JP2008288293A - Semiconductor photodetector - Google Patents

Semiconductor photodetector Download PDF

Info

Publication number
JP2008288293A
JP2008288293A JP2007130076A JP2007130076A JP2008288293A JP 2008288293 A JP2008288293 A JP 2008288293A JP 2007130076 A JP2007130076 A JP 2007130076A JP 2007130076 A JP2007130076 A JP 2007130076A JP 2008288293 A JP2008288293 A JP 2008288293A
Authority
JP
Japan
Prior art keywords
semiconductor
light
layer
receiving element
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007130076A
Other languages
Japanese (ja)
Inventor
Manabu Mitsuhara
学 満原
Tomonari Sato
具就 佐藤
Hideki Fukano
秀樹 深野
Yasuhiro Kondo
康洋 近藤
Masakazu Arai
昌和 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007130076A priority Critical patent/JP2008288293A/en
Publication of JP2008288293A publication Critical patent/JP2008288293A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor photodetector of large quantum efficiency and less dark current, even concretely in the case of thin film thickness of an InGaAsN optical absorption layer. <P>SOLUTION: The semiconductor photodetector uses the InGaAsN layer formed on an InP substrate 1 as the optical absorption layer 5 and projecting a signal light from the reverse side to the InP substrate 1. In the semiconductor photodetector, a semiconductor multilayer-film reflecting mirror 2 for reflecting the signal light is fitted between the InP substrate 1 and the InGaAsN optical absorption layer 5. In the semiconductor photodetector, a reflecting mirror (such as one reflecting a light on an interface between a p-InGaAs layer 7 and air) further reflecting the light reflected by a semiconductor multilayer film reflecting mirror 2 is fitted further on the reverse side of the InP substrate 1 to the InGaAsN optical absorption layer 5, and the signal light is resonated between the two reflecting mirrors. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体受光素子に関するものである。   The present invention relates to a semiconductor light receiving element.

波長1.7ミクロンメータ(μm)より長い近赤外から中赤外の波長域には、多くの分子の吸収線が存在している。分子は、その種類に応じて固有の波長の光を吸収するために、分子の吸収線に対する分光計測を用いれば、混合ガス中における特定のガスの濃度や物質中の特定の分子の濃度を測定することが可能となる。   Absorption lines of many molecules exist in the near-infrared to mid-infrared wavelength range longer than a wavelength of 1.7 μm (μm). A molecule absorbs light of a specific wavelength depending on the type of the molecule. By using spectroscopic measurement for the absorption line of the molecule, the concentration of a specific gas in a mixed gas or the concentration of a specific molecule in a substance is measured. It becomes possible to do.

半導体を用いた光受光素子では、その光吸収層は信号光の波長よりも長いバンドギャップ波長が必要である。しかしながら、光吸収層としては、半導体受光素子における暗電流と受光感度を考慮すると、測定する光の波長よりも極端に長いバンドギャップ波長の材料は相応しくない。これは、半導体を用いた受光素子では、光吸収層のバンドギャップ波長が長くなるに従い、暗電流の増加が顕著になることに加えて、入射させる光の波長を短くしていった場合の光吸収層における吸収係数は、光吸収層のバンドギャップ波長付近では急激に増加するもののその後は落ち着いてくるため、光吸収層のバンドギャップ波長を著しく長波長にしても吸収に対する利点が小さくなるためである。上記の理由により、波長1.7から3.2μm付近の光の検出には、これまで主としてバンドギャップ波長が3.4μmであるPbSの光導電効果を用いた受光素子が用いられてきた。   In a light receiving element using a semiconductor, the light absorption layer needs a band gap wavelength longer than the wavelength of signal light. However, considering the dark current and the light receiving sensitivity of the semiconductor light receiving element, a material having a band gap wavelength extremely longer than the wavelength of the light to be measured is not suitable for the light absorbing layer. This is because, in a light receiving element using a semiconductor, as the band gap wavelength of the light absorption layer becomes longer, the dark current increases remarkably, and the light when the incident light wavelength is shortened. The absorption coefficient in the absorption layer increases rapidly in the vicinity of the band gap wavelength of the light absorption layer, but then settles down, so even if the band gap wavelength of the light absorption layer is extremely long, the advantage for absorption is reduced. is there. For the above reason, a light receiving element using a photoconductive effect of PbS having a band gap wavelength of 3.4 μm has been mainly used for detecting light in the vicinity of a wavelength of 1.7 to 3.2 μm.

しかしながら、一般に光導電効果を用いた受光素子は、光起電力効果を用いた受光素子に対し、応答時間が遅い。このため、近年、このPbSを用いた光導電検出器に代わり、光起電力効果を用いた拡張型InGaAs受光素子と呼ばれる受光素子が開発され、実用化されている。図3は、拡張型InGaAs受光素子の層構成を模式的に示した図である。図3には、InP基板21上に組成を段階的に変化させたInAsPバッファ層22、InGaAs光吸収層23、InAsP窓層24からなる拡張型InGaAs受光素子の層構造が示されている。InGaAsは、InPに格子定数が一致する条件ではIn組成比が0.53、バンドギャップ波長が1.67μmであり、波長1.7μm以上の光の検出は困難である。InGaAsは、そのIn組成比が増加するにしたがってバンドギャップ波長が増加するため、波長1.7μm以上の光を測定するためには、InGaAs吸収層のIn組成比を0.53以上に増加させる必要がある。図3の拡張型InGaAs受光素子では、InGaAs光吸収層23のIn組成比を増加させるための工夫がなされている。   However, in general, a light receiving element using the photoconductive effect has a slower response time than a light receiving element using the photovoltaic effect. Therefore, in recent years, instead of the photoconductive detector using PbS, a light receiving element called an extended InGaAs light receiving element using the photovoltaic effect has been developed and put into practical use. FIG. 3 is a diagram schematically showing a layer structure of the extended type InGaAs light receiving element. FIG. 3 shows a layer structure of an extended InGaAs light receiving element including an InAsP buffer layer 22, an InGaAs light absorption layer 23, and an InAsP window layer 24, the composition of which is changed stepwise on the InP substrate 21. InGaAs has an In composition ratio of 0.53 and a band gap wavelength of 1.67 μm under the condition that the lattice constant coincides with InP, and it is difficult to detect light having a wavelength of 1.7 μm or more. Since the band gap wavelength of InGaAs increases as the In composition ratio increases, the In composition ratio of the InGaAs absorption layer must be increased to 0.53 or more in order to measure light having a wavelength of 1.7 μm or more. There is. In the extended type InGaAs light receiving element of FIG. 3, a device for increasing the In composition ratio of the InGaAs light absorption layer 23 is devised.

具体的にはInP基板21上において、As組成比を段階的に増加させたInAsPバッファ層22をエピタキシャル成長により形成していき、InAsPバッファ層22の最後の層の格子定数をInGaAs光吸収層23と一致させるようにする。このようなAs組成を段階的に増加させたInAsPバッファ層22を用いることで、InGaAs光吸収層23のIn組成比を0.53以上にすることができ、そのバンドギャップ波長を1.67μm以上にしても、下のInAsPバッファ層22で発生した転位がInGaAs光吸収層23に伝播することを抑制することができる。拡張型InGaAs受光素子では、InGaAs光吸収層23のIn組成比が0.8を超え、波長2.6μm付近まで受光可能な受光素子が開発されている。   Specifically, an InAsP buffer layer 22 with the As composition ratio increased stepwise is formed on the InP substrate 21 by epitaxial growth, and the lattice constant of the last layer of the InAsP buffer layer 22 is changed to that of the InGaAs light absorption layer 23. Try to match. By using the InAsP buffer layer 22 in which the As composition is increased stepwise, the In composition ratio of the InGaAs light absorption layer 23 can be 0.53 or more, and the band gap wavelength is 1.67 μm or more. Even so, it is possible to suppress dislocations generated in the lower InAsP buffer layer 22 from propagating to the InGaAs light absorption layer 23. As the extended type InGaAs light receiving element, a light receiving element has been developed that can receive light with an In composition ratio of the InGaAs light absorption layer 23 exceeding 0.8 and a wavelength near 2.6 μm.

図3のような拡張型InGaAs受光素子における問題は、InAsPバッファ層22の層構成や作製方法を工夫することによりInGaAs光吸収層23に伝播する転位をある程度は低減することができても、格子不整合による欠陥の影響を完全に無くすことは極めて困難であり、欠陥密度をInPに格子整合する結晶と同程度にすることは不可能に近い。光吸収層23における欠陥の増加は、半導体受光素子における量子効率を低減させ、暗電流を増加させる。半導体受光素子の性能向上のためには、結晶欠陥の発生を抑制することが極めて重要である。   The problem with the extended type InGaAs light receiving element as shown in FIG. 3 is that even if the dislocation propagating to the InGaAs light absorbing layer 23 can be reduced to some extent by devising the layer structure and manufacturing method of the InAsP buffer layer 22, It is extremely difficult to completely eliminate the influence of defects due to mismatching, and it is almost impossible to make the defect density comparable to that of a crystal lattice-matched to InP. The increase in defects in the light absorption layer 23 decreases the quantum efficiency in the semiconductor light receiving element and increases the dark current. In order to improve the performance of the semiconductor light receiving element, it is extremely important to suppress the generation of crystal defects.

このため、InPに格子整合させつつ、そのバンドギャップ波長を1.7μmよりも長くすることができるInGaAsNが期待されている。通常、III-V 族化合物半導体では一般に格子定数が小さくなるに従ってバンドギャップ波長が減少するが、InGaAsNでは逆に窒素(N)組成比の増加に伴い、格子定数が小さくなるにも関わらずバンドギャップ波長が増加するという特徴を持つ。   For this reason, InGaAsN is expected which can make the band gap wavelength longer than 1.7 μm while lattice matching with InP. In general, III-V compound semiconductors generally have a bandgap wavelength that decreases as the lattice constant decreases. InGaAsN, on the other hand, the bandgap decreases with increasing nitrogen (N) composition ratio, but the bandgap decreases. It has the feature that the wavelength increases.

図4は、InPに格子整合し、N組成比が3.5%であるInGaAsNの吸収スペクトルを示したものである。図4において、横軸は入射光の波長であり、縦軸は吸収係数である。図4から明らかなようにInGaAsNのバンドギャップ波長は2.2μmを超えており、さらにN組成比を増加させればバンドギャップ波長を増大させることができる。InGaAsSbにNを加えたInGaAsNSbでも、InGaAsNと同様に結晶内への窒素の導入に伴うバンドギャップ波長の増加が確認されており(例えば、下記、非特許文献1を参照)、InGaAsNSbを用いても、InPに格子整合しバンドギャップ波長が1.7μmを超える受光素子の吸収層とすることが可能である。   FIG. 4 shows an absorption spectrum of InGaAsN lattice-matched to InP and having an N composition ratio of 3.5%. In FIG. 4, the horizontal axis represents the wavelength of incident light, and the vertical axis represents the absorption coefficient. As apparent from FIG. 4, the band gap wavelength of InGaAsN exceeds 2.2 μm, and the band gap wavelength can be increased by further increasing the N composition ratio. Even in InGaAsNSb in which N is added to InGaAsSb, an increase in the band gap wavelength accompanying the introduction of nitrogen into the crystal has been confirmed as in InGaAsN (for example, see Non-Patent Document 1 below), and even if InGaAsNSb is used. It is possible to form an absorption layer of a light receiving element that is lattice-matched to InP and has a band gap wavelength exceeding 1.7 μm.

V. Gambin et al., “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy, IEEE Journal of Selected Topics in Quantum Electronics Vol.8, No.4,2002, pp.795-800V. Gambin et al., “GaInNAsSb for 1.3-1.6-μm-long wavelength lasers grown by molecular beam epitaxy, IEEE Journal of Selected Topics in Quantum Electronics Vol.8, No.4,2002, pp.795-800 M. Herrera et al.,“Compositon modulation in GaInNAs quantum wells:Comparison of experiment and theory”, Journal of Applied Physics, Vol.97,2005,p.73705M. Herrera et al., “Compositon modulation in GaInNAs quantum wells: Comparison of experiment and theory”, Journal of Applied Physics, Vol. 97, 2005, p. 73705 T.Okada et al., “The role of strain and composition on the morphology of InGaAsP layers grown on <001> InP substrates”, Journal of Crystal Growth, Vol.179,1997,pp.339-348T. Okada et al., “The role of strain and composition on the morphology of InGaAsP layers grown on <001> InP substrates”, Journal of Crystal Growth, Vol.179,1997, pp.339-348 K, Kishino et al.,“Resonant cavity-enhanced (RCE) photodetectors ”, IEEE Journal of Quantum Electronics,Vol.27, No.8, 1991, pp.2025-2034K, Kishino et al., “Resonant cavity-enhanced (RCE) correspondings”, IEEE Journal of Quantum Electronics, Vol.27, No.8, 1991, pp.2025-2034 Q. Han et al.,“1.55μm GaInNAs resonant-cavity-enhenced photodetector grown on GaAs ”, Applied physics Letters, Vol.87, 2005, p.11105Q. Han et al., “1.55μm GaInNAs resonant-cavity-enhenced characterized grown on GaAs”, Applied physics Letters, Vol.87, 2005, p.11105 S. Jouba et al.,“2μm resonat cavity enhanced InP/InGaAs single quantum well photo-detector”, Electronics Letters, Vol.35, No.15, 1999, pp.1272-1274S. Jouba et al., “2μm resonat cavity enhanced InP / InGaAs single quantum well photo-detector”, Electronics Letters, Vol.35, No.15, 1999, pp.1272-1274 D. Vignaud et al.,“Free-carrier absorption and growth temperature of highly Be-doped InGaAs in molecular beam epitaxy”,Journal of Crystal Growth, Vol.291, 2006, pp.107-111D. Vignaud et al., “Free-carrier absorption and growth temperature of highly Be-doped InGaAs in molecular beam epitaxy”, Journal of Crystal Growth, Vol.291, 2006, pp.107-111

ところで半導体を吸収層に用いる受光素子で一般的な構造は、アンドープの吸収層をp型ドープ層とn型ドープ層で挟んだいわゆるPIN型の層構造である。図5は、InGaAsNを吸収層に用いたPIN型受光素子の層構造を模式的に示した図である。   By the way, a general structure of a light receiving element using a semiconductor as an absorption layer is a so-called PIN type layer structure in which an undoped absorption layer is sandwiched between a p-type doped layer and an n-type doped layer. FIG. 5 is a diagram schematically showing a layer structure of a PIN type light receiving element using InGaAsN as an absorption layer.

図5には、InP基板25上にn−InPバッファ層26、InGaAsN光吸収層27、p−InGaAsコンタクト層28からなる光受光素子の基本的な層構造が示されている。受光素子における光から電気への変換効率の指標としては、量子効率を目安とすることが一般的であり、波長1.7から3.2μm付近の分光計測では光源の光強度が弱いために高い量子効率が望ましい。量子効率を増大させるための一般的な手段は、光吸収層の膜厚の増大である。光吸収層の信号光に対する吸収係数は一般に1000から10000インバースセンチ(cm-1)程度である。吸収係数を5000cm-1とすると、量子効率を5%にするだけでも0.2μm程度の膜厚が必要となる。 FIG. 5 shows a basic layer structure of a light receiving element including an n-InP buffer layer 26, an InGaAsN light absorption layer 27, and a p-InGaAs contact layer 28 on an InP substrate 25. As an index of light-to-electricity conversion efficiency in a light-receiving element, it is common to use quantum efficiency as a guide, and in spectroscopic measurement near wavelengths from 1.7 to 3.2 μm, the light intensity of the light source is low, which is high Quantum efficiency is desirable. A common means for increasing the quantum efficiency is to increase the film thickness of the light absorption layer. The absorption coefficient of the light absorption layer with respect to the signal light is generally about 1000 to 10,000 inverse centimeters (cm −1 ). If the absorption coefficient is 5000 cm −1 , a film thickness of about 0.2 μm is required even if the quantum efficiency is only 5%.

しかしながら、InGaAsNは、材料の特徴として均一な組成の膜を得ることが困難であり、成長方向に対して横方向でInとNの組成比が揺らぐことが知られている(例えば、上記、非特許文献2を参照)。このような組成変調がある場合、膜厚増加に伴い組成変調が大きくなるため、大きな膜厚の結晶を得ることは困難である(例えば、上記、非特許文献3を参照)。このため、InPに格子整合し、そのバンドギャップ波長が1.7μm以上のInGaAsNを光吸収層として半導体受光素子に用いる場合、光吸収層の膜厚を大きくできないため、高い量子効率が得られないという問題がある。また、光吸収層の膜厚を大きくした場合、組成変調による結晶欠陥が発生するため、暗電流の増加や量子効率の低下が懸念されることになる。   However, InGaAsN is difficult to obtain a film having a uniform composition as a feature of the material, and it is known that the composition ratio of In and N fluctuates in a direction transverse to the growth direction (for example, the above non- (See Patent Document 2). In the case where there is such a compositional modulation, the compositional modulation increases as the film thickness increases, so that it is difficult to obtain a crystal having a large film thickness (see, for example, Non-Patent Document 3 above). For this reason, when InGaAsN having a lattice match with InP and having a band gap wavelength of 1.7 μm or more is used as a light absorption layer in a semiconductor light receiving element, the film thickness of the light absorption layer cannot be increased, so that high quantum efficiency cannot be obtained. There is a problem. Further, when the thickness of the light absorption layer is increased, crystal defects are generated due to compositional modulation, which may cause an increase in dark current and a decrease in quantum efficiency.

本発明は、上述のInGaAsNを光吸収層に用いた半導体受光素子に関して従来技術が有する未解決の課題に着目してなされたものであり、具体的にはInGaAsN光吸収層の膜厚が薄い場合であっても、大きな量子効率が得られ、加えて暗電流の少ない半導体受光素子を提供することを目的としている。   The present invention has been made paying attention to the unsolved problems of the prior art regarding the semiconductor light-receiving element using InGaAsN as a light absorption layer, and specifically, when the thickness of the InGaAsN light absorption layer is thin. Even so, an object of the present invention is to provide a semiconductor light-receiving element that can obtain a large quantum efficiency and also has a low dark current.

上記目的を達成する第1発明の半導体受光素子は、半導体基板上に光吸収層として窒素を含む半導体層を有し、前記光吸収層に対して信号光を前記半導体基板とは反対方向から入射し、前記信号光から電気信号を取り出す半導体受光素子において、前記半導体基板と前記光吸収層の間に前記信号光を反射するような半導体多層膜を備えたことを特徴とするものである。   The semiconductor light-receiving element of the first invention that achieves the above object has a semiconductor layer containing nitrogen as a light absorption layer on a semiconductor substrate, and signal light is incident on the light absorption layer from a direction opposite to the semiconductor substrate. In the semiconductor light receiving element that extracts an electric signal from the signal light, a semiconductor multilayer film that reflects the signal light is provided between the semiconductor substrate and the light absorption layer.

また、第2発明の半導体受光素子は、第1発明の半導体受光素子において、前記半導体基板はInPであり、前記光吸収層はバンドギャップに対応する波長が1.7ミクロンメータ以上であるInGaAsN層又はInGaAsNSb層の何れかであることを特徴とするものである。   The semiconductor light-receiving element of the second invention is the semiconductor light-receiving element of the first invention, wherein the semiconductor substrate is InP, and the light absorption layer has an InGaAsN layer having a wavelength corresponding to a band gap of 1.7 μm or more. Or an InGaAs NSb layer.

また、第3発明の半導体受光素子は、第1発明または第2発明の半導体受光素子において、前記半導体基板はInPであり、前記半導体多層膜は、InPに格子整合することが可能な半導体材料であって、In、Ga、Alのうち1つ以上、かつ、As、Pのうち1つ以上を構成元素として含み、前記半導体多層膜のバンドギャップに対応する波長が0.83ミクロンメータから1.67ミクロンメータであることを特徴とするものである。   According to a third aspect of the present invention, there is provided the semiconductor light receiving element according to the first or second aspect, wherein the semiconductor substrate is InP, and the semiconductor multilayer film is a semiconductor material capable of lattice matching with InP. In addition, one or more of In, Ga, and Al and one or more of As and P are included as constituent elements, and the wavelength corresponding to the band gap of the semiconductor multilayer film is 0.83 micrometer to 1. It is characterized by a 67 micrometer.

また、第4発明の半導体受光素子は、第1発明乃至第3発明の何れかの半導体受光素子において、前記光吸収層に対して、前記半導体基板の反対側には前記半導体多層膜により反射された光をさらに反射するための反射鏡が形成されており、前記半導体多層膜と前記反射鏡との間が前記信号光に対して共振器構造となっていることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided the semiconductor light-receiving element according to any one of the first to third aspects, wherein the semiconductor multilayer film is reflected on the opposite side of the semiconductor substrate with respect to the light absorption layer. A reflection mirror for further reflecting the reflected light is formed, and a resonator structure is formed between the semiconductor multilayer film and the reflection mirror with respect to the signal light.

また、第5発明の半導体受光素子は、第4発明の半導体受光素子において、前記反射鏡は、半導体と気体の界面、または誘電体多層膜、または半導体多層膜を用いることを特徴とするものである。   According to a fifth aspect of the present invention, there is provided the semiconductor light-receiving element according to the fourth aspect, wherein the reflector uses a semiconductor-gas interface, a dielectric multilayer film, or a semiconductor multilayer film. is there.

上記の如く本発明に係る半導体受光素子では、InP基板などの半導体基板上に形成されたInGaAsNなどの窒素を含む半導体層を光吸収層とし、信号光を半導体基板(InP基板)とは反対側から入射させる半導体受光素子において、半導体基板(InP基板)とInGaAsNなどの光吸収層の間に信号光を反射するための半導体多層膜(反射鏡)を設置し、さらにInGaAsNなどの光吸収層に対して半導体基板(InP基板)の反対側には半導体多層膜により反射された光をさらに反射するような反射鏡を設置し、信号光をこの2つの反射鏡の間で共振させる。このような共振器構造を持つ半導体受光素子にすることで、1度の通過では光吸収層に吸収されなかった信号光を、反射鏡の間で共振させながら吸収させるようにできるため、量子効率を飛躍的に増加させることができる。その結果として、InGaAsN光吸収層の膜厚が小さい場合には高い量子効率が得られないという従来の問題は解決される。また、InGaAsN光吸収層の膜厚増加を抑えることができるため、InGaAsN光吸収層における欠陥の発生を抑制することが可能であり、その結果として暗電流の増加も回避することができる。   As described above, in the semiconductor light receiving element according to the present invention, the semiconductor layer containing nitrogen such as InGaAsN formed on a semiconductor substrate such as an InP substrate is used as a light absorption layer, and signal light is opposite to the semiconductor substrate (InP substrate). In the semiconductor light-receiving element that is made incident from above, a semiconductor multilayer film (reflecting mirror) for reflecting signal light is disposed between the semiconductor substrate (InP substrate) and the light absorption layer such as InGaAsN, and the light absorption layer such as InGaAsN is further provided. On the other hand, on the opposite side of the semiconductor substrate (InP substrate), a reflecting mirror that further reflects the light reflected by the semiconductor multilayer film is installed, and the signal light is resonated between the two reflecting mirrors. By using a semiconductor light receiving element having such a resonator structure, signal light that has not been absorbed by the light absorption layer in one pass can be absorbed while resonating between reflecting mirrors. Can be dramatically increased. As a result, the conventional problem that high quantum efficiency cannot be obtained when the thickness of the InGaAsN light absorption layer is small is solved. In addition, since an increase in the thickness of the InGaAsN light absorption layer can be suppressed, generation of defects in the InGaAsN light absorption layer can be suppressed, and as a result, an increase in dark current can be avoided.

上記のような共振器構造を持つ半導体受光素子は、これまで主としてGaAs基板上の受光素子の構造として検討されてきた(例えば、上記、非特許文献4、および非特許文献5を参照)。この共振器構造を持つ受光素子において量子効果を増大させるためには、検出光に対して入射側の反射鏡の反射率は30%以上であれば問題ないが、吸収層に対して基板側に配置される半導体多層膜反射鏡の反射率は70%以上であることが望まれる(上記、非特許文献4を参照)。半導体多層膜は、これを構成する2つの材料の屈折率差が大きいほど、所望の波長に対してその反射率を大きくすることができる。   The semiconductor light-receiving element having the resonator structure as described above has been mainly studied as a structure of a light-receiving element on a GaAs substrate so far (for example, see Non-Patent Document 4 and Non-Patent Document 5 above). In order to increase the quantum effect in the light receiving element having this resonator structure, there is no problem as long as the reflectance of the reflecting mirror on the incident side with respect to the detection light is 30% or more. The reflectance of the semiconductor multilayer film reflector to be disposed is desirably 70% or more (see Non-Patent Document 4 above). The semiconductor multilayer film can increase its reflectivity with respect to a desired wavelength as the refractive index difference between the two materials constituting the semiconductor multilayer film increases.

しかしながら、InPに格子整合することが可能な半導体材料(In,Ga,Al,As,Pを構成元素とする材料が用いられることが一般的)では、光ファイバ通信に用いられる波長1.3μmや1.55μmの光に対して、材料間で大きな屈折率差を持たせることが困難であり、その結果として高い反射率の半導体多層膜の作製が難しい。このことが、InP基板上で共振器構造を持つ半導体受光素子の作製を困難にしている一因である。一方で、InPに格子整合する材料でも、そのバンドギャップ波長よりも十分に長い波長の光の場合、半導体多層膜による吸収が問題にならず、その結果として高い反射率の半導体多層膜を得ることが容易になる。実際にバンドギャップ波長が2μm程度のInGaAs単一量子井戸層の光吸収層と、InPに格子整合したInGaAsとInPとで構成した半導体多層膜反射鏡とを組み合わせた半導体受光素子において、量子効率を増大させた例が報告されている(上記、非特許文献6を参照)。InGaAsNのバンドギャップ波長は、InPに格子整合するIn,Ga,Al,As,Pからなる材料のバンドギャップ波長(0.83μm〜1.67μm)よりも長い1.7μm以上にすることができるため、InGaAsNを光吸収層に用いることで半導体多層膜反射鏡における吸収の問題がなく、高い反射率差が得られる2つの半導体材料を組み合わせた半導体多層膜を作製することが可能となる。   However, in semiconductor materials that can be lattice-matched to InP (materials that use In, Ga, Al, As, and P as constituent elements are generally used), a wavelength of 1.3 μm used for optical fiber communication or It is difficult to give a large refractive index difference between materials for light of 1.55 μm, and as a result, it is difficult to produce a semiconductor multilayer film with high reflectivity. This is one factor that makes it difficult to manufacture a semiconductor light-receiving element having a resonator structure on an InP substrate. On the other hand, even with a material lattice-matched to InP, in the case of light having a wavelength sufficiently longer than the band gap wavelength, absorption by the semiconductor multilayer film is not a problem, and as a result, a semiconductor multilayer film having high reflectivity is obtained Becomes easier. In a semiconductor light-receiving device that combines a light absorption layer of an InGaAs single quantum well layer with a band gap wavelength of about 2 μm and a semiconductor multilayer reflector composed of InGaAs and InP lattice-matched to InP, the quantum efficiency is improved. An increased example has been reported (see Non-Patent Document 6 above). The band gap wavelength of InGaAsN can be 1.7 μm or longer, which is longer than the band gap wavelength (0.83 μm to 1.67 μm) of a material made of In, Ga, Al, As, and P lattice-matched to InP. By using InGaAsN for the light absorption layer, there is no problem of absorption in the semiconductor multilayer film reflector, and it becomes possible to produce a semiconductor multilayer film combining two semiconductor materials that can obtain a high reflectance difference.

なお、InGaAsNはN組成比の増大に伴い、そのバンドギャップ波長を長波長化することができるため、InGaAsNのバンドギャップ波長には長波長側に対する制約はない。しかしながら、半導体受光素子全体で考えた場合、波長4μm以上の光ではコンタクト層等の他の層において価電子帯内での吸収が起こり(例えば、上記、非特許文献7を参照)、InGaAsNへの入射光量が減少する。共振器構造を用いた半導体光受光素子では、共振器内でのすべての層の吸収が問題となるため、実質的な波長の上限は4μm程度である。   Incidentally, since the band gap wavelength of InGaAsN can be increased as the N composition ratio increases, the band gap wavelength of InGaAsN is not limited to the longer wavelength side. However, when considering the entire semiconductor light receiving element, absorption in the valence band occurs in other layers such as a contact layer for light having a wavelength of 4 μm or more (for example, see Non-Patent Document 7 above), Incident light quantity decreases. In a semiconductor light receiving element using a resonator structure, since absorption of all layers in the resonator becomes a problem, the practical upper limit of the wavelength is about 4 μm.

[作用]
InPを基板としInGaAsNを光吸収層とする受光器(半導体受光素子)において、InGaAsN光吸収層の上下に共振器構造となるような反射鏡を設けることにより、所望の波長の信号光に対して量子効率を増加させることができる。このため、膜厚を増加させることの難しいInGaAsNを光吸収層に用いても、その光吸収層の膜厚が小さくても高い量子効率を得ることができ、さらに暗電流の低減も可能である。
[Action]
In a light-receiving device (semiconductor light-receiving element) using InP as a substrate and InGaAsN as a light absorption layer, a reflecting mirror having a resonator structure is provided above and below the InGaAsN light absorption layer, so that signal light having a desired wavelength can be obtained. Quantum efficiency can be increased. For this reason, even if InGaAsN, which is difficult to increase the film thickness, is used for the light absorption layer, high quantum efficiency can be obtained even if the film thickness of the light absorption layer is small, and the dark current can also be reduced. .

以上説明したように本発明を用いれば、InP基板上の半導体受光素子において、吸収層の膜厚が小さくても波長1.7μm以上の信号光に対する量子効率を大きくすることができる。これにより、近赤外から中赤外の波長域において、高感度で暗電流の小さい半導体受光素子を作製でき、高感度な分光計測に応用できるという効果がある。   As described above, when the present invention is used, the quantum efficiency with respect to signal light having a wavelength of 1.7 μm or more can be increased in the semiconductor light receiving element on the InP substrate even if the thickness of the absorption layer is small. Thereby, in the near-infrared to mid-infrared wavelength region, it is possible to produce a semiconductor light-receiving element with high sensitivity and small dark current, and there is an effect that it can be applied to high-sensitivity spectroscopic measurement.

以下、本発明の好適な実施の形態例を、図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

[第1の実施の形態例]
図1は、本発明の第1の実施の形態例に係る半導体受光素子のウェハの層構造を示す断面図である。
[First Embodiment]
FIG. 1 is a sectional view showing a layer structure of a wafer of a semiconductor light receiving element according to a first embodiment of the present invention.

まず、本実施の形態例に係る半導体受光素子の構成を説明する。図1に示すように、本実施の形態例に係る半導体受光素子は、n−InP基板1と、n−InP基板1上に形成された半導体多層膜反射鏡2と、半導体多層膜反射鏡2上に形成されたバンドギャップ波長が1.3μmとなるn型ドープInGaAsP層3と、n型ドープInGaAsP層3上に形成されたバンドギャップ波長が1.3μmとなるInGaAsP層4と、InGaAsP層4の上に形成された光吸収層となるInGaAsN層5と、InGaAsN層5上に形成されたInGaAsP層6と、InGaAsP層6上に形成されたp型ドープInGaAs層7とで構成されている。本半導体受光素子では、図1中に矢印で示す如く、InGaAsN光吸収層5に対して信号光を、n−InP基板1とは反対方向から入射し、前記信号光から電気信号を取り出す。   First, the configuration of the semiconductor light receiving element according to the present embodiment will be described. As shown in FIG. 1, the semiconductor light receiving element according to the present embodiment includes an n-InP substrate 1, a semiconductor multilayer reflector 2 formed on the n-InP substrate 1, and a semiconductor multilayer reflector 2. An n-type doped InGaAsP layer 3 having a band gap wavelength of 1.3 μm formed thereon, an InGaAsP layer 4 having a band gap wavelength of 1.3 μm formed on the n-type doped InGaAsP layer 3, and an InGaAsP layer 4 The InGaAsN layer 5 serving as a light absorption layer formed on the InGaAsP layer 6, the InGaAsP layer 6 formed on the InGaAsN layer 5, and the p-type doped InGaAs layer 7 formed on the InGaAsP layer 6. In this semiconductor light-receiving element, as indicated by an arrow in FIG. 1, signal light is incident on the InGaAsN light absorption layer 5 from the opposite direction to the n-InP substrate 1, and an electric signal is extracted from the signal light.

ここで、InGaAsN光吸収層5は、窒素組成比が0.035、Inの組成比が0.63であり、そのバンドギャップ波長は2.2μm、膜厚は115nmである。また、半導体多層膜反射鏡2は、n型ドープInGaAs層(膜厚148nm)とn型ドープInP層(膜厚163nm)を1つのペアとし、これを13ペア分積層させ、波長2.05μmの光に対する反射率が約90%になるようにした。信号光の入射側の反射鏡には、p型ドープInGaAs層7と空気の界面での反射(反射率30%)を用いた。   Here, the InGaAsN light absorption layer 5 has a nitrogen composition ratio of 0.035, an In composition ratio of 0.63, a band gap wavelength of 2.2 μm, and a film thickness of 115 nm. In addition, the semiconductor multilayer reflector 2 has an n-type doped InGaAs layer (film thickness of 148 nm) and an n-type doped InP layer (film thickness of 163 nm) as one pair, and 13 pairs are laminated to obtain a wavelength of 2.05 μm. The reflectance with respect to light was set to about 90%. Reflection at the interface between the p-type doped InGaAs layer 7 and the air (reflectance 30%) was used for the reflecting mirror on the signal light incident side.

比較のため、図1の層構造において、半導体多層膜反射鏡2がなく、その他の層構造が同じウェハも作製した。   For comparison, a wafer without the semiconductor multilayer film reflecting mirror 2 in the layer structure of FIG.

次に、本実施の形態例に係る半導体受光素子の製造方法を説明する。エピタキシャルウェハの成長には、III 族原料がトリエチルガリウム(TEGa)とトリメチルインジウム(TMIn)、V族原料がアルシン(AsH3)とフォスフィン(PH3)と窒素(N2)、ドーパント原料がスズ(Sn)とベリリウム(Be)である有機金属分子線エピタキシー法を用いた。InGaAsN層5の製造時には、窒素ガスを高周波プラズマ源の内部において原子状の窒素に分解してから基板へと供給した。成長時の基板温度は、InGaAsN層5で470℃、これ以外の層では500℃である。各層における原料供給量は、図1の半導体受光素子を構成する半導体各層においてInPに対する格子定数差が0.1%未満になるように調整した。直径400μmの円形メサを形成後、窒素シリコン膜8を蒸着させた。このメサ部中央部の窒素シリコン膜8を除去した後、外径370μm、内径250μmのリング状のp型電極9を形成した。最後に、InP基板1を研磨しn型電極10を形成した。 Next, a method for manufacturing a semiconductor light receiving element according to this embodiment will be described. For the growth of the epitaxial wafer, the group III raw materials are triethylgallium (TEGa) and trimethylindium (TMIn), the group V raw materials are arsine (AsH 3 ), phosphine (PH 3 ), nitrogen (N 2 ), and the dopant raw material is tin ( An organometallic molecular beam epitaxy method of Sn) and beryllium (Be) was used. At the time of manufacturing the InGaAsN layer 5, nitrogen gas was decomposed into atomic nitrogen inside the high frequency plasma source and then supplied to the substrate. The substrate temperature during growth is 470 ° C. for the InGaAsN layer 5 and 500 ° C. for the other layers. The raw material supply amount in each layer was adjusted so that the lattice constant difference with respect to InP would be less than 0.1% in each semiconductor layer constituting the semiconductor light receiving element of FIG. After forming a circular mesa with a diameter of 400 μm, a nitrogen silicon film 8 was deposited. After removing the nitrogen silicon film 8 at the center of the mesa portion, a ring-shaped p-type electrode 9 having an outer diameter of 370 μm and an inner diameter of 250 μm was formed. Finally, the InP substrate 1 was polished to form an n-type electrode 10.

このようにして作製した半導体受光素子は、光電流のピーク波長が2.053μmであり、ピーク波長における量子効率が26%であった。一方、比較のために作製した半導体多層膜反射鏡2がない半導体受光素子では、光電流のピーク波長が2.057μmにおいて量子効率が約3%であった。上記のように半導体多層膜反射鏡2があることにより、量子効率は5倍以上増大した。このことから、前述したようにInGaAsN層5を含む2つの反射鏡間の層が共振器として動作したことにより、量子効率が著しく増加することが分かった。一方、3倍以上の量子効率の増大が見られたのは、信号光の波長が2.01μmから2.08μmの範囲であり、10nm近い波長範囲で量子効率を増大していることが確認された。   The semiconductor light-receiving device thus fabricated had a photocurrent peak wavelength of 2.053 μm and a quantum efficiency of 26% at the peak wavelength. On the other hand, in the semiconductor light-receiving element without the semiconductor multilayer reflector 2 manufactured for comparison, the quantum efficiency was about 3% at the peak wavelength of the photocurrent of 2.057 μm. The quantum efficiency increased by a factor of 5 or more due to the presence of the semiconductor multilayer reflector 2 as described above. From this, it was found that the quantum efficiency is remarkably increased by the layer between the two reflecting mirrors including the InGaAsN layer 5 operating as a resonator as described above. On the other hand, it was confirmed that the quantum efficiency increased by 3 times or more when the wavelength of the signal light was in the range of 2.01 μm to 2.08 μm, and the quantum efficiency was increased in the wavelength range close to 10 nm. It was.

暗電流に関しては、半導体多層膜反射鏡2の有無によらず、バイアス電圧−1Vにおいて720±50nAであった。一方、同じ成長条件で作製したInGaAsN光吸収層5(膜厚1μm)を有し、半導体多層膜反射鏡2がない構造の半導体受光素子では、量子効率18%が得られたものの、バイアス電圧−1Vにおける暗電流は10μAであった。半導体多層膜反射鏡2を有する半導体受光素子で暗電流が10分の一程度であるのは、InGaAsN光吸収層5の膜厚が小さく、結晶欠陥の発生を抑制できるためである。   The dark current was 720 ± 50 nA at a bias voltage of −1 V regardless of the presence or absence of the semiconductor multilayer reflector 2. On the other hand, in the semiconductor light receiving element having the InGaAsN light absorption layer 5 (film thickness: 1 μm) manufactured under the same growth conditions and having no semiconductor multilayer reflector 2, the quantum efficiency of 18% was obtained, but the bias voltage − The dark current at 1V was 10 μA. The reason why the dark current is about one-tenth in the semiconductor light receiving element having the semiconductor multilayer mirror 2 is that the film thickness of the InGaAsN light absorption layer 5 is small and the occurrence of crystal defects can be suppressed.

なお、上記実施の形態例では、吸収ピーク波長が2.05μm付近で量子効率が増加する半導体受光素子について説明したが、吸収ピーク波長が2.05μm付近に限られるものではなく、InPに格子整合するIn,Ga,Al,As,Pからなる材料のバンドギャップ波長より長い1.7μm以上の波長を持つ信号光に対しては、図1における半導体多層膜反射鏡及びその他の層の組成ならびに膜厚を調整することにより、受光素子の吸収ピーク波長を変えることができ、上記の実施例と同様の効果が得られるのは明らかである。また、光吸収層としては、InPに格子整合し、1.7μmより長いバンドギャップ波長を持つ材料であれば良く、前述のようにInGaAsNSbを光吸収層に用いても、同様の効果が得られるのは明らかである。   In the above embodiment, the semiconductor light receiving element whose quantum efficiency increases when the absorption peak wavelength is around 2.05 μm has been described. However, the absorption peak wavelength is not limited to around 2.05 μm, and lattice matching with InP is possible. 1 for the signal light having a wavelength of 1.7 μm or more longer than the band gap wavelength of the material composed of In, Ga, Al, As, and P, and the composition and film of the semiconductor multilayer mirror and other layers in FIG. By adjusting the thickness, the absorption peak wavelength of the light receiving element can be changed, and it is clear that the same effect as in the above embodiment can be obtained. The light absorption layer may be any material that is lattice-matched to InP and has a band gap wavelength longer than 1.7 μm. Similar effects can be obtained even when InGaAsNSb is used for the light absorption layer as described above. It is clear.

また、上記実施の形態例では、半導体多層膜反射鏡がInGaAsとInPから構成される場合を示したが、InGaAsとInAlAsから構成される多層膜、あるいはInGaAlAsとInPから構成される多層膜など、InPに格子整合可能な材料でドーピングが可能な半導体材料であれば、同様の効果が得られるのは明らかである。また、ここでInPに格子整合可能な材料とは、InPに完全に格子定数が一致する必要はなく、若干の格子定数の差を有する材料を含み、格子定数の差に起因した格子緩和が発生しない程度であれば構わない。   In the above embodiment, the case where the semiconductor multilayer mirror is composed of InGaAs and InP is shown. However, a multilayer film composed of InGaAs and InAlAs, or a multilayer film composed of InGaAlAs and InP, etc. It is clear that the same effect can be obtained if the semiconductor material can be doped with a material capable of lattice matching with InP. Here, the material that can be lattice-matched to InP does not need to have the same lattice constant as that of InP, and includes materials having a slight difference in lattice constant, and lattice relaxation due to the difference in lattice constant occurs. It does n’t matter if you do n’t.

また、上記実施の形態例では、InP基板としてn型にドープされたInPを用いたが、半絶縁性基板を用い、p型電極とn型電極の両方を表面から取る構造を用いた場合でも、本構造の特徴を活かすことができるため、同様の効果が得られるのは明らかである。   In the above embodiment, n-type doped InP is used as the InP substrate. However, even when a semi-insulating substrate is used and a structure in which both the p-type electrode and the n-type electrode are taken from the surface is used. It is clear that the same effect can be obtained because the characteristics of this structure can be utilized.

また、上記実施の形態例では、作製方法として有機金属分子線エピタキシー法を用いた場合について説明したが、InGaAsN層が作製可能な成長方法で有れば良く、分子線エピタキシー法、ガスソース分子線エピタキシー法、有機金属気相エピタキシー法等の成長方法でも同様の効果が得られることは明らかである。   In the above-described embodiment, the case where the metalorganic molecular beam epitaxy method is used as the manufacturing method has been described. However, any growth method capable of manufacturing the InGaAsN layer may be used. The molecular beam epitaxy method, the gas source molecular beam It is clear that the same effect can be obtained by a growth method such as an epitaxy method or a metal organic vapor phase epitaxy method.

[第2の実施の形態例]
図2は、本発明の第2の実施の形態例に係る半導体受光素子のウェハの層構造を示す断面図である。
[Second Embodiment]
FIG. 2 is a cross-sectional view showing a layer structure of a wafer of a semiconductor light receiving element according to the second embodiment of the present invention.

まず、本実施の形態例に係る半導体受光素子の構成を説明する。図2に示すように、本実施の形態例に係る半導体受光素子は、n−InP基板11と、n−InP基板11上に形成された半導体多層膜反射鏡12と、半導体多層膜反射鏡12上に形成されたバンドギャップ波長が1.3μmとなるn型ドープInGaAsP層13と、n型ドープInGaAsP層13上に形成されたバンドギャップ波長が1.3μmとなるInGaAsP層14と、InGaAsP層14の上に形成された光吸収層となるInGaAsN層15と、InGaAsN層15上に形成されたInGaAsP層16と、InGaAsP層16上に形成されInP層17とで構成されている。本半導体受光素子では、図2中に矢印で示す如く、InGaAsN光吸収層5に対して信号光を、n−InP基板11とは反対方向から入射し、前記信号光から電気信号を取り出す。   First, the configuration of the semiconductor light receiving element according to the present embodiment will be described. As shown in FIG. 2, the semiconductor light receiving element according to the present embodiment includes an n-InP substrate 11, a semiconductor multilayer reflector 12 formed on the n-InP substrate 11, and a semiconductor multilayer reflector 12. An n-type doped InGaAsP layer 13 having a band gap wavelength of 1.3 μm formed thereon, an InGaAsP layer 14 having a band gap wavelength of 1.3 μm formed on the n-type doped InGaAsP layer 13, and an InGaAsP layer 14 The InGaAsN layer 15 serving as a light absorption layer formed on the InGaAsP layer 16, the InGaAsP layer 16 formed on the InGaAsN layer 15, and the InP layer 17 formed on the InGaAsP layer 16. In this semiconductor light receiving element, as indicated by an arrow in FIG. 2, signal light is incident on the InGaAsN light absorption layer 5 from a direction opposite to the n-InP substrate 11 and an electric signal is extracted from the signal light.

ここで、InGaAsN光吸収層15は、窒素組成比が0.035、Inの組成比が0.63であり、そのバンドギャップ波長は2.2μm、膜厚は150nmである。また、半導体多層膜反射鏡12は、n型ドープInGaAs層(膜厚145nm)とn型ドープInP層(膜厚159nm)を1つのペアとし、これを10ペア分積層させ、波長2μmの光に対する反射率が約80%になるようにした。上記のエピタキシャルウェハの成長には、前述の有機金属分子線エピタキシー法を用いた。このエピタキシャルウェハの上面の直径300μmの円形領域に、図1に示すような亜鉛(Zn)の熱拡散プロセスを行なった。さらに表面に電子ビーム蒸着法を用い、波長2μmの光に対する反射率が約75%となるような酸化シリコン(SiO2)とシリコン(Si)から構成される反射鏡18を形成した。その後、外径300μm、内径220μmのリング状の境域において反射鏡18を除去し、この領域にp型電極19を形成した。最後に、InP基板11を研磨しn型電極20を形成することにより、プレーナ型の受光素子を作製した。 Here, the InGaAsN light absorption layer 15 has a nitrogen composition ratio of 0.035, an In composition ratio of 0.63, a band gap wavelength of 2.2 μm, and a film thickness of 150 nm. In addition, the semiconductor multilayer mirror 12 includes an n-type doped InGaAs layer (film thickness of 145 nm) and an n-type doped InP layer (film thickness of 159 nm) as one pair, and is laminated for 10 pairs so that light with a wavelength of 2 μm is applied. The reflectivity was about 80%. For the growth of the above epitaxial wafer, the above-mentioned metalorganic molecular beam epitaxy method was used. A zinc (Zn) thermal diffusion process as shown in FIG. 1 was performed on a circular region having a diameter of 300 μm on the upper surface of the epitaxial wafer. Further, a reflecting mirror 18 made of silicon oxide (SiO 2 ) and silicon (Si) was formed on the surface by using an electron beam evaporation method so that the reflectance with respect to light having a wavelength of 2 μm was about 75%. Thereafter, the reflecting mirror 18 was removed in a ring-shaped boundary region having an outer diameter of 300 μm and an inner diameter of 220 μm, and a p-type electrode 19 was formed in this region. Finally, the InP substrate 11 was polished to form the n-type electrode 20, thereby fabricating a planar light-receiving element.

このようにして作製した半導体受光素子は、光電流のピーク波長が1.996μmであり、ピーク波長における量子効率は42%であった。計算より求めた量子効率は、多層膜反射鏡12がない構造で2.2%であるのに対し、半導体多層膜反射鏡12がある構造で49.3%あり、本実施の形態例の結果からほぼ設計通りの量子効率が得られていることが確認された。信号光がこのピーク波長から離れると急激に量子効率は低下するものの、波長が1.993μmから1.997μmの範囲では10%以上の量子効率が確認された。以上のことから、共振器構造を構成する2つの反射鏡の反射率を大きくすることで、量子効率の増大が見られる波長域は減少するものの、顕著な増幅が見られることが分った。また、暗電流に関しても、バイアス電圧−1Vでは120±16nAと良好な特性が得られた。   The semiconductor light-receiving element thus fabricated had a photocurrent peak wavelength of 1.996 μm and a quantum efficiency at the peak wavelength of 42%. The quantum efficiency obtained from the calculation is 2.2% in the structure without the multilayer reflector 12, whereas it is 49.3% in the structure with the semiconductor multilayer reflector 12, which is the result of this embodiment. Thus, it was confirmed that the quantum efficiency almost as designed was obtained. Although the quantum efficiency rapidly decreases when the signal light moves away from this peak wavelength, a quantum efficiency of 10% or more was confirmed in the wavelength range of 1.993 μm to 1.997 μm. From the above, it has been found that by increasing the reflectivity of the two reflecting mirrors constituting the resonator structure, the wavelength region where the quantum efficiency is increased is reduced, but a remarkable amplification is observed. As for dark current, a good characteristic of 120 ± 16 nA was obtained at a bias voltage of −1V.

なお、上記実施の形態例では、上部の反射鏡として酸化シリコンとシリコンから構成される反射鏡18を用いた半導体受光素子について説明したが、高い反射率が得られる反射鏡ならば、他の種類の誘電体を用いた多層膜や半導体を用いた多層膜でも良く、上記の実施例と同様の効果が得られるのは明らかである。   In the above-described embodiment, the semiconductor light receiving element using the reflecting mirror 18 made of silicon oxide and silicon as the upper reflecting mirror has been described. However, other types can be used as long as the reflecting mirror can obtain a high reflectance. It is obvious that a multilayer film using a dielectric material or a multilayer film using a semiconductor may be used, and the same effects as in the above-described embodiments can be obtained.

本発明の第1の実施の形態例に係る半導体受光素子の層構成を模式的に説明するための断面図である(実施例1)。It is sectional drawing for demonstrating the layer structure of the semiconductor light receiving element which concerns on the 1st Example of this invention typically (Example 1). 本発明の第2の実施の形態例に係る半導体受光素子の層構成を模式的に説明するための断面図である(実施例2)。It is sectional drawing for demonstrating typically the layer structure of the semiconductor light receiving element which concerns on the 2nd Example of this invention (Example 2). 拡張型InGaAs受光器の層構造を模式的に説明するための断面図である。It is sectional drawing for demonstrating the layer structure of an extended type InGaAs light receiver typically. InPと格子整合したInGaAsNにおける吸収スペクトルを示した図である。It is the figure which showed the absorption spectrum in InGaAsN lattice-matched with InP. InGaAsN光吸収層を用いた光受光器の層構造を模式的に説明するための断面図である。It is sectional drawing for demonstrating typically the layer structure of the optical receiver using an InGaAsN light absorption layer.

符号の説明Explanation of symbols

1 n−InP基板
2 半導体多層膜反射鏡(n−InGaAs/n−InP)
3 n−InGaAsP
4 InGaAsP
5 InGaAsN
6 InGaAsP
7 p−InGaAs
8 窒化シリコン
9 p型電極
10 n型電極
11 n−InP基板
12 半導体多層膜反射鏡(n−InGaAs/n−InP)
13 n−InGaAsP
14 InGaAsP
15 InGaAsN
16 InGaAsP
17 InP
18 Si/SiO2反射鏡
19 p型電極
20 n型電極
21 n−InP基板
22 組成を段階的に変化させたInAsPバッファ層
23 InGaAs
24 InAsP
25 n−InP基板
26 n−InP
27 InGaAsN
28 p−InGaAs
1 n-InP substrate 2 semiconductor multilayer film reflector (n-InGaAs / n-InP)
3 n-InGaAsP
4 InGaAsP
5 InGaAsN
6 InGaAsP
7 p-InGaAs
8 silicon nitride 9 p-type electrode 10 n-type electrode 11 n-InP substrate 12 semiconductor multilayer mirror (n-InGaAs / n-InP)
13 n-InGaAsP
14 InGaAsP
15 InGaAsN
16 InGaAsP
17 InP
18 Si / SiO 2 reflector 19 p-type electrode 20 n-type electrode 21 n-InP substrate 22 InAsP buffer layer whose composition is changed stepwise 23 InGaAs
24 InAsP
25 n-InP substrate 26 n-InP
27 InGaAsN
28 p-InGaAs

Claims (5)

半導体基板上に光吸収層として窒素を含む半導体層を有し、前記光吸収層に対して信号光を前記半導体基板とは反対方向から入射し、前記信号光から電気信号を取り出す半導体受光素子において、
前記半導体基板と前記光吸収層の間に前記信号光を反射するような半導体多層膜を備えたことを特徴とする半導体受光素子。
In a semiconductor light receiving element that has a semiconductor layer containing nitrogen as a light absorption layer on a semiconductor substrate, and that makes signal light incident on the light absorption layer from a direction opposite to the semiconductor substrate and extracts an electric signal from the signal light ,
A semiconductor light-receiving element comprising a semiconductor multilayer film that reflects the signal light between the semiconductor substrate and the light absorption layer.
前記半導体基板はInPであり、
前記光吸収層はバンドギャップに対応する波長が1.7ミクロンメータ以上であるInGaAsN層又はInGaAsNSb層の何れかであることを特徴とする請求項1に記載の半導体受光素子。
The semiconductor substrate is InP;
2. The semiconductor light receiving element according to claim 1, wherein the light absorption layer is either an InGaAsN layer or an InGaAsNSb layer having a wavelength corresponding to a band gap of 1.7 μm or more.
前記半導体基板はInPであり、
前記半導体多層膜は、InPに格子整合することが可能な半導体材料であって、In、Ga、Alのうち1つ以上、かつ、As、Pのうち1つ以上を構成元素として含み、
前記半導体多層膜のバンドギャップに対応する波長が0.83ミクロンメータから1.67ミクロンメータであることを特徴とする請求項1または請求項2に記載の半導体受光素子。
The semiconductor substrate is InP;
The semiconductor multilayer film is a semiconductor material capable of lattice matching with InP, and includes at least one of In, Ga, and Al, and at least one of As and P as constituent elements,
3. The semiconductor light receiving element according to claim 1, wherein a wavelength corresponding to a band gap of the semiconductor multilayer film is 0.83 μm to 1.67 μm.
前記光吸収層に対して、前記半導体基板の反対側には前記半導体多層膜により反射された光をさらに反射するための反射鏡が形成されており、前記半導体多層膜と前記反射鏡との間が前記信号光に対して共振器構造となっていることを特徴とする請求項1乃至請求項3の何れか1項に記載の半導体受光素子。   A reflecting mirror for further reflecting the light reflected by the semiconductor multilayer film is formed on the opposite side of the semiconductor substrate with respect to the light absorption layer, and between the semiconductor multilayer film and the reflecting mirror. The semiconductor light receiving element according to claim 1, wherein the semiconductor light receiving element has a resonator structure with respect to the signal light. 前記光吸収層に対し前記半導体基板とは反対側に設置された前記反射鏡は、半導体と気体の界面、または誘電体多層膜、または半導体多層膜を用いることを特徴とする請求項4に記載の半導体受光素子。   The said reflecting mirror installed on the opposite side to the said semiconductor substrate with respect to the said light absorption layer uses the interface of a semiconductor and gas, or a dielectric multilayer film, or a semiconductor multilayer film, It is characterized by the above-mentioned. Semiconductor light receiving element.
JP2007130076A 2007-05-16 2007-05-16 Semiconductor photodetector Withdrawn JP2008288293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130076A JP2008288293A (en) 2007-05-16 2007-05-16 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130076A JP2008288293A (en) 2007-05-16 2007-05-16 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JP2008288293A true JP2008288293A (en) 2008-11-27

Family

ID=40147755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130076A Withdrawn JP2008288293A (en) 2007-05-16 2007-05-16 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JP2008288293A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073770A1 (en) * 2008-12-25 2010-07-01 住友電気工業株式会社 Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
JP2011071252A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Semiconductor light receiving element
US7999231B2 (en) 2008-08-29 2011-08-16 Sumitomo Electric Inductries, Ltd. Moisture detector, biological body moisture detector, natural product moisture detector, and product/material moisture detector
US8188559B2 (en) 2008-02-01 2012-05-29 Sumitomo Electric Industries, Ltd. Light-receiving element and light-receiving element array
US8243139B2 (en) 2008-09-11 2012-08-14 Sumitomo Electric Industries, Ltd. Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
WO2012114849A1 (en) * 2011-02-23 2012-08-30 住友電気工業株式会社 Light-receiving element and method for producing same
US8373156B2 (en) 2008-12-22 2013-02-12 Sumitomo Electric Industries, Ltd. Biological component detection device
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
JP2014039152A (en) * 2012-08-16 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Mechanical vibrator and method of manufacturing the same
JP2014192488A (en) * 2013-03-28 2014-10-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-receiving element
JP2017500743A (en) * 2013-12-17 2017-01-05 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス Low noise quantum detector and method for manufacturing such photon detector
CN109301024A (en) * 2018-09-29 2019-02-01 镇江镓芯光电科技有限公司 A kind of novel p-i-n ultraviolet photodiode and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188559B2 (en) 2008-02-01 2012-05-29 Sumitomo Electric Industries, Ltd. Light-receiving element and light-receiving element array
US8729527B2 (en) 2008-02-01 2014-05-20 Sumitomo Electric Industries, Ltd. Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
US7999231B2 (en) 2008-08-29 2011-08-16 Sumitomo Electric Inductries, Ltd. Moisture detector, biological body moisture detector, natural product moisture detector, and product/material moisture detector
US8243139B2 (en) 2008-09-11 2012-08-14 Sumitomo Electric Industries, Ltd. Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
US8564666B2 (en) 2008-09-11 2013-10-22 Sumitomo Electric Industries, Ltd. Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
US8373156B2 (en) 2008-12-22 2013-02-12 Sumitomo Electric Industries, Ltd. Biological component detection device
WO2010073770A1 (en) * 2008-12-25 2010-07-01 住友電気工業株式会社 Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
US8624189B2 (en) 2008-12-25 2014-01-07 Sumitomo Electric Industries, Ltd. Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
JP2011071252A (en) * 2009-09-25 2011-04-07 Mitsubishi Electric Corp Semiconductor light receiving element
WO2012114849A1 (en) * 2011-02-23 2012-08-30 住友電気工業株式会社 Light-receiving element and method for producing same
JP2012174977A (en) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd Light-receiving element and manufacturing method therefor
JP2014039152A (en) * 2012-08-16 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Mechanical vibrator and method of manufacturing the same
JP2014192488A (en) * 2013-03-28 2014-10-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-receiving element
JP2017500743A (en) * 2013-12-17 2017-01-05 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス Low noise quantum detector and method for manufacturing such photon detector
CN109301024A (en) * 2018-09-29 2019-02-01 镇江镓芯光电科技有限公司 A kind of novel p-i-n ultraviolet photodiode and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008288293A (en) Semiconductor photodetector
US10461202B2 (en) In-plane resonant-cavity infrared photodetectors with fully-depleted absorbers
Colace et al. Ge-on-Si approaches to the detection of near-infrared light
Canedy et al. Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 μm
US20060102916A1 (en) II-VI/III-V LAYERED CONSTRUCTION ON InP SUBSTRATE
US20050280013A1 (en) II-VI/III-V Layered construction on InP substrate
US9450117B2 (en) Optoelectronic device having surface periodic grating structure
Huang et al. High speed mid-wave infrared uni-traveling carrier photodetector
EP3769342A1 (en) In-plane resonant-cavity infrared photodetectors with fully-depleted absorbers
Balkan et al. Dilute nitride resonant cavity enhanced photodetector with internal gain for the λ∼ 1.3 μm optical communications window
Sarcan et al. Characterization of temperature dependent operation of a GaInNAs-based RCEPD designed for 1.3 μm
Huang et al. Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors
Hattasan et al. GaSb-based integrated lasers and photodetectors on a Silicon-On-Insulator waveguide circuit for sensing applications in the shortwave infrared
Shao et al. High detectivity AlGaAsSb/InGaAsSb photodetectors grown by molecular beam epitaxy with cutoff wavelength up to 2.6 μm
Karimi et al. Nanowire photodetectors with embedded quantum heterostructures for infrared detection
JP2014192488A (en) Semiconductor light-receiving element
Wang et al. High-speed InGaAs PIN photodetector with planar buried heterostructure
Zhukov et al. Frequency response and carrier escape time of InGaAs quantum well-dots photodiode
Shi et al. Tunable photodetectors based on strain compensated GaInAsSb/AlAsSb multiple quantum wells grown by molecular beam epitaxy
Vurgaftman et al. Resonant-cavity infrared detectors with high quantum efficiency and very thin absorbers at 4.0 microns
Mamic et al. InGaAsSb for cut-off tuned SWIR detectors
Kaniewski et al. Resonant microcavity enhanced infrared photodetectors.
Sun High performance 1300 nm photodetectors grown by molecular beam epitaxy
Kang et al. Observing near-infrared/ultraviolet responses within GaN/AlN superlattice for dual-band detection
Atalla et al. Extended-SWIR High-Speed All-GeSn PIN Photodetectors on Silicon

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803