体をpn接合半導体
層なしで構成でき、不純物拡散等によるpn接合が不要
となり、pn接合部分が光吸収層を介して端面に露出す
ることもなくなるため、暗電流が小さくて済む利点があ
る。
Further, when a semiconductor layer having a so-called high Schottky barrier height is interposed between the light absorbing layer and the Schottky electrode, the entire light receiving element can be constructed without a pn junction semiconductor layer, and the pn junction due to impurity diffusion or the like can be formed. Since the junction is not required and the pn junction is not exposed to the end face via the light absorbing layer, there is an advantage that the dark current can be reduced.

【0021】[0021]

【実施例】【Example】

〔実施例1〕本発明の第1の実施例を図1に示す。同図
において、11は光入射端面、12は1μm厚のp−I
nP層、13は1.5μm厚のInGaAs光吸収層、14
は1μm厚のn−InP層、15はn−InP基板、16
はp電極、17はn電極である。素子の吸収層面積は、
30μm×50μmである。
Embodiment 1 FIG. 1 shows a first embodiment of the present invention. In the figure, 11 is a light incident end face, and 12 is a 1 μm thick pI
nP layer, 13 is a 1.5 μm thick InGaAs light absorbing layer, 14
Is a 1 μm thick n-InP layer, 15 is an n-InP substrate, 16
Is a p-electrode and 17 is an n-electrode. The absorption layer area of the element is
It is 30 μm × 50 μm.

【0022】光入射端面11は、成長層12,13,1
4及び基板15の端面に、表面側から離れるに従い内側
に傾斜した形状を有する。つまり、光入射端面11は、
いわゆる、逆メサ構造として形成したものである。
The light incident end face 11 is formed on the growth layers 12, 13, 1
4 and the end face of the substrate 15 have a shape that is inclined inward as the distance from the front side increases. That is, the light incident end face 11 is
It is formed as a so-called inverted mesa structure.

【0023】従って、光入射端面11での入射光の屈折
により、光吸収層13に対して、斜めに入射光が通過す
るため、実効的な光吸収長が長くなり、吸収層厚1.5
μmで、光入射端面11に無反射膜を形成することによ
り、波長1.3μmの光において印加逆バイアス1.5
Vで受光感度0.95A/W以上の大きな値が得られ
た。
Accordingly, the refraction of the incident light at the light incident end face 11 allows the incident light to pass obliquely to the light absorbing layer 13, thereby increasing the effective light absorption length and increasing the absorption layer thickness to 1.5.
By forming a non-reflective film on the light incident end face 11 at a light incidence
At V, a large value of light receiving sensitivity of 0.95 A / W or more was obtained.

【0024】また、全体の成長層厚も3.5μmと薄
く、横方向光入射導波路型半導体受光素子の半分以下の
成長層厚で同等以上の受光感度が得られた。また、素子
面積も小さくで済み、このため、素子容量も0.4pF
程度以下であった。
The overall thickness of the grown layer was as small as 3.5 μm, and a light receiving sensitivity equal to or higher than that of a laterally incident light waveguide type semiconductor photodetector was obtained with a thickness of less than half. Also, the element area can be small, and the element capacitance is also 0.4 pF.
Or less.

【0025】尚、本実施例では、光入射端面11は、
(001)表面のウェハをブロムメタノールを用いてウ
ェットエッチングを行い、(111)A面がでることを
利用して形成した。このため、メサ角(上面に対して5
5度)の揃った均一な素子が作製できた。
In this embodiment, the light incident end face 11 is
The wafer on the (001) surface was subjected to wet etching using bromomethanol to form the (111) A surface, which was used. For this reason, the mesa angle (5
5 °), and a uniform element was produced.

【0026】勿論、逆メサ構造は他のウェットエッチン
グ液やドライエッチング法を用いて形成しても良いし、
他の結晶面を利用したり、エッチングマスクの密着性を
利用し角度を制御して形成しても良い。
Of course, the inverted mesa structure may be formed by using another wet etching solution or a dry etching method.
Another crystal plane may be used, or the angle may be controlled by using the adhesion of the etching mask.

【0027】本実施例では、n−InP基板を用いた例
であるが、p−InP基板を用いても、上記のpとnと
を逆にして同様に製作可能であり、また、半絶縁性の基
板を用いても同様に製作可能である。
In this embodiment, an n-InP substrate is used. However, even if a p-InP substrate is used, the above-mentioned p and n can be reversed and the same can be produced. It can be manufactured similarly using a non-conductive substrate.

【0028】また、吸収層として均一組成のバルクを用
いているが、アンバランシェフォトダイオード構造や超
格子構造の半導体層等を用いても良いことは言うまでも
ない。更に、InGaAs/InP系以外のInGaAlAs/
InGaAsPやAlGaAs/GaAs等の材料系や歪みを内
在するような材料系でも良いことは言うまでもない。
Although a bulk having a uniform composition is used as the absorption layer, it goes without saying that a semiconductor layer having an avalanche photodiode structure or a superlattice structure may be used. Further, InGaAlAs / InGaAs /
It goes without saying that a material system such as InGaAsP or AlGaAs / GaAs or a material system having intrinsic strain may be used.

【0029】〔実施例2〕本発明の第2の実施例を図3
に示す。同図において、31は光入射端面、32は1μ
m厚のInP層、322はZn拡散により形成したp−I
nP層、33は1.5μm厚のInGaAs光吸収層、34
は1μm厚のn−InP層、35はn−InP基板、36
はp電極、37はn電極である。素子の吸収層面積は、
30μm×50μmである。
Embodiment 2 FIG. 3 shows a second embodiment of the present invention.
Shown in In the figure, 31 is a light incident end face, 32 is 1 μm.
m-th InP layer 322 is a p-I layer formed by Zn diffusion.
nP layer, 33 is a 1.5 μm thick InGaAs light absorbing layer, 34
Is a 1 μm thick n-InP layer, 35 is an n-InP substrate, 36
Is a p-electrode and 37 is an n-electrode. The absorption layer area of the element is
It is 30 μm × 50 μm.

【0030】光入射端面31は、成長層32,33,3
4及び基板35の端面に、表面側から離れるに従い内側
に傾斜した形状を有する。つまり、光入射端面31は、
いわゆる、逆メサ構造として形成したものである。
The light incident end face 31 is formed on the growth layers 32, 33, 3
4 and the end surface of the substrate 35 have a shape that is inclined inward as the distance from the front side increases. That is, the light incident end face 31 is
It is formed as a so-called inverted mesa structure.

【0031】従って、光入射端面31での光の屈折によ
り、光吸収層33に対して、斜めに入射光が通過するた
め、実効的な光吸収長が長くなり、光吸収層厚1.5μ
mで、光入射端面31に無反射膜を形成することによ
り、波長1.3μmの光において印加逆バイアス1.5
Vで受光感度0.95A/W以上の大きな値が得られ
た。
Accordingly, the incident light passes obliquely to the light absorbing layer 33 due to the refraction of the light at the light incident end face 31, so that the effective light absorption length becomes longer and the light absorbing layer thickness becomes 1.5 μm.
m, a non-reflective film is formed on the light incident end face 31 so that a reverse bias of 1.5 μm is applied to light having a wavelength of 1.3 μm.
At V, a large value of light receiving sensitivity of 0.95 A / W or more was obtained.

【0032】また、全体の成長層厚も3.5μmと薄
く、横方向光入射導波路型半導体受光素子の半分以下の
成長層厚で同等以上の受光感度が得られた。
The overall thickness of the grown layer was as thin as 3.5 μm, and equivalent or better light receiving sensitivity was obtained with a grown layer thickness of less than half that of the lateral light incident waveguide type semiconductor light receiving element.

【0033】暗電流は、無反射膜形成後においても、1
0pA程度の十分小さな値が得られた。また、素子面積
も小さくで済み、このため、素子容量も0.4pF程度
以下であった。
Even after the formation of the anti-reflection film, the dark current remains at 1
A sufficiently small value of about 0 pA was obtained. In addition, the element area was small, and the element capacitance was about 0.4 pF or less.

【0034】尚、本実施例では、光入射端面は、(00
1)表面のウェハをブロムメタノールを用いてウェット
エッチングを行い、(111)A面がでることを利用し
て形成した。このため、メサ角(上面に対して55度)
の揃った均一な素子が作製できた。
In this embodiment, the light incident end face is (00
1) The wafer on the surface was subjected to wet etching using bromomethanol to form the (111) A surface, which was used. Therefore, the mesa angle (55 degrees with respect to the upper surface)
Thus, a uniform element having uniformity was produced.

【0035】勿論、逆メサは他のウェットエッチング液
やドライエッチング法を用いて形成しても良いし、他の
結晶面を利用したり、エッチングマスクの密着性を利用
し角度を制御して形成しても良い。
Of course, the reverse mesa may be formed by using another wet etching solution or a dry etching method, may be formed by using another crystal plane, or by controlling the angle using the adhesion of an etching mask. You may.

【0036】本実施例は、表面側のInP層32の主た
る内側部分を、Znの拡散によりp−InP層322層と
しているため、暗電流の著しく低減できる利点がある。
即ち、暗電流は、半導体の表面若しくは端面を流れ易い
が、本実施例のように表面側のInP層32の主たる内
側部分とその端面部分との導電形が異なるようにするこ
とにより、暗電流が流れにくくなり、その値を二桁程度
減少させることができる。
In this embodiment, the main inner portion of the InP layer 32 on the surface side is formed of the p-InP layer 322 by the diffusion of Zn, so that there is an advantage that the dark current can be remarkably reduced.
That is, the dark current easily flows on the surface or the end face of the semiconductor. However, as shown in the present embodiment, by making the conductivity type of the main inner portion of the InP layer 32 on the front side different from that of the end face portion, the dark current is reduced. Becomes difficult to flow, and the value can be reduced by about two digits.

【0037】尚、このような表面側の半導体の主たる内
側部分の導電形の決定は、Znの拡散により行うものに
限らず、イオン注入法とその後のアニールによって行っ
ても良い。また、本実施例では、n−InP基板を用い
た例であるが、p−InP基板を用いても、上記のpと
nとを逆にして同様に製作可能であり、また、半絶縁性
の基板を用いても同様に製作可能である。
The determination of the conductivity type of the main inner portion of the semiconductor on the surface side is not limited to the determination by the diffusion of Zn, but may be performed by ion implantation and subsequent annealing. In this embodiment, an n-InP substrate is used. However, even when a p-InP substrate is used, the above-described p and n can be reversed and the same can be obtained. It can be manufactured in the same manner using the above substrate.

【0038】また、吸収層として均一組成のバルクを用
いているが、アンバランシェフォトダイオード構造や超
格子構造の半導体層等を用いても良いことは言うまでも
ない。更に、InGaAs/InP系以外のInGaAlAs/
InGaAsPやAlGaAs/GaAs等の材料系や歪みを内
在するような材料系でも良いことは言うまでもない。更
に、光受光層としては、真性半導体層或いは超格子半導
体層を含む多層構造としても良い。
Although a bulk having a uniform composition is used as the absorption layer, it goes without saying that a semiconductor layer having an avalanche photodiode structure or a superlattice structure may be used. Further, InGaAlAs / InGaAs /
It goes without saying that a material system such as InGaAsP or AlGaAs / GaAs or a material system having intrinsic strain may be used. Further, the light receiving layer may have a multilayer structure including an intrinsic semiconductor layer or a superlattice semiconductor layer.

【0039】〔実施例3〕本発明の第3の実施例を図4
に示す。同図において、41は光入射端面、42は0.
2μm厚アンドープまたはn-−InAlAs層、43はI
nAlAsからInGaAsまで組成をなめらかに変化させた
0.1μm厚アンドープまたはn-−In1- x-yGaxAly
As(0≦x≦1,0≦y≦1)層、44は1.5μm
厚アンドープまたはn-−InGaAs光吸収層、45は1
μm厚n−InP層、46はn−InP基板、47はPt
/Ti/Auショットキー電極、48はオーミックn電極
である。素子の吸収層面積は30μm×50μmであ
る。
[Embodiment 3] FIG. 4 shows a third embodiment of the present invention.
Shown in In the figure, reference numeral 41 denotes a light incident end face;
2 μm thick undoped or n -InAlAs layer, 43
0.1μm was smoothly changing the composition from nAlAs to InGaAs thickness undoped or n - -In 1- xy Ga x Al y
As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) layer, 44 is 1.5 μm
Thick undoped or n -- InGaAs light absorbing layer, 45 is 1
μm thick n-InP layer, 46 is an n-InP substrate, 47 is Pt
A / Ti / Au Schottky electrode 48 is an ohmic n-electrode. The absorption layer area of the device is 30 μm × 50 μm.

【0040】光入射端面41は、基板46の端面に表面
側から離れるに従い内側に傾斜した形状を有する。つま
り、光入射端面41は、基板46の端面に、いわゆる、
逆メサ構造として形成したものである。従って、光入射
端面41での光の屈折により光吸収層44に対し、斜め
に入射光が通過するため、実効的光吸収長が長くなる。
しかも、ショットキー電極47が屈折した入射光に対
し、反射ミラーとして作用するため吸収長がさらに等価
的に2倍となり、吸収層厚1.5μmで、光入射端面に
無反射膜を形成することにより、波長1.3μmの光に
おいて印加逆バイアス1.5Vで受光感度0.95A/
W以上の大きな値が得られた。
The light incident end face 41 has a shape which is inclined inward toward the end face of the substrate 46 as the distance from the front side increases. That is, the light incident end face 41 is so-called
This is formed as an inverted mesa structure. Therefore, the incident light passes obliquely to the light absorbing layer 44 due to the refraction of the light at the light incident end face 41, so that the effective light absorption length increases.
In addition, since the Schottky electrode 47 acts as a reflection mirror with respect to the refracted incident light, the absorption length is further equivalently doubled, and the thickness of the absorption layer is 1.5 μm and a non-reflection film is formed on the light incident end face. With light having a wavelength of 1.3 μm, a light receiving sensitivity of 0.95 A /
A large value of W or more was obtained.

【0041】また、全体の成長層厚も2.8μmと薄
く、横方向光入射導波路型半導体受光素子の半分以下の
成長層厚で同等以上の受光感度が得られた。暗電流は、
無反射膜形成後においても1nA程度の十分小さな値が
得られた。また、素子面積も小さくてすみ、このため素
子容量も0.4pF程度以下であった。
The overall thickness of the grown layer was as thin as 2.8 μm, and a light receiving sensitivity equal to or higher than that of a laterally incident light waveguide type semiconductor light receiving element was obtained with a thickness of less than half. The dark current is
Even after the formation of the antireflection film, a sufficiently small value of about 1 nA was obtained. In addition, the element area can be small, and the element capacitance is about 0.4 pF or less.

【0042】本実施例においては、InAlAs層42
が、いわゆる、ショットキーバリアハイトの高い半導体
層であり、光吸収層44とショットキー電極47とを直
接接触したときのショットキー障壁よりも高いショット
キー障壁をショットキー電極47に対して有する。その
ため、受光素子全体をpn接合半導体層なしで構成で
き、不純物拡散等によるpn接合が不要となり、pn接
合部分が光吸収層を介して端面に露出することもなくな
るため、暗電流が小さくて済む利点がある。
In this embodiment, the InAlAs layer 42
Is a so-called semiconductor layer having a high Schottky barrier height, and has a Schottky barrier higher than the Schottky barrier when the light absorption layer 44 and the Schottky electrode 47 are in direct contact with each other. Therefore, the entire light receiving element can be configured without the pn junction semiconductor layer, and the pn junction due to impurity diffusion or the like becomes unnecessary, and the pn junction portion is not exposed to the end face via the light absorption layer, so that the dark current can be reduced. There are advantages.

【0043】なお、本実施例では、光入射端面は、(0
01)表面のウェハをブロムメタノールを用いてウェッ
トエッチングを行い、(111)A面がでることを利用
して形成した。メサ角は、上面に対し約55度の角度の
素子が製作できた。もちろん、逆メサは他のウェットエ
ッチング液やドライエッチング法を用いて形成してもよ
いし、他の結晶面を利用したり、エッチングマスクの密
着性を利用し角度を制御して形成してもよい。
In this embodiment, the light incident end face is (0
01) The wafer on the surface was wet-etched using bromomethanol to form the (111) A surface, which was used. An element having a mesa angle of about 55 degrees with respect to the upper surface could be manufactured. Of course, the reverse mesa may be formed by using another wet etching solution or a dry etching method, may be formed by using another crystal plane, or by controlling the angle using the adhesion of an etching mask. Good.

【0044】本実施例では、In1-x-yGaxAlyAs層4
3としては、InAlAsからInGaAsまで組成をなめら
かに変化させた傾斜組成層を用いて伝導帯および価電子
帯のなめらかな接続を図っているが、この層は1層以上
の多層半導体薄膜よりなる階段状の組成層で構成した疑
似的な傾斜組成層でもよい。また、InGaAs光吸収層
44とn−InP層45の間にもInGaAsからInPま
で組成を変化させたIn1-uGauAs1-vv(0≦u≦
1,0≦v≦1)傾斜組成層または疑似的な傾斜組成層
を用いて伝導帯および価電子帯のなめらかな接続を図っ
てもよい。
In this embodiment, the In 1-xy G ax Al y As layer 4
As No. 3, a smooth connection of the conduction band and the valence band is achieved by using a gradient composition layer whose composition is smoothly changed from InAlAs to InGaAs, and this layer is a step formed of one or more multilayer semiconductor thin films. A pseudo gradient composition layer composed of a composition layer having a shape of a circle may be used. Further, also between the InGaAs light absorbing layer 44 and the n-InP layer 45 was changed composition of InGaAs to InP In 1-u Ga u As 1-v P v (0 ≦ u ≦
1,0 ≦ v ≦ 1) A smooth connection between the conduction band and the valence band may be achieved by using a gradient composition layer or a pseudo gradient composition layer.

【0045】本実施例は、n−InP基板46を用いた
例であるが、p−InP基板を用いても上記のnとpを
逆にして同様に製作可能であり、また、半絶縁性の基板
を用いても同様に製作可能である。また、GaAs等他の
基板にも同様に適用可能である。また、ここでは、光吸
収層44として均一組成のバルクを用いているが、アバ
ランシェフォトダイオード構造や超格子構造の半導体層
または多重量子井戸半導体層等を用いても良いことは言
うまでもない。
Although the present embodiment is an example using the n-InP substrate 46, it can be similarly manufactured by reversing the above n and p even if a p-InP substrate is used. It can be manufactured in the same manner using the above substrate. Further, the present invention can be similarly applied to other substrates such as GaAs. In addition, here, a bulk having a uniform composition is used as the light absorbing layer 44, but it goes without saying that a semiconductor layer having an avalanche photodiode structure, a superlattice structure, a multiple quantum well semiconductor layer, or the like may be used.

【0046】更に、InGaAlAs系以外のInGaAs
P,AlGaAs,AlInPAs,InGaPSb,AlGaP
Sb,AlGaAsSb,AlInAsSb,AlInPSb系など
の材料系や歪を内在するような材料系でも良いことは言
うまでもない。
Further, InGaAs other than InGaAlAs type
P, AlGaAs, AlInPAs, InGaPSb, AlGaP
Needless to say, a material system such as Sb, AlGaAsSb, AlInAsSb, and AlInPSb or a material system having a strain therein may be used.

【0047】〔実施例4〕本発明の第4の実施例を図5
に示す。同図において、51は光入射端面、59は5n
m厚アンドープまたはn-−InP層、52は0.2μm
厚アンドープまたはn-−InAlAs層、53はInAlA
sからInGaAsまで組成をなめらかに変化させた0.1
μm厚アンドープまたはn-−In1-x-yGaxAlyAs(0
≦x≦1,0≦y≦1)層、54は1.5μm厚アンド
ープまたはn-−InGaAs光吸収層、55は1μm厚n
−InP層、56はn−InP基板、57はPt/Ti/A
uショットキー電極、58はオーミックn電極である。
素子の吸収層面積は30μm×50μmである。
[Embodiment 4] FIG. 5 shows a fourth embodiment of the present invention.
Shown in In the figure, 51 is a light incident end face, 59 is 5n
m-thick undoped or n -- InP layer, 52 is 0.2 μm
Thick undoped or n -- InAlAs layer, 53 is InAlA
0.1 whose composition was smoothly changed from s to InGaAs.
μm thick undoped or n - -In 1-xy Ga x Al y As (0
≦ x ≦ 1,0 ≦ y ≦ 1 ) layer, 54 is 1.5μm thick undoped or n - -InGaAs light-absorbing layer, 55 is 1μm thick n
-InP layer, 56 is an n-InP substrate, 57 is Pt / Ti / A
The u-Schottky electrode 58 is an ohmic n-electrode.
The absorption layer area of the device is 30 μm × 50 μm.

【0048】光入射端面51は、基板56の端面に表面
側から離れるに従い内側に傾斜した形状を有する。つま
り、光入射端面51は、基板56の端面に、いわゆる、
逆メサ構造として形成したものである。従って、光入射
端面51での光の屈折により光吸収層54に対し、斜め
に入射光が通過するため、実効的光吸収長が長くなる。
しかも、ショットキー電極57が屈折した入射光に対
し、反射ミラーとして作用するため吸収長がさらに等価
的に2倍となり、吸収層厚1.5μmで、光入射端面に
無反射膜を形成することにより、波長1.3μmにおい
て印加逆バイアス1.5Vで受光感度0.95A/W以
上の大きな値が得られた。また、全体の成長層厚も約
2.8μmと薄く、横方向光入射導波路型半導体受光素
子の半分以下の成長層厚で同等以上の受光感度が得られ
た。
The light incident end face 51 has a shape which is inclined inward toward the end face of the substrate 56 as the distance from the front side increases. That is, the light incident end face 51 is so-called
This is formed as an inverted mesa structure. Accordingly, since the incident light passes obliquely to the light absorbing layer 54 due to the refraction of the light at the light incident end face 51, the effective light absorption length becomes longer.
In addition, since the Schottky electrode 57 acts as a reflecting mirror with respect to the refracted incident light, the absorption length is further equivalently doubled, and the thickness of the absorbing layer is 1.5 μm and a non-reflective film is formed on the light incident end face. As a result, a large value of light receiving sensitivity of 0.95 A / W or more was obtained at an applied reverse bias of 1.5 V at a wavelength of 1.3 μm. The overall thickness of the grown layer was as thin as about 2.8 μm, and a light receiving sensitivity equal to or higher than that of a laterally light incident waveguide type semiconductor light receiving element was obtained with a grown layer thickness of half or less.

【0049】更に、本実施例では、最表面に極薄のIn
P層59を用いているため、InAlAsに比べ、表面酸
化耐性が大きいという利点もある。ここでは、一例とし
てInP層59を用いたが、これに代えて、一般式In
1-uGauAs1-vv(0≦u≦1,0≦v≦1)で表され
る層を用いることも可能である。暗電流は、無反射膜形
成後においても1nA程度の十分小さな値が得られた。
また、素子面漬も小さくてすみ、このため素子容量も
0.4pF程度以下であった。
Further, in this embodiment, the extremely thin In
Since the P layer 59 is used, there is an advantage that the surface oxidation resistance is higher than that of InAlAs. Here, the InP layer 59 is used as an example, but instead of this, the general formula In is used.
It is also possible to use a layer represented by 1-u Ga u As 1- v P v (0 ≦ u ≦ 1,0 ≦ v ≦ 1). As for the dark current, a sufficiently small value of about 1 nA was obtained even after the formation of the antireflection film.
In addition, the element surface immersion was small, and the element capacitance was about 0.4 pF or less.

【0050】本実施例においては、InAlAs層52
が、いわゆる、ショットキーバリアハイトの高い半導体
層であり、光吸収層54とショットキー電極57とを直
接接触したときのショットキー障壁よりも高いショット
キー障壁をショットキー電極57に対して有する。その
ため、受光素子全体をpn接合半導体層なしで構成で
き、不純物拡散等によるpn接合が不要となり、pn接
合部分が光吸収層を介して端面に露出することもなくな
るため、暗電流が小さくて済む利点がある。
In this embodiment, the InAlAs layer 52
Is a so-called semiconductor layer having a high Schottky barrier height, and has a higher Schottky barrier than the Schottky barrier when the light absorbing layer 54 and the Schottky electrode 57 are in direct contact with each other. Therefore, the entire light receiving element can be configured without the pn junction semiconductor layer, and the pn junction due to impurity diffusion or the like becomes unnecessary, and the pn junction portion is not exposed to the end face via the light absorption layer, so that the dark current can be reduced. There are advantages.

【0051】なお、本実施例では、光入射端面は、(0
01)表面のウェハをブロムメタノールを用いてウェッ
トエッチングを行い、(111)A面がでることを利用
して形成した。メサ角は、上面に対し約55度の角度の
素子が製作できた。もちろん、逆メサは他のウェットエ
ッチング液やドライエッチング法を用いて形成してもよ
いし、他の結晶面を利用したり、エッチングマスクの密
着性を利用し角度を制御して形成してもよい。
In this embodiment, the light incident end face is (0
01) The wafer on the surface was wet-etched using bromomethanol to form the (111) A surface, which was used. An element having a mesa angle of about 55 degrees with respect to the upper surface could be manufactured. Of course, the reverse mesa may be formed by using another wet etching solution or a dry etching method, may be formed by using another crystal plane, or by controlling the angle using the adhesion of an etching mask. Good.

【0052】本実施例では、In1-x-yGaxAlyAs層5
3としては、InAlAsからInGaAsまで組成をなめら
かに変化させた傾斜組成層を用いて伝導帯および価電子
帯のなめらかな接続を図っているが、この層は1層以上
の多層半導体薄膜よりなる階段状の組成層で構成した疑
似的な傾斜組成層でもよい。また、InGaAs光吸収層
54とn−InP層55の間にもInGaAsからInPま
で組成を変化させたIn1-uGauAs1-vv(0≦u≦
1,0≦v≦1)傾斜組成層または疑似的な傾斜組成層
を用いて伝導帯および価電子帯のなめらかな接続を図っ
てもよい。
In this embodiment, the In 1-xy G ax Al y As layer 5
As No. 3, a smooth connection of the conduction band and the valence band is achieved by using a gradient composition layer whose composition is smoothly changed from InAlAs to InGaAs, and this layer is a step formed of one or more multilayer semiconductor thin films. A pseudo gradient composition layer composed of a composition layer having a shape of a circle may be used. Further, between the InGaAs light absorbing layer 54 and the n-InP layer 55, In 1 -u Gau As 1 -v Pv (0 ≦ u ≦) whose composition is changed from InGaAs to InP.
1,0 ≦ v ≦ 1) A smooth connection between the conduction band and the valence band may be achieved by using a gradient composition layer or a pseudo gradient composition layer.

【0053】また、本実施例は、n−InP基板56を
用いた例であるが、p−InP基板を用いても上記のp
とnを逆にして同様に製作可能であり、また、半絶縁性
の基板を用いても同様に製作可能である。また、GaAs
等他の基板にも同様に適用可能である。本実施例では、
光吸収層54として均一組成のバルクを用いているが、
アバランシェフォトダイオード構造や超格子構造の半導
体層または多重量子井戸半導体層等を用いても良いこと
は言うまでもない。
Although the present embodiment is an example using the n-InP substrate 56, the above-mentioned p-InP substrate may be used even if a p-InP substrate is used.
And n can be made in the same way, and can be made in the same manner using a semi-insulating substrate. Also, GaAs
Etc. can be similarly applied to other substrates. In this embodiment,
Although a bulk having a uniform composition is used as the light absorbing layer 54,
Needless to say, a semiconductor layer having an avalanche photodiode structure or a superlattice structure, a multiple quantum well semiconductor layer, or the like may be used.

【0054】更に、InGaAlAs系以外のInGaAsP
やAlGaAs,AlInPAs,InGaPSb,AlGaPS
b,AlGaAsSb,AlInAsSb,AlInPSb系などの
材料系や歪を内在するような材料系でも良いことは言う
までもない。
Further, InGaAsP other than InGaAlAs type
And AlGaAs, AlInPAs, InGaPSb, AlGaPS
It goes without saying that a material system such as b, AlGaAsSb, AlInAsSb, and AlInPSb or a material system having an intrinsic strain may be used.

【0055】〔実施例5〕本発明の第5の実施例を図6
に示す。同図において、半導体受光素子部は以下の様に
なっている。61は光入射面、62は1μm厚InP
層、622はZn拡散により形成したp−InP層、63
は1.5μm厚InGaAs光吸収層、64は1μm厚n
−InP層、65はn−InP基板、66はp電極、67
はn電極である。
[Embodiment 5] FIG. 6 shows a fifth embodiment of the present invention.
Shown in In the figure, the semiconductor light receiving element is as follows. 61 is a light incident surface, 62 is a 1 μm thick InP
Layer 622 is a p-InP layer formed by Zn diffusion, 63
Is a 1.5 μm thick InGaAs light absorbing layer, and 64 is a 1 μm thick n
-InP layer, 65 is an n-InP substrate, 66 is a p-electrode, 67
Is an n-electrode.

【0056】入射面での光の屈折により光の吸収層に対
し、斜めに光が通過するため、実効的光吸収長が長くな
り、吸収層厚1.5μmで、入射面に無反射膜を形成す
ることにより、波長1.3μmにおいて印加逆バイアス
1.5Vで十分大きな受光感度が得られる。また、全体
の成長層厚も3.5μmと薄く、横方向光入射導波路型
半導体受光素子の半分以下の成長層厚で同等以上の受光
感度が得られる。暗電流は、無反射膜形成後においても
10pA程度の十分小さな値が得られた。
Since the light passes obliquely to the light absorbing layer due to the refraction of the light on the incident surface, the effective light absorption length increases, and the absorption layer has a thickness of 1.5 μm. With this arrangement, a sufficiently large light receiving sensitivity can be obtained at a wavelength of 1.3 μm with an applied reverse bias of 1.5 V. In addition, the total thickness of the grown layer is as thin as 3.5 μm, and a light receiving sensitivity equal to or higher than that of a laterally incident light waveguide type semiconductor light receiving element can be obtained with a grown layer thickness of half or less. As for the dark current, a sufficiently small value of about 10 pA was obtained even after the formation of the antireflection film.

【0057】なお、本実施例では、光入射面は、(00
1)表面のウエハをブロムメタノールを用いてウエット
エッチングを行い、(111)A面がでることを利用し
て形成した。このため、メサ角(上面に対し55度の角
度)の揃った均―な素子が製作できる。もちろん、逆メ
サは他のウエットエッチング液やドライエッチング法を
用いて形成してもよいし、他の結晶面を利用したり、エ
ッチングマスクの密着性を利用し角度を制御して形成し
てもよい。この実施例では、n−InP基板を用いた例
であるが、p−InP基板を用いても上記のpとnを逆
にして同様に製作可能であり、また、半絶縁性の基板を
用いても同様に製作可能である。
In this embodiment, the light incident surface is (00
1) The wafer on the surface was subjected to wet etching using bromomethanol to form the (111) A surface, which was used. For this reason, a uniform element having a uniform mesa angle (an angle of 55 degrees with respect to the upper surface) can be manufactured. Of course, the inverted mesa may be formed by using another wet etching solution or dry etching method, or may be formed by using another crystal plane or controlling the angle by using the adhesion of the etching mask. Good. In this embodiment, an n-InP substrate is used. However, even if a p-InP substrate is used, the above-described p and n can be reversed and the same can be manufactured. It can also be manufactured similarly.

【0058】また、ここでは、吸収層として均―組成の
バルクを用いているが、アバランシェフォトダイオード
構造や超格子構造の半導体層等を用いても良いことは言
うまでもない。また、InGaAsP/InP系以外のIn
GaAlAs/InGaAsPやAlGaAs/GaAs系などの
材料系や歪を内在するような材料系でも良いことは言う
までもない。
In addition, here, a bulk having a uniform composition is used as the absorption layer, but it goes without saying that a semiconductor layer having an avalanche photodiode structure or a superlattice structure may be used. In addition, In InAs other than InGaAsP / InP type
It goes without saying that a material system such as a GaAlAs / InGaAsP or AlGaAs / GaAs system or a material system having intrinsic strain may be used.

【0059】この半導体受光素子がシリコン基板68上
に形成されたSiO2からなる光導波路69(スポットサ
イズω0=5μm)と図の様に結合するようにマウント
されている。この時光吸収層のInP基板側下面63a
と光導波路光軸中心の高低差(Zh)は、10μmとし
た。
The semiconductor light receiving element is mounted so as to be coupled to an optical waveguide 69 (spot size ω 0 = 5 μm) made of SiO 2 formed on a silicon substrate 68 as shown in FIG. At this time, the lower surface 63a of the light absorbing layer on the side of the InP substrate.
And the height difference (Zh) at the optical axis center of the optical waveguide was 10 μm.

【0060】―般に、光導波路から出射したガウシアン
ビームは進行とともに広がってくる。Zhを大きくする
と屈折した光を受光層でうけるための光路長は長くな
り、受光感度を同じ値に保持するためには、ビームの広
がり分に対応して受光面積も大きくする必要がある。面
積の増大は素子の接合容量に比例するため、素子の応答
速度も大きく劣化する。Zhを横軸にとり、受光素子と
光導波路を直近に配置し、光ビーム中心が受光層に達し
た点でのスポットサイズの2乗(必要な受光面積にほぼ
比例)をグラフにしたものが図7(実線)である。
Generally, the Gaussian beam emitted from the optical waveguide spreads as it travels. When Zh is increased, the optical path length for receiving the refracted light in the light receiving layer becomes longer, and in order to maintain the same light receiving sensitivity, it is necessary to increase the light receiving area in accordance with the spread of the beam. Since the increase in the area is proportional to the junction capacitance of the element, the response speed of the element is also greatly deteriorated. The graph shows the square of the spot size at the point where the center of the light beam reaches the light-receiving layer (almost proportional to the required light-receiving area), with Zh being the horizontal axis, the light-receiving element and the optical waveguide being arranged in the immediate vicinity. 7 (solid line).

【0061】図7のようにZhを大きくすると急激に必
要な受光面積が増大し、これに比例して素子の応答帯域
も急減することになる。従って、この実施例では、ビー
ムの広がりがほぼ無視できるZh=10μmとした。こ
れにより、素子面積も小さくて済み、吸収層面積は15
μm×50μmとしたとき、受光感度0.9A/W以上
の大きな値と素子容量も0.2pF程度以下の小さな値
であった。
As shown in FIG. 7, when Zh is increased, the required light receiving area suddenly increases, and the response band of the element sharply decreases in proportion thereto. Therefore, in this embodiment, Zh is set to 10 μm where the spread of the beam can be almost ignored. As a result, the element area can be small, and the absorption layer area can be reduced to 15
When μm × 50 μm, the light receiving sensitivity was 0.9 A / W or more, and the element capacitance was a small value of about 0.2 pF or less.

【0062】また、図7中、破線は、光導波路のスポッ
トサイズを2μmとした時の関係も示している。このよ
うにω0が小さくなるとビーム広がりはさらに急激なた
め、Zhをできるかぎりω0程度に小さくすることが重
要であり、たとえば、Zhを50μmにとると受光面積
はZh=4μmのときの約15倍も必要になり、素子容
量が激増してしまう。
The broken line in FIG. 7 also shows the relationship when the spot size of the optical waveguide is 2 μm. As described above, when ω 0 is reduced, the beam spread becomes more rapid. Therefore, it is important to reduce Zh to as much as ω 0 as much as possible. For example, when Zh is set to 50 μm, the light receiving area becomes approximately equal to that when Zh = 4 μm. This is required as much as 15 times, and the element capacity increases drastically.

【0063】この関係は、当然、受光素子の逆メサ角θ
にも依存する。ビーム面積が初期のビーム面積の30%
増大する点をZh+30%とすると、Zh+30%=nπω
0 2(0.3)1/2/λsin(φ)で与えられる。但し、n
は波長λの光に対する半導体の屈折率、πは円周率、ω
0は光導波路のスポットサイズ(矩形導波路等の場合
は、その導波路を特徴づける等価的スポットサイズ)、
φは屈折した光の光軸中心と光吸収層のなす角である。
This relationship is naturally related to the inverse mesa angle θ of the light receiving element.
Also depends. Beam area is 30% of initial beam area
Assuming that the increasing point is Zh + 30% , Zh + 30% = nπω
It is given by 0 2 (0.3) 1/2 / λsin (φ). Where n
Is the refractive index of the semiconductor for light of wavelength λ, π is the circular constant, ω
0 is the spot size of the optical waveguide (in the case of a rectangular waveguide or the like, the equivalent spot size characterizing the waveguide);
φ is the angle between the optical axis center of the refracted light and the light absorbing layer.

【0064】波長1.3μmの光において、θ=55
度、InP基板の屈折率n=3.209とすると、ω0
5μmでZh+30%=44.4μm、ω0=2μmになる
とZh +30%=7.1μmとなり、スポットサイズの小さ
い光導波路を用いるときには特に受光層側表面に近い所
に光導波路光軸中心を持ってくることが重要であること
がわかる。
For light having a wavelength of 1.3 μm, θ = 55
Assuming that the refractive index of the InP substrate is n = 3.209, ω0=
Zh at 5μm+ 30%= 44.4 μm, ω0= 2 μm
And Zh + 30%= 7.1 μm, small spot size
Especially when using an optical waveguide that is close to the light-receiving layer side surface
It is important to bring the center of the optical waveguide optical axis to
I understand.

【0065】なお、本実施例は光導波路としてシリコン
基板上に形成されたものを用いているが、適当な基板上
に光ファイバやポリマ光導波路等の他の各種光導波路を
ハイブリッド集積したものでも良いことはいうまでもな
い。また、光受光層面と光導波路の光軸方向は完全に平
行である必要はなく、入射端面で屈折して光受光層で受
光出来るようなっていればよく、多少平行方向からずれ
た角度になっていても問題ない。尚、p−InP層62
2はZn拡散により形成したが、これに代えて、イオン
注入法及びその後のアニールによって選択的に第2の導
電型に転換しても良い。
Although the present embodiment uses an optical waveguide formed on a silicon substrate as an optical waveguide, other optical waveguides such as an optical fiber and a polymer optical waveguide may be hybrid-integrated on an appropriate substrate. It goes without saying that it is good. Also, the light receiving layer surface and the optical axis direction of the optical waveguide need not be completely parallel, and it is sufficient that the light receiving layer refracts light at the incident end face and receives light at the light receiving layer, and the angle slightly deviates from the parallel direction. There is no problem even if you do. The p-InP layer 62
Although 2 was formed by Zn diffusion, it may be alternatively switched to the second conductivity type by ion implantation and subsequent annealing.

【0066】〔実施例6〕本発明の第6の実施例を図8
に示す。図中、81は光入射面、82は1μm厚p−I
nP層、83は1.5μm厚InGaAs光吸収層、84は
1μm厚n−InP層、85はn−InP基板、86はp
電極、87はn電極である。本実施例では、( 001)
面に対し、20度傾いた研磨面を表面とする基板を用
い、この上に上記層構造を成長しているため、劈開を行
うと、図8のように、表面に対しメサ角が70度の劈開
端面が形成されている。
Embodiment 6 FIG. 8 shows a sixth embodiment of the present invention.
Shown in In the drawing, reference numeral 81 denotes a light incident surface, and 82 denotes a 1 μm thick p-I.
nP layer, 83 is a 1.5 μm thick InGaAs light absorbing layer, 84 is a 1 μm thick n-InP layer, 85 is an n-InP substrate, 86 is p
The electrode 87 is an n-electrode. In this embodiment, (001)
Since the above-described layer structure is grown on a substrate having a polished surface inclined at 20 degrees with respect to the surface, the mesa angle is 70 degrees with respect to the surface as shown in FIG. Is formed.

【0067】素子の吸収層面積は20μm×80μmで
ある。入射面での光の屈折により光の吸収層に対し、斜
めに光が通過するため、実効的光吸収長が長くなり、吸
収層厚1.5μmで、入射面に無反射膜を形成すること
により、波長1.3μmの光において印加逆バイアス
1.5Vで受光感度0.9A/W以上の大きな値が得ら
れた。また、全体の成長層厚も3.5μmと薄く、横方
向光入射導波路型半導体受光素子の半分以下の成長層厚
で同等以上の受光感度が得られた。
The area of the absorption layer of the device is 20 μm × 80 μm. Since light passes obliquely to the light absorption layer due to refraction of light on the incident surface, the effective light absorption length becomes longer, and a 1.5 μm thick absorbing layer and a non-reflective film are formed on the incident surface. As a result, a large value of light receiving sensitivity of 0.9 A / W or more was obtained at an applied reverse bias of 1.5 V with light having a wavelength of 1.3 μm. Also, the overall growth layer thickness was as thin as 3.5 μm, and a light receiving sensitivity equal to or higher than that of a growth layer thickness of half or less of the lateral light incident waveguide type semiconductor light receiving element was obtained.

【0068】なお、本実施例では、( 001)面に対
し、20度傾いた研磨面を表面とする基板を用いている
が、この角度を適当に選ぶことによりメサ角もこれにあ
わせて適当に選ぶことができることは言うまでもない。
また、実施例2から4のような半導体層構成でも同様に
適用できることは言うまでもない。この実施例では、n
−InP基板を用いた例であるが、p−InP基板を用い
ても上記のpとnを逆にして同様に製作可能であり、ま
た、半絶縁性の基板を用いても同様に製作可能である。
また、ここでは、吸収層として均一組成のバルクを用い
ているが、アバランシェフォトダイオード構造や超格子
構造の半導体層等を用いても良いことは言うまでもな
い。
In the present embodiment, a substrate having a polished surface inclined by 20 degrees with respect to the (001) plane is used. However, by selecting this angle appropriately, the mesa angle can be adjusted accordingly. Needless to say, you can choose.
Needless to say, the present invention can be similarly applied to a semiconductor layer configuration as in the second to fourth embodiments. In this embodiment, n
Although this is an example using an InP substrate, it can be manufactured in the same manner by using a p-InP substrate by reversing the above p and n, and can be manufactured similarly using a semi-insulating substrate. It is.
Further, here, a bulk having a uniform composition is used as the absorption layer, but it goes without saying that a semiconductor layer having an avalanche photodiode structure or a superlattice structure may be used.

【0069】また、InGaAsP/InP系以外のInGa
AlAs/InGaAsPやAlGaAs/GaAs系などの材料
系や歪を内在するような材料系でも良いことは言うまで
もない。
In addition, InGaP other than the InGaAsP / InP type
It goes without saying that a material system such as AlAs / InGaAsP or AlGaAs / GaAs system or a material system having intrinsic strain may be used.

【0070】[0070]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、半導体受光素子において、表面側に逆メサ構
造により成る光受光面があり、横からの光入射に対し、
逆メサのメサ角に基づき、入射光が入射端面で上面側に
向かって屈折し、光の吸収層に対して斜めに通過するこ
とにより、実効的に光吸収長が長くなるため、従来の面
型半導体受光素子に比べ吸収層厚が薄くて済む。また、
横方向入射型の導波路型半導体受光素子と比べても1/
2〜1/3程度の半導体成長層厚で済む。
As described above in detail with reference to the embodiments, the semiconductor light receiving element has a light receiving surface having an inverted mesa structure on the front surface side.
Based on the mesa angle of the inverted mesa, the incident light is refracted toward the upper surface at the incident end face and obliquely passes through the light absorbing layer, effectively increasing the light absorption length. The thickness of the absorption layer can be smaller than that of the semiconductor light receiving device. Also,
Compared with the lateral incidence type waveguide type semiconductor light receiving element, it is 1 /
A semiconductor growth layer thickness of about 2/3 is sufficient.

【0071】このように、横方向光入射が可能でありな
がら、光ファイバや光導波路と直接光結合に対し薄い半
導体成長層厚で高効率な受光が可能となる。更に、十分
な受光感度を得るための素子長が横方向光入射導波路型
半導体受光素子に比べ半分程度以下で済む利点もある。
As described above, while light can enter in the lateral direction, light can be received efficiently with a small semiconductor growth layer thickness for direct optical coupling with an optical fiber or an optical waveguide. Furthermore, there is an advantage that the element length for obtaining sufficient light receiving sensitivity is about half or less as compared with the lateral light incident waveguide type semiconductor light receiving element.

【0072】更に、光吸収層とショットキー電極との間
に、いわゆる、ショットキーバリアハイトの高い半導体
層を介在したときには、受光素子全体をpn接合半導体
層なしで構成でき、不純物拡散等によるpn接合が不要
となり、pn接合部分が光吸収層を介して端面に露出す
ることもなくなるため、暗電流が小さくて済む利点があ
る。
Further, when a so-called semiconductor layer having a high Schottky barrier height is interposed between the light absorbing layer and the Schottky electrode, the entire light receiving element can be formed without a pn junction semiconductor layer, and the pn junction is formed by impurity diffusion or the like. Since the junction is not required and the pn junction is not exposed to the end face via the light absorbing layer, there is an advantage that the dark current can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る半導体受光素子の
構造模式図である。
FIG. 1 is a schematic structural view of a semiconductor light receiving element according to a first embodiment of the present invention.

【図2】従来の半導体受光素子の説明図である。FIG. 2 is an explanatory diagram of a conventional semiconductor light receiving element.

【図3】本発明の第2の実施例に係る半導体受光素子の
構造模式図である。
FIG. 3 is a schematic structural view of a semiconductor light receiving element according to a second embodiment of the present invention.

【図4】本発明の第3の実施例に係る半導体受光素子の
構造模式図である。
FIG. 4 is a schematic structural view of a semiconductor light receiving element according to a third embodiment of the present invention.

【図5】本発明の第4の実施例に係る半導体受光素子の
構造模式図である。
FIG. 5 is a schematic structural view of a semiconductor light receiving element according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施例に係る半導体受光素子の
構造模式図である。
FIG. 6 is a schematic structural diagram of a semiconductor light receiving element according to a fifth embodiment of the present invention.

【図7】光吸収層のInP基板側下面63aと光導波路
光軸中心の高低差(Zh)と光ビーム中心が受光層に達
した点でのスポットサイズの2乗(必要な受光面積にほ
ぼ比例)の関係を示すグラフである。
FIG. 7 shows the height difference (Zh) between the lower surface 63a of the light absorbing layer on the InP substrate side and the optical axis center of the optical waveguide and the square of the spot size at the point where the light beam center reaches the light receiving layer (substantially less than the required light receiving area). 6 is a graph showing a relationship of (proportional).

【図8】本発明の第6の実施例に係る半導体受光素子の
構造模式図である。
FIG. 8 is a schematic structural view of a semiconductor light receiving element according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11,31 光入射端面 12 p−InP層 13,33 InGaAs光吸収層 14,34 n−InP層 15,35 n−InP基板 16,36 p電極 17,37 n電極 32 InP層 322 Zn拡散により形成したp−InP層 41 光入射端面 42 InAlAs層 43 In1-x-yGaxAlyAs層 44 InGaAs光吸収層 45 n−InP層 46 n−InP基板 47 Pt/Ti/Auショットキー電極 48 オーミックn電極 51 光入射端面 59 InP層 52 InAlAs層 53 In1-x-yGaxAlyAs層 54 InGaAs光吸収層 55 n−InP層 56 n−InP基板 57 Pt/Ti/Auショットキー電極 58 オーミックn電極 61 光入射面 62 1μm厚InP層 622 Zn拡散により形成したp−InP層 63 1.5μm厚InGaAs光吸収層 63a 1.5μm厚InGaAs光吸収層のInP基板側
下面 64 1μm厚n−InP層 65 n−InP基板 66 p電極 67 n電極 68 シリコン基板 69 シリコン基板上に形成された光導波路 81 光入射面 82 1μm厚p−InP層 83 1.5μm厚InGaAs光吸収層 84 1μm厚n−InP層 85 n−InP基板 86 p電極 87 n電極
11, 31 Light incidence end face 12 p-InP layer 13, 33 InGaAs light absorbing layer 14, 34 n-InP layer 15, 35 n-InP substrate 16, 36 p electrode 17, 37 n electrode 32 InP layer 322 Zn formed by diffusion p-InP layer 41 light incident end face 42 InAlAs layer 43 which is In 1-xy Ga x Al y As layer 44 InGaAs light absorbing layer 45 n-InP layer 46 n-InP substrate 47 Pt / Ti / Au Schottky electrode 48 ohmic n electrode 51 light incident end face 59 InP layer 52 InAlAs layer 53 In 1-xy Ga x Al y As layer 54 InGaAs light absorbing layer 55 n-InP layer 56 n-InP substrate 57 Pt / Ti / Au Schottky electrode 58 ohmic n-electrode 61 Light incident surface 62 1 μm thick InP layer 622 p-InP layer formed by Zn diffusion 63 1.5 μm thick InGaAs light absorption layer 63a 1.5 μm thick In Lower surface of the aAs light absorbing layer on the side of the InP substrate 64 1 μm thick n-InP layer 65 n-InP substrate 66 p electrode 67 n electrode 68 silicon substrate 69 optical waveguide formed on the silicon substrate 81 light incident surface 82 1 μm thick p-InP Layer 83 1.5 μm thick InGaAs light absorbing layer 84 1 μm thick n-InP layer 85 n-InP substrate 86 p electrode 87 n electrode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電形を有する第1の半導体層、
第2の導電形を有する第2の半導体層及び前記第1の半
導体層と第2の半導体層に挟まれた光受光層とからなる
成長層を基板上に設けてなる半導体受光素子において、
前記成長層及び前記基板の端面には、表面側から離れる
に従い内側に傾斜した光入射端面を設けることにより、
該光入射端面で入射光を屈折させて、前記光受光層を入
射光が層厚方向に対し斜めに通過するようにしたことを
特徴とする半導体受光素子。
A first semiconductor layer having a first conductivity type;
In a semiconductor light receiving element, a second semiconductor layer having a second conductivity type and a growth layer comprising a light receiving layer sandwiched between the first semiconductor layer and the second semiconductor layer are provided on a substrate.
By providing a light incident end face that is inclined inward as the end face of the growth layer and the substrate is separated from the front side,
A semiconductor light receiving element, wherein the incident light is refracted at the light incident end face so that the incident light passes through the light receiving layer obliquely with respect to the layer thickness direction.
【請求項2】 真性又は第1の導電形を有する第1の半
導体層と、前記第1の半導体層と同じく第1の導電形を
有する第2の半導体層及び前記第1の半導体層と第2の
半導体層に挟まれた光受光層とからなる成長層を基板上
に設ける一方、表面側の前記第1の半導体層の主たる内
側部分又は前記受光層の一部分を含んで表面側の前記半
導体層の主たる内側部分を、不純物の拡散によって選択
的に第2の導電形に転換し、更に、前記成長層及び前記
基板の端面には、表面側から離れるに従い内側に傾斜し
た光入射端面を設けることにより、該光入射端面で入射
光を屈折させて、前記光受光層を入射光が層厚方向に対
し斜めに通過するようにしたことを特徴とする半導体受
光素子の製造方法。
2. A first semiconductor layer having an intrinsic or first conductivity type, a second semiconductor layer having the same first conductivity type as the first semiconductor layer, and a first semiconductor layer having a first conductivity type. A growth layer comprising a light receiving layer sandwiched between two semiconductor layers is provided on the substrate, and the semiconductor on the front side including a main inner portion of the first semiconductor layer on the front side or a part of the light receiving layer is provided. A main inner portion of the layer is selectively converted to the second conductivity type by diffusion of impurities, and further, a light incident end face inclined inward away from the surface side is provided on an end face of the growth layer and the substrate. The method for manufacturing a semiconductor light receiving element, wherein the incident light is refracted at the light incident end face so that the incident light passes through the light receiving layer obliquely with respect to the layer thickness direction.
【請求項3】 真性又は第1の導電形を有する第1の半
導体層と、前記第1の半導体層と同じく第1の導電形を
有する第2の半導体層及び前記第1の半導体層と第2の
半導体層に挟まれた光受光層とからなる成長層を基板上
に設ける一方、表面側の前記第1の半導体層の主たる内
側部分又は前記受光層の一部分を含んで表面側の前記半
導体層の主たる内側部分を、イオン注入法及びその後の
アニールによって選択的に第2の導電形に転換し、更
に、前記成長層及び前記基板の端面には、表面側から離
れるに従い内側に傾斜した光入射端面を設けることによ
り、該光入射端面で入射光を屈折させて、前記光受光層
を入射光が層厚方向に対し斜めに通過するようにしたこ
とを特徴とする半導体受光素子の製造方法。
3. A first semiconductor layer having an intrinsic or first conductivity type, a second semiconductor layer having the same first conductivity type as the first semiconductor layer, and a first semiconductor layer having a first conductivity type. A growth layer comprising a light receiving layer sandwiched between two semiconductor layers is provided on the substrate, and the semiconductor on the front side including a main inner portion of the first semiconductor layer on the front side or a part of the light receiving layer is provided. The main inner part of the layer is selectively converted to the second conductivity type by ion implantation and subsequent annealing, and furthermore, the growth layer and the end face of the substrate have light inclining inward as they move away from the surface side. A method for manufacturing a semiconductor light receiving element, wherein an incident end face is provided to refract incident light at the light incident end face so that the incident light passes through the light receiving layer obliquely to a layer thickness direction. .
【請求項4】 第1の導電形を有する半導体層上にあっ
て、真性又は第1の導電形の半導体層、超格子半導体層
又は多重量子井戸半導体層よりなる光吸収層とショット
キー電極との間に、前記光吸収層と前記ショットキー電
極との間のショットキー障壁よりも高いショットキー障
壁を前記ショットキー電極に対して有するショットキー
バリアハイトの高い半導体層を介在した多層構造を基板
上に構成してなる半導体受光素子において、前記多層構
造及び前記基板の端面に、表面側から離れるに従い内側
に傾斜した光入射端面を設けることにより、該光入射端
面で入射光を屈折させて、前記光吸収層を入射光が層厚
方向に対し斜めに通過するようにしたことを特徴とする
半導体受光素子。
4. A light-absorbing layer on a semiconductor layer having a first conductivity type, comprising an intrinsic or first conductivity-type semiconductor layer, a superlattice semiconductor layer or a multiple quantum well semiconductor layer, and a Schottky electrode. A multi-layer structure having a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light absorption layer and the Schottky electrode with respect to the Schottky electrode. In the semiconductor light-receiving element configured above, the multilayer structure and the end face of the substrate, by providing a light incident end face inclined inward as away from the front side, to refract incident light at the light incident end face, A semiconductor light receiving element, wherein incident light passes through the light absorbing layer obliquely to a layer thickness direction.
【請求項5】 前記ショットキーバリアハイトの高い半
導体層は、In1-x-yGaxAlyAs(0≦x≦1,0≦y
≦1)よりなることを特徴とする請求項4記載の半導体
受光素子。
5. The semiconductor layer having a high Schottky barrier height is made of In 1-xy G ax Al y As (0 ≦ x ≦ 1, 0 ≦ y).
The semiconductor light receiving device according to claim 4, wherein ≤ 1).
【請求項6】 前記ショットキーバリアハイトの高い半
導体層は、In1-x-yGaxAlyAs(0≦x≦1,0≦y
≦1)とその上の薄いIn1-uGauAs1-vv(0≦u≦
1,0≦v≦1)よりなることを特徴とする請求項4記
載の半導体受光素子。
6. The semiconductor layer having a high Schottky barrier height is made of In 1-xy G ax Al y As (0 ≦ x ≦ 1, 0 ≦ y).
≦ 1) and their thin upper In 1-u Ga u As 1 -v P v (0 ≦ u ≦
5. The semiconductor light receiving device according to claim 4, wherein 1, 0 ≦ v ≦ 1).
【請求項7】 前記光吸収層と前記ショットキーバリア
ハイトの高い半導体層との間に、前記光吸収層と同一の
組成から前記ショットキーバリアハイトの高い半導体層
と同一の組成へと連続的又は階段的に変化する組成勾配
を有する傾斜組成層を介装したことを特徴とする請求項
4,5又は6記載の半導体受光素子。
7. A continuous arrangement between the light absorbing layer and the semiconductor layer having a high Schottky barrier height from the same composition as the light absorbing layer to the same composition as the semiconductor layer having a high Schottky barrier height. 7. The semiconductor light receiving device according to claim 4, wherein a graded composition layer having a composition gradient that changes stepwise is interposed.
【請求項8】 前記光吸収層の層厚方向の基板側下面
と、半導体表面に平行方向をなし前記半導体受光素子の
光入射端面を介して光結合するように設けてなる光導波
路の光軸中心の高低差が、次式のZh+30%により与えら
れる値程度より小さくなるようにしたことを特徴とする
請求項1,4,5,6又は7記載の半導体受光素子。 Zh+30%=nπω0 2(0.3)1/2/λsin(φ) ただし、nは波長λの光に対する半導体の屈折率、πは
円周率、ω0は光導波路のスポットサイズ(矩形導波路
等の場合は、その導波路を特徴づける等価的スポットサ
イズ)、φは屈折した光の光軸中心と光吸収層のなす角
である。
8. An optical axis of an optical waveguide provided so as to be optically coupled via a light incident end face of the semiconductor light receiving element in a direction parallel to a semiconductor surface and a lower surface on a substrate side in a thickness direction of the light absorbing layer. 8. The semiconductor light receiving device according to claim 1, wherein the height difference at the center is smaller than a value given by Zh + 30% of the following equation. Zh + 30% = nπω 0 2 (0.3) 1/2 / λsin (φ) where n is the refractive index of the semiconductor with respect to light of wavelength λ, π is the circular constant, and ω 0 is the spot size of the optical waveguide ( In the case of a rectangular waveguide or the like, an equivalent spot size characterizing the waveguide), and φ is the angle between the optical axis center of the refracted light and the light absorbing layer.
JP05276097A 1996-03-12 1997-03-07 Semiconductor light receiving element and manufacturing method thereof Expired - Lifetime JP3620761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05276097A JP3620761B2 (en) 1996-03-12 1997-03-07 Semiconductor light receiving element and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5435796 1996-03-12
JP8-54357 1996-10-21
JP8-277769 1996-10-21
JP27776996 1996-10-21
JP05276097A JP3620761B2 (en) 1996-03-12 1997-03-07 Semiconductor light receiving element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10190042A true JPH10190042A (en) 1998-07-21
JP3620761B2 JP3620761B2 (en) 2005-02-16

Family

ID=27294731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05276097A Expired - Lifetime JP3620761B2 (en) 1996-03-12 1997-03-07 Semiconductor light receiving element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3620761B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353250B1 (en) 1997-11-07 2002-03-05 Nippon Telegraph And Telephone Corporation Semiconductor photo-detector, semiconductor photo-detection device, and production methods thereof
JP2007180518A (en) * 2005-11-29 2007-07-12 Nitto Denko Corp Photovoltaic device and its process for fabrication

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353250B1 (en) 1997-11-07 2002-03-05 Nippon Telegraph And Telephone Corporation Semiconductor photo-detector, semiconductor photo-detection device, and production methods thereof
US7256062B2 (en) * 1997-11-07 2007-08-14 Nippon Telephone And Telegraph Corporation Semiconductor photo-detector, semiconductor photo-detection device, and production methods thereof
US7575949B2 (en) 1997-11-07 2009-08-18 Nippon Telegraph And Telephone Corporation Semiconductor photo-detector, semiconductor photo-detection device, and production method thereof
JP2007180518A (en) * 2005-11-29 2007-07-12 Nitto Denko Corp Photovoltaic device and its process for fabrication

Also Published As

Publication number Publication date
JP3620761B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
US7575949B2 (en) Semiconductor photo-detector, semiconductor photo-detection device, and production method thereof
JPH03179792A (en) Monolithic semiconductor laser diode and photodiode structure
US4358676A (en) High speed edge illumination photodetector
JP2008288293A (en) Semiconductor photodetector
US5926585A (en) Waveguide type light receiving element
US7368750B2 (en) Semiconductor light-receiving device
JP3620761B2 (en) Semiconductor light receiving element and manufacturing method thereof
JP2002203982A (en) Semiconductor light receiving device and its fabricating method
WO2023062766A1 (en) Waveguide-type light receiving element, waveguide-type light receiving element array, and method for producing waveguide-type light receiving element
KR102307789B1 (en) Backside illuminated avalanche photodiode and manufacturing method thereof
JP3783903B2 (en) Semiconductor light receiving element and manufacturing method thereof
US7317236B2 (en) Semiconductor light-receiving module capable of converting light into current efficiently at light absorbing layer
US5991473A (en) Waveguide type semiconductor photodetector
JP3710039B2 (en) Semiconductor photo detector
JP3672168B2 (en) Semiconductor photo detector
JP3831707B2 (en) Semiconductor light-receiving element for repeatedly propagating incident light in a light absorption layer and method for manufacturing the same
JPH04342174A (en) Semiconductor photoelectric receiving element
JP3608772B2 (en) Semiconductor photo detector
JP3549086B2 (en) Semiconductor light receiving device
JPH1074974A (en) Semiconductor light-receiving element
JP2711049B2 (en) Semiconductor waveguide type photodetector and method of manufacturing the same
JP2004055620A (en) Semiconductor photodetector
JPS6320398B2 (en)
Liu Monolithically Reflector Integrated Waveguide Photodetector with Optically Isolation Mesa
JP2004055915A (en) Semiconductor photodetector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20041112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term