JP3710039B2 - Semiconductor photo detector - Google Patents

Semiconductor photo detector Download PDF

Info

Publication number
JP3710039B2
JP3710039B2 JP22395699A JP22395699A JP3710039B2 JP 3710039 B2 JP3710039 B2 JP 3710039B2 JP 22395699 A JP22395699 A JP 22395699A JP 22395699 A JP22395699 A JP 22395699A JP 3710039 B2 JP3710039 B2 JP 3710039B2
Authority
JP
Japan
Prior art keywords
light
layer
light receiving
semiconductor layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22395699A
Other languages
Japanese (ja)
Other versions
JP2001053328A (en
Inventor
秀樹 深野
好史 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22395699A priority Critical patent/JP3710039B2/en
Publication of JP2001053328A publication Critical patent/JP2001053328A/en
Application granted granted Critical
Publication of JP3710039B2 publication Critical patent/JP3710039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体受光素子に関するものであり、薄い光吸収層でありながら高受光感度が得られ、又、超高速動作も可能となるように工夫したものである。
【0002】
【従来の技術】
従来の光受光層を含む半導体多層構造よりなる受光部分と、前記光受光層を入射光が層厚方向に対し斜めに通過するようにした半導体受光素子を代表する屈折型半導体受光素子は、図2に示すような構造をしている。即ち、図2において、21は光入射面、22はp-InP 層、23はInGaAs光受光層、24はn-InP 層、25はn-InP 基板、26はp 電極、27はn 電極である。
【0003】
一般に、上層の電極26は、p 型の場合のAuZnNiやn 型の場合のAuGeNi等の金属を熱処理を施すことにより半導体層と合金化を図り、オーミック電極としている。合金化のため、電極26と半導体間には微小な凹凸が発生しており、屈折してきた光がここに到達しても、乱反射されたり、又、電極金属自身による光吸収もあって、電極部分での光の反射率は小さい。
【0004】
【発明が解決しようとする課題】
従って、屈折型半導体受光素子の特徴である屈折光が層厚方向に対し斜めに通過することによる実効吸収長の増大によって受光層厚の低減が図れるものの、十分大きな受光感度を得るためには、受光層23への屈折光の1回の通過で、光が十分吸収されるようにする必要がある。従って、受光層厚の薄層化には、このことによる制限があった。又、このため、受光層23を走行するキャリアの走行時間が半導体受光素子の応答速度の制限要因となって超高速でありかつ高受光感度の素子を製作することができないという問題点があった。
【0005】
本発明の目的は、光受光層を含む半導体多層構造よりなる受光部分と、前記光受光層を入射光が層厚方向に対し斜めに通過するようにした半導体受光素子において、薄い光吸収層でありながら高受光感度が得られ、又、超高速動作も可能となる半導体受光素子を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決する本発明の構成は、光吸収層が前記光吸収層より小さな屈折率を有する第一の半導体層を含む上部半導体層と前記第一の半導体層より屈折率が大きい第二の半導体層を含む下部半導体層で挟まれた積層構造を有し、前記下部半導体層側から入射した入射光が、前記光吸収層を層厚方向に対し斜めに通過し、前記第一の半導体層の前記光吸収層側の界面で全反射し、前記光吸収層を再度斜めに通過することにより、光吸収長が増大することを特徴とする。
【0007】
また本発明の構成は、下部半導体層の少なくとも一部の側壁は、光吸収層の面となす角が鋭角な傾斜側壁であり、入射光が傾斜側壁で屈折して光吸収層に入射することを特徴とする。
【0008】
また本発明の構成は、光受光層を含む半導体多層構造よりなる受光部分と、前記光受光層を入射光が層厚方向に対し斜めに通過するようにした半導体受光素子において、光受光層に対し光入射側の半導体層の屈折率が、光受光層に対し光入射側と反対側の半導体層の屈折率より大きい半導体層で構成されており、光受光層に対し光入射側と反対側の半導体層が光受光層より屈折率の小さな半導体層よりなり、その部分で光が全反射し前記光吸収層を再度斜めに通過することにより、光吸収長が増大するように構成されていることを特徴とする。
【0009】
このため、光受光層に対し光入射側と反対側の半導体層で光が完全に全反射されることにより光が再度光受光層を通過することになり、光吸収効率が増大する。従来技術では、光受光層の上層における屈折した入射光の主たる到達領域が合金化した電極で構成されており、この領域での反射が小さいが、本発明では、光受光層に対し光入射側の半導体層の屈折率が、光受光層に対し光入射側と反対側の半導体層の屈折率より大きい半導体層で構成されており、光受光層に接する光受光層に対し光入射側と反対側の半導体層が、この部分で光が全反射するような光受光層より屈折率の小さな半導体層で構成されていることにより、上層の電極部分まで光が行くことがなく、光受光層の上側界面において光が全反射する点が異なる。
【0010】
また本発明の構成は、光受光層を含む半導体多層構造よりなる受光部分と端面に表面側から離れるに従い内側に傾斜した光入射端面を設けることにより、該光入射端面で入射光を屈折させて、前記光受光層を入射光が層厚方向に対し斜めに通過するようにした屈折型半導体受光素子において、光受光層に対し光入射側の半導体層の屈折率が、光受光層に対し光入射側と反対側の半導体層の屈折率より大きい半導体層で構成されており、光受光層に対し光入射側と反対側の半導体層が光受光層より屈折率の小さな半導体層よりなり、その部分で光が全反射し前記光吸収層を再度斜めに通過することにより、光吸収長が増大するように構成されていることを特徴とする。
【0011】
このため、光受光層に対し光入射側と反対側の半導体層で光が完全に全反射されることにより光が再度光受光層を通過することになり、光吸収効率が増大する。従来技術では、光受光層の上層における屈折した入射光の主たる到達領域が合金化した電極で構成されており、この領域での反射が小さいが、本発明では、光受光層に対し光入射側の半導体層の屈折率が、光受光層に対し光入射側と反対側の半導体層の屈折率より大きい半導体層で構成されており、光受光層に接する光受光層に対し光入射側と反対側の半導体層が、この部分で光が全反射するような光受光層より屈折率の小さな半導体層で構成されていることにより、上層の電極部分まで光が行くことがなく、光受光層の上側界面において光が全反射する点が異なる。
【0012】
また本発明の構成は、光受光層に対し光入射側の半導体層が、光受光層に対し光入射側と反対側の半導体層の屈折率より大きい屈折率を有するInGaAsP 半導体層で構成されていることを特徴とする。
【0013】
このため、光受光層に対し光入射側と反対側の半導体層で光が完全に全反射されることにより光が再度光受光層を通過することになり、光吸収効率が増大する。従来技術では、光受光層の上層における屈折した入射光の主たる到達領域が合金化した電極で構成されており、この領域での反射が小さいが、本発明では、光受光層に接する光受光層に対し光入射側と反対側の半導体層が、この部分で光が全反射するような光受光層より屈折率の小さな半導体層で構成されており、上層の電極部分まで光が行くことがなく、光受光層の上側界面において光が全反射する点が異なる。
【0014】
また本発明の構成は、光受光層に対し光入射側の半導体層が、光受光層に対し光入射側と反対側の半導体層の屈折率より大きい屈折率を有するGaAs半導体層で構成されていることを特徴とする。
【0015】
このため、光受光層に対し光入射側と反対側の半導体層で光が完全に全反射されることにより光が再度光受光層を通過することになり、光吸収効率が増大する。従来技術では、光受光層の上層における屈折した入射光の主たる到達領域が合金化した電極で構成されており、この領域での反射が小さいが、本発明では、光受光層に接する光受光層に対し光入射側と反対側の半導体層が、この部分で光が全反射するような光受光層より屈折率の小さな半導体層で構成されており、上層の電極部分まで光が行くことがなく、光受光層の上側界面において光が全反射する点が異なる。
【0016】
〔作用〕
このように、本素子は、光受光層に対し光入射側と反対側の半導体層が、その部分で光が全反射するような光受光層より屈折率の小さな半導体層により構成されている。このため、受光層を光が2回通過することになり実効的光吸収長が2倍に増大する。このため、高い受光感度を得るための光吸収層厚の大幅な薄層化が可能となる。光吸収層厚の大幅な薄層化により、高受光感度を維持しながら、素子の超高速動作が可能となる。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づき詳細に説明する。
【0018】
〔実施例1〕
図1は本発明の第1の実施例を説明する断面斜視図である。12は0.2μm厚p + -InGaAsP(1.2μm組成)層、13は1.5μm厚p-InP 層、14は0.4μm厚InGaAs光受光層、15は1μm厚n-InGaAsP (1.4μm組成)層、16はInGaAsP (1.4μm組成)層、17はp 電極、18はn 電極である。なお、引出し電極とパッド電極は、説明図が煩雑になり、説明の妨げになるため、この図では省略している。
【0019】
素子の受光層面積は30μm×50μmである。波長1.55μm光は、光受光層14に対し、70°の入射角で入射するようにしている。なお、15、14、13層がそれぞれ、請求項中の、光受光層に対し光入射側の主たる半導体層、光受光層、光受光層に対し光入射側と反対側の主たる半導体層に対応する。この例の他に、光受光層14の片側もしくは両側の界面に薄い半導体層が入っていてもよい。
【0020】
ここで、15、14、13層のそれぞれの屈折率3.439、3.59、3.17を考慮すると、この時、InGaAs光受光層14を光は通過角φ=25.8°で通過する。光は光受光層14に対し光入射側と反対側の半導体層がInGaAs光受光層14より屈折率の小さなInP 半導体層13により構成されているため、全反射の条件(φ< cos-1(n2/n1);ただし、n1は光受光層14の屈折率、n2は光入射側と反対側の半導体層13の屈折率)を満足し、光はこの部分で全反射するようになる。
【0021】
これにより、100%の反射光が再度吸収層14を通過し、吸収されることにより、印加逆バイアス1.0Vで受光感度0.8A/W以上の大きな値が得られた。また、光の反射が上記界面で起こるため、上層の電極17の状態などに反射率や光の位相が左右されないので、高効率化や偏波制御等を設計性よく行うことが可能となる。ちなみに、上記界面で全反射しない従来構成で、p 電極が上面のほぼ全面に存在し、ここでの光反射効果のみを利用する場合では、0.6A/W程度しか得られなかった。
【0022】
この実施例では、光受光層14に対し光入射側と反対側の半導体層がInGaAs光受光層14より屈折率の小さなInP 半導体層13を用いているが、光受光層14の屈折率より適当に小さく、全反射の条件を満足できるものであれば、InGaAsP やInGaAlAs等、なんでも良い。また、この実施例は、波長1.55μmの入射光に対して述べているが、全反射の条件を満足できれば色々な波長の光に対しても同様の効果が得られる。
【0023】
この実施例では、表面側のp-InP 層13は結晶成長によって形成しているが、結晶成長ではアンドープInP 層とし、表面側の主たる部分の半導体の導電形を、Znの拡散や、イオン注入法とその後のアニールによって決定してもよい。
【0024】
また、半導体受光素子部分は、第1導電形を有する半導体層上にあって、真性又は第一の導電型の半導体層、超格子半導体層または多重量子井戸半導体層より成る光受光層とショットキー電極との間に、前記光受光層と前記ショットキー電極との間のショットキー障壁よりも高いショットキー障壁を前記ショットキー電極に対して有するショットキーバリアハイトの高い半導体層を介在した多層構造を基板上に構成してなる半導体受光素子や、前記ショットキーバリアハイトの高い半導体層は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)又は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)とその上の薄いIn1-u Gau As1-v v (0≦u≦1,0≦v≦1)よりなることを特徴とする半導体受光素子で構成してもよい。
【0025】
また、この実施例は、下側にn-InGaAsP 層15を用い、上側をp-InP 層13としているが、上記のp とn を逆にして同様に製作可能であり、また、n-InP やp-InP 基板を用いても同様に製作可能である。
【0026】
また、ここでは、受光層14として均一組成のバルクを用いているが、アバランシェフォトダイオードに用いられる Separate-absorption-graded-multiplication(SAGM)構造や Separate absorption and multiplication superlattice(SAM-SL)構造や他の超格子構造の半導体層等を用いてもよいことは言うまでもない。また、InGaAsP /InP 系以外のInGaAlAs/InGaAsP やAlGaAs/GaAs系などの他の材料系や歪を内在するような材料系でもよいことは言うまでもない。
【0027】
〔実施例2〕
図3は本発明の第2の実施例を説明する断面斜視図である。31は光入射面、32は0.2μm厚p + -InGaAsP(1.2μm組成)層、33は1.5μm厚p-InP 層、34は0.4μm厚InGaAs光受光層、35は1μm厚n-InGaAsP (1.45μm組成)層、36はInGaAsP (1.45μm組成)層、37は半絶縁性InP 基板、38はp 電極、39はn 電極である。なお、引出し電極とパッド電極は、説明図が煩雑になり、説明の妨げになるため、この図では省略している。
【0028】
素子の受光層面積は30μm×50μmである。光入射面31は、表面に対し60度の逆メサ形状で形成した。逆メサ部の形成は各種のウェットエッチング液やドライエッチング法を用いて形成してもよいし、結晶面を利用したり、エッチングマスクの密着性を利用し角度を制御して形成してもよい。入射面31には無反射膜を形成している。なお、35、34、33層がそれぞれ、請求項中の、光受光層に対し光入射側の主たる半導体層、光受光層、光受光層に対し光入射側と反対側の主たる半導体層に対応する。この例の他に、光受光層の片側もしくは両側の界面に薄い半導体層が入っていてもよい。
【0029】
ここで、35、34、33層のそれぞれの屈折率3.464、3.59、3.17を考慮すると、波長1.55μm光は、光受光層34に対し、68.3°の入射角で入射するようになる。この時、InGaAs光受光層34を光は通過角φ=26.3°で通過する。光は光受光層34に対し光入射側と反対側の半導体層がInGaAs光受光層34より屈折率の小さなInP 半導体層33により構成されているため、全反射の条件(φ< cos-1(n2/n1);ただし、n1は光受光層34の屈折率、n2は光入射側と反対側の半導体層33の屈折率)を満足し、光はこの部分で全反射するようになる。
【0030】
シングルモードファイバにより光を導入し、全反射により、100%の反射光が再度吸収層34を通過し、吸収されることにより、印加逆バイアス1.0Vで受光感度0.8A/W以上の大きな値が得られた。また、光の反射が上記界面で起こるため、上層の電極38の状態などに反射率や光の位相が左右されないので、高効率化や偏波制御等を設計性よく行うことが可能となる。ちなみに、上記界面で全反射しない従来構成で、p 電極が上面のほぼ全面に存在し、ここでの光反射効果のみを利用する場合では、0.6A/W程度しか得られなかった。また、シングルモードファイバの代わりに、先球ファイバを用い、素子の微小化(受光面積を7μm×20μm)を図ったもので、受光感度を高く保ちながら、3dB帯域50GHz の超高速動作が可能であった。
【0031】
この実施例では、光受光層34に対し光入射側と反対側の半導体層がInGaAs光受光層34より屈折率の小さなInP 半導体層33を用いているが、光受光層34の屈折率より適当に小さく、全反射の条件を満足できるものであれば、InGaAsP やInGaAlAs等、なんでも良い。また、この実施例は、波長1.55μmの入射光に対して述べているが、全反射の条件を満足できれば色々な波長の光に対しても同様の効果が得られる。
【0032】
この実施例では、表面側のp-InP 層33は結晶成長によって形成しているが、結晶成長ではアンドープInP 層とし、表面側の主たる部分の半導体の導電形を、Zn の拡散や、イオン注入法とその後のアニールによって決定してもよい。
【0033】
また、半導体受光素子部分は、第1導電形を有する半導体層上にあって、真性又は第一の導電型の半導体層、超格子半導体層または多重量子井戸半導体層より成る光受光層とショットキー電極との間に、前記光受光層と前記ショットキー電極との間のショットキー障壁よりも高いショットキー障壁を前記ショットキー電極に対して有するショットキーバリアハイトの高い半導体層を介在した多層構造を基板上に構成してなる半導体受光素子や、前記ショットキーバリアハイトの高い半導体層は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)又は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)とその上の薄いIn1-u Gau As1-v v (0≦u≦1,0≦v≦1)よりなることを特徴とする半導体受光素子で構成してもよい。
【0034】
また、この実施例は、基板として半絶縁性InP 37を用い、基板側にn-InGaAsP 層35を用いた例であるが、p-InGaAs層を用いても上記のp とn を逆にして同様に製作可能であり、また、n-InP やp-InP 基板を用いても同様に製作可能である。
【0035】
また、ここでは、受光層34として均一組成のバルクを用いているが、アバランシェフォトダイオードに用いられる Separate-absorption-graded-multiplication(SAGM)構造や Separate absorption and multiplication superlattice(SAM-SL)構造や他の超格子構造の半導体層等を用いてもよいことは言うまでもない。また、InGaAsP /InP 系以外のInGaAlAs/InGaAsP やAlGaAs/GaAs系などの他の材料系や歪を内在するような材料系でもよいことは言うまでもない。
【0036】
〔実施例3〕
図4は本発明の第3の実施例を説明する断面斜視図である。42は0.2μm厚p + -InGaAsP(1.2μm組成)層、43は1.5μm厚p-InP 層、44は0.4μm厚InGaAs光受光層、45は1μm厚n-InGaAsP (1.4μm組成)層、46は半絶縁性GaAs基板、47はp 電極、48はn 電極である。なお、引出し電極とパッド電極は、説明図が煩雑になり、説明の妨げになるため、この図では省略している。
【0037】
素子の受光層面積は30μm×50μmである。波長1.55μm光は、光受光層44に対し、75°の入射角で入射するようにしている。なお、46、44、43層がそれぞれ、請求項中の、光受光層に対し光入射側の主たる半導体層、光受光層、光受光層に対し光入射側と反対側の主たる半導体層に対応する。この例では、光受光層44の片側の界面に半導体層45が入っているが、両側や、反対側に入っていてもよい。
【0038】
ここで、46、45、44、43層のそれぞれの屈折率3.38、3.439、3.59、3.17を考慮すると、この時、InGaAs光受光層44を光は通過角φ=24.57°で通過する。光は光受光層44に対し光入射側と反対側の半導体層がInGaAs光受光層44より屈折率の小さなInP 半導体層43により構成されているため、全反射の条件(φ< cos-1(n2/n1);ただし、n1は光受光層44の屈折率、n2は光入射側と反対側の半導体層43の屈折率)を満足し、光はこの部分で全反射するようになる。
【0039】
シングルモードファイバにより光を導入し、全反射により、100%の反射光が再度吸収層44を通過し、吸収されることにより、印加逆バイアス1.0Vで受光感度0.8A/W以上の大きな値が得られた。また、光の反射が上記界面で起こるため、上層の電極47の状態などに反射率や光の位相が左右されないので、高効率化や偏波制御等を設計性よく行うことが可能となる。ちなみに、上記界面で全反射しない従来構成で、p 電極が上面のほぼ全面に存在し、ここでの光反射効果のみを利用する場合では、0.6A/W程度しか得られなかった。また、シングルモードファイバの代わりに、先球ファイバを用い、素子の微小化(受光面積を7μm×20μm)を図ったもので、受光感度を高く保ちながら、3dB帯域50GHz の超高速動作が可能であった。
【0040】
この実施例では、光受光層44に対し光入射側と反対側の半導体層がInGaAs光受光層44より屈折率の小さなInP 半導体層43を用いているが、光受光層44の屈折率より適当に小さく、全反射の条件を満足できるものであれば、InGaAsP やInGaAlAs等、なんでも良い。また、この実施例は、波長1.55μmの入射光に対して述べているが、全反射の条件を満足できれば色々な波長の光に対しても同様の効果が得られる。
【0041】
この実施例では、表面側のp-InP 層43は結晶成長によって形成しているが、結晶成長ではアンドープInP 層とし、表面側の主たる部分の半導体の導電形を、Zn の拡散や、イオン注入法とその後のアニールによって決定してもよい。
【0042】
また、半導体受光素子部分は、第1導電形を有する半導体層上にあって、真性又は第一の導電型の半導体層、超格子半導体層または多重量子井戸半導体層より成る光受光層とショットキー電極との間に、前記光受光層と前記ショットキー電極との間のショットキー障壁よりも高いショットキー障壁を前記ショットキー電極に対して有するショットキーバリアハイトの高い半導体層を介在した多層構造を基板上に構成してなる半導体受光素子や、前記ショットキーバリアハイトの高い半導体層は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)又は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)とその上の薄いIn1-u Gau As1-v v (0≦u≦1,0≦v≦1)よりなることを特徴とする半導体受光素子で構成してもよい。
【0043】
また、この実施例は、基板として半絶縁性GaAs46を用い、基板側にn-InGaAsP 層45を用いた例であるが、p-InGaAsP 層を用いても上記のp とn を逆にして同様に製作可能であり、また、n-GaAsやp-GaAs基板を用いても同様に製作可能である。
【0044】
また、ここでは、受光層44として均一組成のバルクを用いているが、アバランシェフォトダイオードに用いられる Separate-absorption-graded-multiplication(SAGM)構造や Separate absorption and multiplication superlattice(SAM-SL)構造や他の超格子構造の半導体層等を用いてもよいことは言うまでもない。また、InGaAsP /InP 系以外のInGaAlAs/InGaAsP やAlGaAs/GaAs系などの他の材料系や歪を内在するような材料系でもよいことは言うまでもない。
【0045】
〔実施例4〕
図5は本発明の第4の実施例を説明する断面斜視図である。51は光入射面、52は0.2μm厚p + -InGaAsP(1.2μm組成)層、53は1.5μm厚p-InP 層、54は0.5μm厚InGaAs光受光層、55は1μm厚n-InGaAsP (1.4μm組成)層、56は半絶縁性GaAs基板、57はp 電極、58はn 電極である。なお、引出し電極とパッド電極は、説明図が煩雑になり、説明の妨げになるため、この図では省略している。
【0046】
素子の受光層面積は30μm×50μmである。光入射面51は、表面に対し60度の逆メサ形状で形成した。逆メサ部の形成は各種のウエットエッチング液やドライエッチング法を用いて形成してもよいし、結晶面を利用したり、エッチングマスクの密着性を利用し角度を制御して形成してもよい。入射面51には無反射膜を形成している。また、本実施例では、光入射端面部分は屈折率1.5のエポキシを充填している。
【0047】
なお、56、54、53層がそれぞれ、請求項中の、光受光層に対し光入射側の主たる半導体層、光受光層、光受光層に対し光入射側と反対側の主たる半導体層に対応する。この例では、光受光層54の片側の界面に半導体層55が入っているが、両側や、反対側に入っていてもよい。
【0048】
ここで、56、55、54、53層のそれぞれの屈折率3.38、3.439、3.59、3.17を考慮すると、この時、InGaAs光受光層54を光は通過角φ=25.88°で通過する。光は光受光層54に対し光入射側と反対側の半導体層がInGaAs光受光層54より屈折率の小さなInP 半導体層53により構成されているため、全反射の条件(φ< cos-1(n2/n1);ただし、n1は光受光層54の屈折率、n2は光入射側と反対側の半導体層53の屈折率)を満足し、光はこの部分で全反射するようになる。
【0049】
シングルモードファイバにより光を導入し、全反射により、100%の反射光が再度吸収層54を通過し、吸収されることにより、印加逆バイアス1.0Vで受光感度0.8A/W以上の大きな値が得られた。また、光の反射が上記界面で起こるため、上層の電極57の状態などに反射率や光の位相が左右されないので、高効率化や偏波制御等を設計性よく行うことが可能となる。ちなみに、上記界面で全反射しない従来構成で、p 電極が上面のほぼ全面に存在し、ここでの光反射効果のみを利用する場合では、0.6A/W程度しか得られなかった。また、シングルモードファイバの代わりに、先球ファイバを用い、素子の微小化(受光面積を7μm×20μm)を図ったもので、受光感度を高く保ちながら、3dB帯域50GHz の超高速動作が可能であった。
【0050】
この実施例では、光受光層54に対し光入射側と反対側の半導体層がInGaAs光受光層54より屈折率の小さなInP 半導体層53を用いているが、光受光層54の屈折率より適当に小さく、全反射の条件を満足できるものであれば、InGaAsP やInGaAlAs等、なんでも良い。また、この実施例は、波長1.55μmの入射光に対して述べているが、全反射の条件を満足できれば色々な波長の光に対しても同様の効果が得られる。
【0051】
この実施例では、表面側のp-InP 層53は結晶成長によって形成しているが、結晶成長ではアンドープInP 層とし、表面側の主たる部分の半導体の導電形を、Zn の拡散や、イオン注入法とその後のアニールによって決定してもよい。
【0052】
また、半導体受光素子部分は、第1導電形を有する半導体層上にあって、真性又は第一の導電型の半導体層、超格子半導体層または多重量子井戸半導体層より成る光受光層とショットキー電極との間に、前記光受光層と前記ショットキー電極との間のショットキー障壁よりも高いショットキー障壁を前記ショットキー電極に対して有するショットキーバリアハイトの高い半導体層を介在した多層構造を基板上に構成してなる半導体受光素子や、前記ショットキーバリアハイトの高い半導体層は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)又は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)とその上の薄いIn1-u Gau As1-v v (0≦u≦1,0≦v≦1)よりなることを特徴とする半導体受光素子で構成してもよい。
【0053】
また、この実施例は、基板として半絶縁性GaAs56を用い、基板側にn-InGaAsP 層55を用いた例であるが、p-InP 層を用いても上記のp とn を逆にして同様に製作可能であり、また、n-GaAsやp-GaAs基板を用いても同様に製作可能である。
【0054】
また、ここでは、受光層54として均一組成のバルクを用いているが、アバランシェフォトダイオードに用いられる Separate-absorption-graded-multiplication(SAGM)構造や Separate absorption and multiplication superlattice(SAM-SL)構造や他の超格子構造の半導体層等を用いてもよいことは言うまでもない。また、InGaAsP /InP 系以外のInGaAlAs/InGaAsP やAlGaAs/GaAs系などの他の材料系や歪を内在するような材料系でもよいことは言うまでもない。
【0055】
〔実施例5〕
図6は本発明の第5の実施例を説明する断面斜視図である。62は0.2μm厚p + -InGaAsP(1.2μm組成)層、63は1.5μm厚p + -InP層、64は0.4μm厚InGaAs光受光層、65は0.4μm厚n-InGaAsP (1.4μm組成)層、66は半絶縁性InP 基板、67はp 電極、68はn 電極である。なお、引出し電極とパッド電極は、説明図が煩雑になり、説明の妨げになるため、この図では省略している。
【0056】
素子の受光層面積は30μm×150μmである。波長1.55μm光は、光受光層64に対し、84°の入射角で入射するようにしている。なお、66、64、63層がそれぞれ、請求項中の、光受光層に対し光入射側の主たる半導体層、光受光層、光受光層に対し光入射側と反対側の主たる半導体層に対応する。この例では、光受光層64の片側の界面に薄い半導体層65が入っているが、両側や、反対側に入っていてもよい。
【0057】
ここで、66、64、63層のそれぞれの屈折率3.17、3.59、3.1を考慮すると、この時、InGaAs光受光層64を光は通過角φ=28.8°で通過する。光は光受光層64に対し光入射側と反対側の半導体層がInGaAs光受光層64より屈折率の小さなInP 半導体層63により構成されており、さらに高濃度ドーピングにより、半絶縁性のInP 66に比べ屈折率が小さくなっているため、全反射の条件(φ< cos-1(n2/n1);ただし、n1は光受光層64の屈折率、n2は光入射側と反対側の半導体層63の屈折率)を満足し、光はこの部分で全反射するようになる。
【0058】
これにより、100%の反射光が再度吸収層64を通過し、吸収されることにより、印加逆バイアス1.0Vで受光感度0.8A/W以上の大きな値が得られた。また、光の反射が上記界面で起こるため、上層の電極67の状態などに反射率や光の位相が左右されないので、高効率化や偏波制御等を設計性よく行うことが可能となる。ちなみに、上記界面で全反射しない従来構成で、p 電極が上面のほぼ全面に存在し、ここでの光反射効果のみを利用する場合では、0.6A/W程度しか得られなかった。
【0059】
この実施例では、光受光層64に対し光入射側と反対側の半導体層がInGaAs光受光層64より屈折率の小さな高濃度ドープInP 半導体層63を用いているが、光受光層64の屈折率より適当に小さく、全反射の条件を満足できるものであれば、AlAsSbや高濃度ドープInGaAsP や高濃度ドープInGaAlAs等なんでも良い。また、この実施例は、波長1.55μmの入射光に対して述べているが、全反射の条件を満足できれば色々な波長の光に対しても同様の効果が得られる。
【0060】
この実施例では、表面側のp-InP 層63は結晶成長によって形成しているが、結晶成長ではアンドープInP 層とし、表面側の主たる部分の半導体の導電形を、Zn の拡散や、イオン注入法とその後のアニールによって決定してもよい。
【0061】
また、半導体受光素子部分は、第1導電形を有する半導体層上にあって、真性又は第一の導電型の半導体層、超格子半導体層または多重量子井戸半導体層より成る光受光層とショットキー電極との間に、前記光受光層と前記ショットキー電極との間のショットキー障壁よりも高いショットキー障壁を前記ショットキー電極に対して有するショットキーバリアハイトの高い半導体層を介在した多層構造を基板上に構成してなる半導体受光素子や、前記ショットキーバリアハイトの高い半導体層は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)又は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)とその上の薄いIn1-u Gau As1-v v (0≦u≦1,0≦v≦1)よりなることを特徴とする半導体受光素子で構成してもよい。
【0062】
また、この実施例は、下側にn-InGaAsP 層65を用い、上側をp-InP 層63としているが、上記のp とn を逆にして同様に製作可能であり、また、n-InP やp-InP 基板を用いても同様に製作可能である。
【0063】
また、ここでは、受光層64として均一組成のバルクを用いているが、アバランシェフォトダイオードに用いられる Separate-absorption-graded-multiplication(SAGM)構造や Separate absorption and multiplication superlattice(SAM-SL)構造や他の超格子構造の半導体層等を用いてもよいことは言うまでもない。また、InGaAsP /InP 系以外のInGaAlAs/InGaAsP やAlGaAs/GaAs系などの他の材料系や歪を内在するような材料系でもよいことは言うまでもない。
【0064】
〔実施例6〕
図7は本発明の第6の実施例を説明する断面斜視図である。71は光入射面、72は0.2μm厚p + -InGaAsP(1.2μm組成)層、73は1.5μm厚p + -InP層、74は0.4μm厚InGaAs光受光層、75は0.4μm厚n-InGaAsP (1.45μm組成)層、76は半絶縁性InP 基板、77はp 電極、78はn 電極である。なお、引出し電極とパッド電極は、説明図が煩雑になり、説明の妨げになるため、この図では省略している。
【0065】
素子の受光層面積は30μm×150μmである。光入射面71は、表面に対し80度の逆メサ形状で形成した。逆メサ部の形成は各種のウエットエッチング液やドライエッチング法を用いて形成してもよいし、結晶面を利用したり、エッチングマスクの密着性を利用し角度を制御して形成してもよい。また、(001)表面に対し、10度オフの基板を用いてPD部を製作し、劈開により80度の入射端面を形成してもよい。入射面71には無反射膜を形成している。
【0066】
なお、76、74、73層がそれぞれ、請求項中の、光受光層に対し光入射側の主たる半導体層、光受光層、光受光層に対し光入射側と反対側の主たる半導体層に対応する。この例では、光受光層74の片側の界面に薄い半導体層75が入っているが、両側や、反対側に入っていてもよい。
【0067】
ここで、76、74、73層のそれぞれの屈折率3.17、3.59、3.1を考慮すると、波長1.55μm光は、光受光層74に対し、83.14°の入射角で入射するようになる。この時、InGaAs光受光層74を光は通過角φ=28.75°で通過する。光は光受光層74に対し光入射側と反対側の半導体層がInGaAs光受光層74より屈折率の小さなInP 半導体層73により構成されており、さらに高濃度ドーピングにより、半絶縁性のInP 76に比べ屈折率が小さくなっているため、全反射の条件(φ< cos-1(n2/n1);ただし、n1は光受光層74の屈折率、n2は光入射側と反対側の半導体層73の屈折率)を満足し、光はこの部分で全反射するようになる。
【0068】
シングルモードファイバにより光を導入し、全反射により、100%の反射光が再度吸収層74を通過し、吸収されることにより、印加逆バイアス1.0Vで受光感度0.8A/W以上の大きな値が得られた。また、光の反射が上記界面で起こるため、上層の電極77の状態などに反射率や光の位相が左右されないので、高効率化や偏波制御等を設計性よく行うことが可能となる。ちなみに、上記界面で全反射しない従来構成で、p 電極が上面のほぼ全面に存在し、ここでの光反射効果のみを利用する場合では、0.6A/W程度しか得られなかった。また、シングルモードファイバの代わりに、先球ファイバを用い、素子の微小化(受光面積を7μm×50μm)を図ったもので、受光感度を高く保ちながら、3dB帯域30GHz の超高速動作が可能であった。
【0069】
この実施例では、光受光層74に対し光入射側と反対側の半導体層がInGaAs光受光層74より屈折率の小さな高濃度ドープInP 半導体層73を用いているが、光受光層74の屈折率より適当に小さく、全反射の条件を満足できるものであれば、AlAsSbや高濃度ドープInGaAsP や高濃度ドープInGaAlAs等なんでも良い。また、この実施例は、波長1.55μmの入射光に対して述べているが、全反射の条件を満足できれば色々な波長の光に対しても同様の効果が得られる。
【0070】
この実施例では、表面側のp-InP 層73は結晶成長によって形成しているが、結晶成長ではアンドープInP 層とし、表面側の主たる部分の半導体の導電形を、Zn の拡散や、イオン注入法とその後のアニールによって決定してもよい。
【0071】
また、半導体受光素子部分は、第1導電形を有する半導体層上にあって、真性又は第一の導電型の半導体層、超格子半導体層または多重量子井戸半導体層より成る光受光層とショットキー電極との間に、前記光受光層と前記ショットキー電極との間のショットキー障壁よりも高いショットキー障壁を前記ショットキー電極に対して有するショットキーバリアハイトの高い半導体層を介在した多層構造を基板上に構成してなる半導体受光素子や、前記ショットキーバリアハイトの高い半導体層は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)又は、In1-x-y Gax Aly As(0≦x≦1,0≦y≦1)とその上の薄いIn1-u Gau As1-v v (0≦u≦1,0≦v≦1)よりなることを特徴とする半導体受光素子で構成してもよい。
【0072】
また、この実施例は、基板として半絶縁性InP 76を用い、基板側にn-InGaAsP 層75を用いた例であるが、p-InGaAs層を用いても上記のp とn を逆にして同様に製作可能であり、また、n-InP やp-InP 基板を用いても同様に製作可能である。
【0073】
また、ここでは、受光層74として均一組成のバルクを用いているが、アバランシェフォトダイオードに用いられる Separate-absorption-graded-multiplication(SAGM)構造や Separate absorption and multiplication superlattice(SAM-SL)構造や他の超格子構造の半導体層等を用いてもよいことは言うまでもない。また、InGaAsP /InP 系以外のInGaAlAs/InGaAsP やAlGaAs/GaAs系などの他の材料系や歪を内在するような材料系でもよいことは言うまでもない。
【0074】
【発明の効果】
以上説明したように、光受光層を含む半導体多層構造よりなる受光部分と、前記光受光層を入射光が層厚方向に対し斜めに通過するようにした半導体受光素子において、光受光層に対し光入射側の半導体層の屈折率が、光受光層に対し光入射側と反対側の半導体層の屈折率より大きい半導体層で構成されており、光受光層に対し光入射側と反対側の半導体層が光受光層より屈折率の小さな半導体層よりなり、その部分で光が全反射するように構成されているため、受光層を100%反射光が再度通過することになり実効的光吸収長が大きく増大する。このため、高い受光感度を得るための光吸収層厚の大幅な薄層化が可能となる。また、光吸収層厚の大幅な薄層化により、高受光感度を維持しながら、超高速動作の可能な素子が製作可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を説明する断面斜視図である。
【図2】従来の屈折型半導体光受光素子を説明する図である。
【図3】本発明の第2の実施例を説明する断面斜視図である。
【図4】本発明の第3の実施例を説明する断面斜視図である。
【図5】本発明の第4の実施例を説明する断面斜視図である。
【図6】本発明の第5の実施例を説明する断面斜視図である。
【図7】本発明の第6の実施例を説明する断面斜視図である。
【符号の説明】
12 p + -InGaAsP層
13 p-InP 層
14 InGaAs光受光層
15 n-InGaAsP 層
16 InGaAsP 層
17 p 電極
18 n 電極
21 光入射面
22 p-InP 層
23 InGaAs光受光層
24 n-InP 層
25 n-InP 基板
26 p 電極
27 n 電極
31 光入射面
32 p + -InGaAsP層
33 p-InP 層
34 InGaAs光受光層
35 n-InGaAsP 層
36 InGaAsP 層
37 半絶縁性InP 基板
38 p 電極
39 n 電極
42 p + -InGaAsP層
43 p-InP 層
44 InGaAs光受光層
45 n-InGaAsP 層
46 半絶縁性GaAs基板
47 p 電極
48 n 電極
51 光入射面
52 p + -InGaAsP層
53 p-InP 層
54 InGaAs光受光層
55 n-InGaAsP 層
56 半絶縁性GaAs基板
57 p 電極
58 n 電極
62 p + -InGaAsP層
63 p + -InP層
64 InGaAs光受光層
65 n-InGaAsP 層
66 半絶縁性InP 基板
67 p 電極
68 n 電極
71 光入射面
72 p + -InGaAsP層
73 p + -InP層
74 InGaAs光受光層
75 n-InGaAsP 層
76 半絶縁性InP 基板
77 p 電極
78 n 電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light receiving element, and is devised so that a high light receiving sensitivity can be obtained while being a thin light absorption layer and an ultra-high speed operation is possible.
[0002]
[Prior art]
A refraction type semiconductor light-receiving element that represents a light-receiving portion having a conventional semiconductor multilayer structure including a light-receiving layer and a semiconductor light-receiving element in which incident light passes through the light-receiving layer obliquely with respect to the layer thickness direction is shown in FIG. The structure is as shown in FIG. That is, in FIG. 2, 21 is a light incident surface, 22 is a p-InP layer, 23 is an InGaAs light receiving layer, 24 is an n-InP layer, 25 is an n-InP substrate, 26 is a p electrode, and 27 is an n electrode. is there.
[0003]
In general, the upper electrode 26 is formed into an ohmic electrode by alloying with a semiconductor layer by heat-treating a metal such as AuZnNi in the case of p-type or AuGeNi in the case of n-type. Due to the alloying, minute irregularities are generated between the electrode 26 and the semiconductor, and even if the refracted light reaches here, it is diffusely reflected, or light is absorbed by the electrode metal itself. The reflectance of light at the part is small.
[0004]
[Problems to be solved by the invention]
Therefore, although the light absorption layer thickness can be reduced by increasing the effective absorption length due to the refracted light that is characteristic of the refractive semiconductor light receiving element passing obliquely with respect to the layer thickness direction, in order to obtain a sufficiently large light receiving sensitivity, It is necessary that light is sufficiently absorbed by one pass of refracted light to the light receiving layer 23. Therefore, there has been a limitation in reducing the thickness of the light receiving layer. For this reason, there is a problem that the traveling time of the carrier that travels in the light receiving layer 23 becomes a limiting factor of the response speed of the semiconductor light receiving element, and it is impossible to manufacture an element having a very high speed and high light receiving sensitivity. .
[0005]
An object of the present invention is to provide a light-receiving portion having a semiconductor multilayer structure including a light-receiving layer and a semiconductor light-receiving element in which incident light passes through the light-receiving layer obliquely with respect to the layer thickness direction. It is an object of the present invention to provide a semiconductor light receiving element that can achieve high light receiving sensitivity and can operate at ultra high speed.
[0006]
[Means for Solving the Problems]
The configuration of the present invention that solves the above problem includes a second semiconductor layer having a refractive index higher than that of the first semiconductor layer and an upper semiconductor layer including a first semiconductor layer having a refractive index smaller than that of the light absorbing layer. The first semiconductor layer has a stacked structure sandwiched between lower semiconductor layers including a semiconductor layer, and incident light incident from the lower semiconductor layer side passes through the light absorption layer obliquely with respect to the layer thickness direction. Is totally reflected at the interface on the side of the light absorption layer, and passes through the light absorption layer again obliquely. This increases the light absorption length It is characterized by that.
[0007]
In the structure of the present invention, at least a part of the side wall of the lower semiconductor layer is an inclined side wall having an acute angle with the surface of the light absorbing layer, and incident light is refracted by the inclined side wall and enters the light absorbing layer. It is characterized by.
[0008]
The structure of the present invention includes a light receiving portion having a semiconductor multilayer structure including a light receiving layer, and a semiconductor light receiving element in which incident light passes through the light receiving layer obliquely with respect to the layer thickness direction. On the other hand, the refractive index of the semiconductor layer on the light incident side is composed of a semiconductor layer larger than the refractive index of the semiconductor layer on the opposite side to the light incident side with respect to the light receiving layer. The semiconductor layer consists of a semiconductor layer with a refractive index smaller than that of the light receiving layer, and light is totally reflected at that part. The light absorption length increases by passing through the light absorption layer again at an angle. It is comprised so that it may do.
[0009]
For this reason, the light is completely totally reflected by the semiconductor layer opposite to the light incident side with respect to the light receiving layer, whereby the light passes through the light receiving layer again, and the light absorption efficiency is increased. In the prior art, the main arrival region of the refracted incident light in the upper layer of the light receiving layer is composed of an alloyed electrode, and the reflection in this region is small. The semiconductor layer has a refractive index greater than that of the semiconductor layer opposite to the light incident side with respect to the light receiving layer, and is opposite to the light incident side with respect to the light receiving layer in contact with the light receiving layer. Since the semiconductor layer on the side is composed of a semiconductor layer having a refractive index smaller than that of the light receiving layer that totally reflects light at this portion, light does not go to the upper electrode portion, and the light receiving layer The difference is that light is totally reflected at the upper interface.
[0010]
Further, according to the present invention, a light receiving portion composed of a semiconductor multilayer structure including a light receiving layer and a light incident end surface inclined inward as the distance from the surface side is provided on the end surface, so that incident light is refracted at the light incident end surface. In the refractive semiconductor light receiving element in which incident light passes through the light receiving layer obliquely with respect to the layer thickness direction, the refractive index of the semiconductor layer on the light incident side with respect to the light receiving layer is light relative to the light receiving layer. The semiconductor layer is composed of a semiconductor layer having a refractive index larger than that of the semiconductor layer on the opposite side to the incident side. Total reflection of light at the part The light absorption length increases by passing through the light absorption layer again at an angle. It is comprised so that it may do.
[0011]
For this reason, the light is completely totally reflected by the semiconductor layer opposite to the light incident side with respect to the light receiving layer, whereby the light passes through the light receiving layer again, and the light absorption efficiency is increased. In the prior art, the main arrival region of the refracted incident light in the upper layer of the light receiving layer is composed of an alloyed electrode, and the reflection in this region is small. The semiconductor layer has a refractive index greater than that of the semiconductor layer opposite to the light incident side with respect to the light receiving layer, and is opposite to the light incident side with respect to the light receiving layer in contact with the light receiving layer. Since the semiconductor layer on the side is composed of a semiconductor layer having a refractive index smaller than that of the light receiving layer that totally reflects light at this portion, light does not go to the upper electrode portion, and the light receiving layer The difference is that light is totally reflected at the upper interface.
[0012]
Further, according to the present invention, the semiconductor layer on the light incident side with respect to the light receiving layer is composed of an InGaAsP semiconductor layer having a refractive index larger than that of the semiconductor layer on the side opposite to the light incident side with respect to the light receiving layer. It is characterized by being.
[0013]
For this reason, the light is completely totally reflected by the semiconductor layer opposite to the light incident side with respect to the light receiving layer, whereby the light passes through the light receiving layer again, and the light absorption efficiency is increased. In the prior art, the main arrival region of the refracted incident light in the upper layer of the light receiving layer is composed of an alloyed electrode, and reflection in this region is small, but in the present invention, the light receiving layer in contact with the light receiving layer On the other hand, the semiconductor layer on the opposite side to the light incident side is composed of a semiconductor layer having a refractive index smaller than that of the light receiving layer that totally reflects light at this portion, and light does not go to the upper electrode portion. The difference is that light is totally reflected at the upper interface of the light receiving layer.
[0014]
Further, according to the present invention, the semiconductor layer on the light incident side with respect to the light receiving layer is formed of a GaAs semiconductor layer having a refractive index larger than the refractive index of the semiconductor layer on the side opposite to the light incident side with respect to the light receiving layer. It is characterized by being.
[0015]
For this reason, the light is completely totally reflected by the semiconductor layer opposite to the light incident side with respect to the light receiving layer, whereby the light passes through the light receiving layer again, and the light absorption efficiency is increased. In the prior art, the main arrival region of the refracted incident light in the upper layer of the light receiving layer is composed of an alloyed electrode, and reflection in this region is small, but in the present invention, the light receiving layer in contact with the light receiving layer On the other hand, the semiconductor layer on the opposite side to the light incident side is composed of a semiconductor layer having a refractive index smaller than that of the light receiving layer that totally reflects light at this portion, and light does not go to the upper electrode portion. The difference is that light is totally reflected at the upper interface of the light receiving layer.
[0016]
[Action]
As described above, in this element, the semiconductor layer opposite to the light incident side with respect to the light receiving layer is constituted by a semiconductor layer having a refractive index smaller than that of the light receiving layer that totally reflects light at that portion. For this reason, light passes through the light receiving layer twice, and the effective light absorption length increases twice. For this reason, it is possible to significantly reduce the thickness of the light absorption layer in order to obtain high light receiving sensitivity. By reducing the thickness of the light absorption layer significantly, it is possible to operate the device at high speed while maintaining high light receiving sensitivity.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0018]
[Example 1]
FIG. 1 is a sectional perspective view for explaining a first embodiment of the present invention. 12 is 0.2μm thick p + -InGaAsP (1.2 μm composition) layer, 13 is a 1.5 μm thick p-InP layer, 14 is a 0.4 μm thick InGaAs light receiving layer, 15 is a 1 μm thick n-InGaAsP (1.4 μm composition) layer, and 16 is an InGaAsP layer. A (1.4 μm composition) layer, 17 is a p-electrode, and 18 is an n-electrode. Note that the drawing electrode and the pad electrode are omitted in this drawing because the drawing is complicated and obstructs the description.
[0019]
The light receiving layer area of the element is 30 μm × 50 μm. The light having a wavelength of 1.55 μm is incident on the light receiving layer 14 at an incident angle of 70 °. The layers 15, 14, and 13 correspond to the main semiconductor layer on the light incident side with respect to the light receiving layer, the light receiving layer, and the main semiconductor layer on the opposite side to the light receiving layer in the claims. To do. In addition to this example, a thin semiconductor layer may be included at one or both interfaces of the light receiving layer 14.
[0020]
Here, considering the refractive indexes of 3.439, 3.59, and 3.17 of the 15, 14, and 13 layers, the light passes through the InGaAs light receiving layer 14 at a passing angle φ = 25.8 °. To do. Since the semiconductor layer opposite to the light incident side with respect to the light receiving layer 14 is composed of the InP semiconductor layer 13 having a refractive index smaller than that of the InGaAs light receiving layer 14, the light is subjected to a total reflection condition (φ <cos -1 (N 2 / N 1 ); But n 1 Is the refractive index of the light-receiving layer 14, n 2 Satisfies the refractive index of the semiconductor layer 13 opposite to the light incident side, and the light is totally reflected at this portion.
[0021]
As a result, 100% of the reflected light again passes through the absorption layer 14 and is absorbed, whereby a large value of a light receiving sensitivity of 0.8 A / W or more is obtained at an applied reverse bias of 1.0 V. In addition, since light reflection occurs at the interface, the reflectivity and light phase are not affected by the state of the upper electrode 17 and the like, so that high efficiency and polarization control can be performed with good design. Incidentally, in the conventional configuration in which the reflection is not totally reflected at the interface, the p electrode is present on almost the entire upper surface, and when only the light reflection effect is used here, only about 0.6 A / W was obtained.
[0022]
In this embodiment, the InP semiconductor layer 13 having a refractive index smaller than that of the InGaAs light receiving layer 14 is used as the semiconductor layer opposite to the light incident side with respect to the light receiving layer 14. Any material such as InGaAsP or InGaAlAs may be used as long as it is small and can satisfy the conditions of total reflection. Further, although this embodiment has been described with respect to incident light having a wavelength of 1.55 μm, the same effect can be obtained for light of various wavelengths as long as the condition of total reflection can be satisfied.
[0023]
In this embodiment, the p-InP layer 13 on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used, and the semiconductor conductivity type of the main portion on the surface side is changed to Zn diffusion or ion implantation. It may be determined by the method and subsequent annealing.
[0024]
The semiconductor light-receiving element portion is on a semiconductor layer having the first conductivity type, and includes a light-receiving layer and a Schottky formed of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer, or a multiple quantum well semiconductor layer. A multilayer structure in which a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode is interposed between the electrode and an electrode. The semiconductor light-receiving element formed on the substrate and the semiconductor layer having a high Schottky barrier height are In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) or In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) and thin In on it 1-u Ga u As 1-v P v You may comprise with the semiconductor light receiving element characterized by consisting of (0 <= u <= 1,0 <= v <= 1).
[0025]
In this embodiment, the n-InGaAsP layer 15 is used on the lower side and the p-InP layer 13 is used on the upper side. However, it can be manufactured in the same manner with the above-mentioned p and n reversed. It is possible to manufacture the same using a p-InP substrate.
[0026]
Here, a bulk of uniform composition is used as the light-receiving layer 14, but a separate-absorption-graded-multiplication (SAGM) structure, a separate absorption and multiplication superlattice (SAM-SL) structure, etc. used for avalanche photodiodes, and others. Needless to say, a semiconductor layer having a superlattice structure may be used. It goes without saying that other material systems such as InGaAlAs / InGaAsP and AlGaAs / GaAs systems other than InGaAsP / InP systems and material systems with inherent strain may be used.
[0027]
[Example 2]
FIG. 3 is a cross-sectional perspective view for explaining a second embodiment of the present invention. 31 is a light incident surface, 32 is 0.2 μm thick p + -InGaAsP (1.2 μm composition) layer, 33 is a 1.5 μm thick p-InP layer, 34 is a 0.4 μm thick InGaAs light receiving layer, 35 is a 1 μm thick n-InGaAsP (1.45 μm composition) layer, and 36 is an InGaAsP layer. (1.45 μm composition) layer, 37 is a semi-insulating InP substrate, 38 is a p-electrode, and 39 is an n-electrode. Note that the drawing electrode and the pad electrode are omitted in this drawing because the drawing is complicated and obstructs the description.
[0028]
The light receiving layer area of the element is 30 μm × 50 μm. The light incident surface 31 was formed in an inverted mesa shape of 60 degrees with respect to the surface. The reverse mesa may be formed using various wet etching solutions or dry etching methods, or may be formed using a crystal plane or controlling the angle using the adhesion of an etching mask. . A non-reflective film is formed on the incident surface 31. The 35, 34, and 33 layers correspond to the main semiconductor layer on the light incident side with respect to the light receiving layer, the light receiving layer, and the main semiconductor layer on the opposite side to the light receiving layer in the claims. To do. In addition to this example, a thin semiconductor layer may be included at one or both of the interfaces of the light receiving layer.
[0029]
Here, considering the refractive indexes of 3.464, 3.59, and 3.17 of the 35, 34, and 33 layers, light having a wavelength of 1.55 μm is incident on the light receiving layer at an angle of 68.3 °. It becomes incident. At this time, the light passes through the InGaAs light receiving layer 34 with a passing angle φ = 26.3 °. Since the semiconductor layer opposite to the light incident side with respect to the light receiving layer 34 is composed of the InP semiconductor layer 33 having a refractive index smaller than that of the InGaAs light receiving layer 34, the light has a total reflection condition (φ <cos -1 (N 2 / N 1 ); But n 1 Is the refractive index of the light-receiving layer 34, n 2 Satisfies the refractive index of the semiconductor layer 33 on the side opposite to the light incident side), and the light is totally reflected at this portion.
[0030]
Light is introduced by a single mode fiber, and 100% of the reflected light again passes through the absorption layer 34 due to total reflection, and is absorbed, so that the applied reverse bias is 1.0 V and the light receiving sensitivity is greater than 0.8 A / W. A value was obtained. Further, since light reflection occurs at the interface, the reflectivity and the light phase are not affected by the state of the upper electrode 38 and the like, so that high efficiency and polarization control can be performed with good design. Incidentally, in the conventional configuration in which the reflection is not totally reflected at the interface, the p electrode is present on almost the entire upper surface, and when only the light reflection effect is used here, only about 0.6 A / W was obtained. In addition, instead of a single mode fiber, a pointed fiber is used to reduce the size of the element (light receiving area is 7 μm × 20 μm). Ultrahigh speed operation of 3 dB bandwidth 50 GHz is possible while maintaining high light receiving sensitivity. there were.
[0031]
In this embodiment, the InP semiconductor layer 33 having a refractive index smaller than that of the InGaAs light receiving layer 34 is used as the semiconductor layer opposite to the light incident side with respect to the light receiving layer 34. Any material such as InGaAsP or InGaAlAs may be used as long as it is small and can satisfy the conditions of total reflection. Further, although this embodiment has been described with respect to incident light having a wavelength of 1.55 μm, the same effect can be obtained for light of various wavelengths as long as the condition of total reflection can be satisfied.
[0032]
In this embodiment, the p-InP layer 33 on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used, and the main conductivity type of the semiconductor on the surface side is Zn diffusion or ion implantation. It may be determined by the method and subsequent annealing.
[0033]
The semiconductor light-receiving element portion is on a semiconductor layer having the first conductivity type, and includes a light-receiving layer and a Schottky formed of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer, or a multiple quantum well semiconductor layer. A multilayer structure in which a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode is interposed between the electrode and an electrode. The semiconductor light-receiving element formed on the substrate and the semiconductor layer having a high Schottky barrier height are In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) or In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) and thin In on it 1-u Ga u As 1-v P v You may comprise with the semiconductor light receiving element characterized by consisting of (0 <= u <= 1,0 <= v <= 1).
[0034]
In this embodiment, a semi-insulating InP 37 is used as a substrate and an n-InGaAsP layer 35 is used on the substrate side. However, even if a p-InGaAs layer is used, the above-described p and n are reversed. It can be manufactured in the same manner, and can also be manufactured in the same way using an n-InP or p-InP substrate.
[0035]
In addition, here, a bulk of uniform composition is used as the light receiving layer 34, but a separate-absorption-graded-multiplication (SAGM) structure, a separate absorption and multiplication superlattice (SAM-SL) structure, etc. used for avalanche photodiodes, etc. Needless to say, a semiconductor layer having a superlattice structure may be used. It goes without saying that other material systems such as InGaAlAs / InGaAsP and AlGaAs / GaAs systems other than InGaAsP / InP systems and material systems with inherent strain may be used.
[0036]
Example 3
FIG. 4 is a sectional perspective view for explaining a third embodiment of the present invention. 42 is 0.2μm thick p + -InGaAsP (1.2 μm composition) layer, 43 is a 1.5 μm thick p-InP layer, 44 is a 0.4 μm thick InGaAs light receiving layer, 45 is a 1 μm thick n-InGaAsP (1.4 μm composition) layer, and 46 is half An insulating GaAs substrate, 47 is a p-electrode, and 48 is an n-electrode. Note that the drawing electrode and the pad electrode are omitted in this drawing because the drawing is complicated and obstructs the description.
[0037]
The light receiving layer area of the element is 30 μm × 50 μm. The light having a wavelength of 1.55 μm is incident on the light receiving layer 44 at an incident angle of 75 °. The 46, 44, and 43 layers correspond to the main semiconductor layer on the light incident side with respect to the light receiving layer, the light receiving layer, and the main semiconductor layer on the opposite side to the light receiving layer in the claims. To do. In this example, the semiconductor layer 45 is included in the interface on one side of the light receiving layer 44, but may be on both sides or on the opposite side.
[0038]
Here, considering the refractive indexes of 3.38, 3.439, 3.59, and 3.17 of the 46, 45, 44, and 43 layers, light passes through the InGaAs light receiving layer 44 at this time. Pass at 24.57 °. Since the semiconductor layer on the side opposite to the light incident side with respect to the light receiving layer 44 is composed of the InP semiconductor layer 43 having a refractive index smaller than that of the InGaAs light receiving layer 44, the total reflection condition (φ <cos -1 (N 2 / N 1 ); But n 1 Is the refractive index of the light receiving layer 44, n 2 Satisfies the refractive index of the semiconductor layer 43 on the side opposite to the light incident side), and the light is totally reflected at this portion.
[0039]
Light is introduced through a single mode fiber, and 100% of the reflected light again passes through the absorption layer 44 due to total reflection, and is absorbed, resulting in a large light receiving sensitivity of 0.8 A / W or more with an applied reverse bias of 1.0 V. A value was obtained. In addition, since light reflection occurs at the interface, the reflectivity and the light phase are not affected by the state of the upper electrode 47 and the like, so that high efficiency and polarization control can be performed with good design. Incidentally, in the conventional configuration in which the reflection is not totally reflected at the interface, the p electrode is present on almost the entire upper surface, and when only the light reflection effect is used here, only about 0.6 A / W was obtained. In addition, instead of a single mode fiber, a pointed fiber is used to reduce the size of the element (light receiving area is 7 μm × 20 μm). Ultrahigh speed operation of 3 dB bandwidth 50 GHz is possible while maintaining high light receiving sensitivity. there were.
[0040]
In this embodiment, the InP semiconductor layer 43 having a refractive index smaller than that of the InGaAs light receiving layer 44 is used as the semiconductor layer opposite to the light incident side with respect to the light receiving layer 44, but more appropriate than the refractive index of the light receiving layer 44. Any material such as InGaAsP or InGaAlAs may be used as long as it is small and can satisfy the conditions of total reflection. Further, although this embodiment has been described with respect to incident light having a wavelength of 1.55 μm, the same effect can be obtained for light of various wavelengths as long as the condition of total reflection can be satisfied.
[0041]
In this embodiment, the p-InP layer 43 on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used, and the main conductivity type of the semiconductor on the surface side is Zn diffusion or ion implantation. It may be determined by the method and subsequent annealing.
[0042]
The semiconductor light-receiving element portion is on a semiconductor layer having the first conductivity type, and includes a light-receiving layer and a Schottky formed of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer, or a multiple quantum well semiconductor layer. A multilayer structure in which a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode is interposed between the electrode and an electrode. The semiconductor light-receiving element formed on the substrate and the semiconductor layer having a high Schottky barrier height are In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) or In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) and thin In on it 1-u Ga u As 1-v P v You may comprise with the semiconductor light receiving element characterized by consisting of (0 <= u <= 1,0 <= v <= 1).
[0043]
This embodiment is an example in which a semi-insulating GaAs 46 is used as a substrate and an n-InGaAsP layer 45 is used on the substrate side. However, even if a p-InGaAsP layer is used, the above-described p and n are reversed. It can also be manufactured using an n-GaAs or p-GaAs substrate.
[0044]
Here, a bulk of uniform composition is used as the light-receiving layer 44, but a separate-absorption-graded-multiplication (SAGM) structure, a separate absorption and multiplication superlattice (SAM-SL) structure, etc. used for avalanche photodiodes, etc. Needless to say, a semiconductor layer having a superlattice structure may be used. It goes without saying that other material systems such as InGaAlAs / InGaAsP and AlGaAs / GaAs systems other than InGaAsP / InP systems and material systems with inherent strain may be used.
[0045]
Example 4
FIG. 5 is a sectional perspective view for explaining a fourth embodiment of the present invention. 51 is a light incident surface, 52 is 0.2 μm thick p + -InGaAsP (1.2 μm composition) layer, 53 is a 1.5 μm thick p-InP layer, 54 is a 0.5 μm thick InGaAs light receiving layer, 55 is a 1 μm thick n-InGaAsP (1.4 μm composition) layer, and 56 is a half An insulating GaAs substrate, 57 is a p-electrode, and 58 is an n-electrode. Note that the drawing electrode and the pad electrode are omitted in this drawing because the drawing is complicated and obstructs the description.
[0046]
The light receiving layer area of the element is 30 μm × 50 μm. The light incident surface 51 was formed in an inverted mesa shape of 60 degrees with respect to the surface. The reverse mesa may be formed using various wet etching solutions or dry etching methods, or may be formed using a crystal plane or controlling the angle using the adhesion of an etching mask. . An antireflective film is formed on the incident surface 51. In this embodiment, the light incident end face portion is filled with epoxy having a refractive index of 1.5.
[0047]
The 56, 54, and 53 layers correspond to the main semiconductor layer on the light incident side with respect to the light receiving layer, the light receiving layer, and the main semiconductor layer on the opposite side to the light receiving layer in the claims. To do. In this example, the semiconductor layer 55 is included in the interface on one side of the light receiving layer 54, but may be on both sides or on the opposite side.
[0048]
Here, considering the refractive indexes of 3.38, 3.439, 3.59, and 3.17 of the 56, 55, 54, and 53 layers, light passes through the InGaAs light receiving layer 54 at this time. Pass at 25.88 °. Since the semiconductor layer opposite to the light incident side with respect to the light receiving layer 54 is composed of the InP semiconductor layer 53 having a refractive index smaller than that of the InGaAs light receiving layer 54, the light is subjected to a total reflection condition (φ <cos -1 (N 2 / N 1 ); But n 1 Is the refractive index of the light-receiving layer 54, n 2 Satisfies the refractive index of the semiconductor layer 53 on the side opposite to the light incident side, and the light is totally reflected at this portion.
[0049]
Light is introduced by a single mode fiber, and 100% of the reflected light again passes through the absorption layer 54 and is absorbed by total reflection, so that the applied reverse bias is 1.0 V and the light receiving sensitivity is greater than 0.8 A / W. A value was obtained. Further, since light reflection occurs at the interface, the reflectivity and the light phase are not affected by the state of the upper electrode 57 and the like, so that high efficiency and polarization control can be performed with good design. Incidentally, in the conventional configuration in which the reflection is not totally reflected at the interface, the p electrode is present on almost the entire upper surface, and when only the light reflection effect is used here, only about 0.6 A / W was obtained. In addition, instead of a single mode fiber, a pointed fiber is used to reduce the size of the element (light receiving area is 7 μm × 20 μm). Ultrahigh speed operation of 3 dB bandwidth 50 GHz is possible while maintaining high light receiving sensitivity. there were.
[0050]
In this embodiment, the InP semiconductor layer 53 having a refractive index smaller than that of the InGaAs light receiving layer 54 is used as the semiconductor layer opposite to the light incident side with respect to the light receiving layer 54. Any material such as InGaAsP or InGaAlAs may be used as long as it is small and can satisfy the conditions of total reflection. Further, although this embodiment has been described with respect to incident light having a wavelength of 1.55 μm, the same effect can be obtained for light of various wavelengths as long as the condition of total reflection can be satisfied.
[0051]
In this embodiment, the p-InP layer 53 on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used, and the main conductivity type of the semiconductor on the surface side is Zn diffusion or ion implantation. It may be determined by the method and subsequent annealing.
[0052]
The semiconductor light-receiving element portion is on a semiconductor layer having the first conductivity type, and includes a light-receiving layer and a Schottky formed of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer, or a multiple quantum well semiconductor layer. A multilayer structure in which a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode is interposed between the electrode and an electrode. The semiconductor light-receiving element formed on the substrate and the semiconductor layer having a high Schottky barrier height are In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) or In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) and thin In on it 1-u Ga u As 1-v P v You may comprise with the semiconductor light receiving element characterized by consisting of (0 <= u <= 1,0 <= v <= 1).
[0053]
This embodiment is an example in which a semi-insulating GaAs 56 is used as a substrate and an n-InGaAsP layer 55 is used on the substrate side. However, even if a p-InP layer is used, the above-described p and n are reversed. It can also be manufactured using n-GaAs or p-GaAs substrates.
[0054]
Here, a bulk of uniform composition is used as the light-receiving layer 54, but a separate-absorption-graded-multiplication (SAGM) structure, a separate absorption and multiplication superlattice (SAM-SL) structure, etc. used for avalanche photodiodes, etc. Needless to say, a semiconductor layer having a superlattice structure may be used. It goes without saying that other material systems such as InGaAlAs / InGaAsP and AlGaAs / GaAs systems other than InGaAsP / InP systems and material systems with inherent strain may be used.
[0055]
Example 5
FIG. 6 is a sectional perspective view for explaining a fifth embodiment of the present invention. 62 is 0.2μm thick p + -InGaAsP (1.2 μm composition) layer, 63 is 1.5 μm thick + -InP layer, 64 is 0.4 μm-thick InGaAs light-receiving layer, 65 is 0.4 μm-thick n-InGaAsP (1.4 μm composition) layer, 66 is a semi-insulating InP substrate, 67 is a p-electrode, and 68 is an n-electrode is there. Note that the drawing electrode and the pad electrode are omitted in this drawing because the drawing is complicated and obstructs the description.
[0056]
The light receiving layer area of the element is 30 μm × 150 μm. Light having a wavelength of 1.55 μm is incident on the light receiving layer 64 at an incident angle of 84 °. The 66, 64, and 63 layers correspond to the main semiconductor layer on the light incident side with respect to the light receiving layer, the light receiving layer, and the main semiconductor layer on the opposite side to the light receiving layer in the claims. To do. In this example, the thin semiconductor layer 65 is contained in the interface on one side of the light receiving layer 64, but may be on both sides or on the opposite side.
[0057]
Here, considering the refractive indexes of 3.17, 3.59, and 3.1 of the 66, 64, and 63 layers, light passes through the InGaAs light receiving layer 64 at a passing angle φ = 28.8 ° at this time. To do. For light, the semiconductor layer opposite to the light incident side with respect to the light receiving layer 64 is composed of an InP semiconductor layer 63 having a refractive index smaller than that of the InGaAs light receiving layer 64, and semi-insulating InP 66 due to high concentration doping. The refractive index is smaller than that of the total reflection condition (φ <cos -1 (N 2 / N 1 ); But n 1 Is the refractive index of the light receiving layer 64, n 2 Satisfies the refractive index of the semiconductor layer 63 on the side opposite to the light incident side), and the light is totally reflected at this portion.
[0058]
As a result, 100% of the reflected light again passes through the absorption layer 64 and is absorbed, whereby a large value of a light receiving sensitivity of 0.8 A / W or more is obtained with an applied reverse bias of 1.0 V. In addition, since light reflection occurs at the interface, the reflectivity and the light phase are not affected by the state of the upper electrode 67 and the like, so that high efficiency and polarization control can be performed with good design. Incidentally, in the conventional configuration in which the reflection is not totally reflected at the interface, the p electrode is present on almost the entire upper surface, and when only the light reflection effect is used here, only about 0.6 A / W was obtained.
[0059]
In this embodiment, the heavily doped InP semiconductor layer 63 having a refractive index smaller than that of the InGaAs light receiving layer 64 is used as the semiconductor layer opposite to the light incident side with respect to the light receiving layer 64. Any material such as AlAsSb, highly doped InGaAsP, or highly doped InGaAlAs may be used as long as it is appropriately smaller than the rate and can satisfy the conditions of total reflection. Further, although this embodiment has been described with respect to incident light having a wavelength of 1.55 μm, the same effect can be obtained for light of various wavelengths as long as the condition of total reflection can be satisfied.
[0060]
In this embodiment, the p-InP layer 63 on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used, and the main conductivity type of the semiconductor on the surface side is Zn diffusion or ion implantation. It may be determined by the method and subsequent annealing.
[0061]
The semiconductor light-receiving element portion is on a semiconductor layer having the first conductivity type, and includes a light-receiving layer and a Schottky formed of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer, or a multiple quantum well semiconductor layer. A multilayer structure in which a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode is interposed between the electrode and an electrode. The semiconductor light-receiving element formed on the substrate and the semiconductor layer having a high Schottky barrier height are In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) or In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) and thin In on it 1-u Ga u As 1-v P v You may comprise with the semiconductor light receiving element characterized by consisting of (0 <= u <= 1,0 <= v <= 1).
[0062]
In this embodiment, the n-InGaAsP layer 65 is used on the lower side and the p-InP layer 63 is used on the upper side. However, the above-described p and n can be reversed, and the n-InP layer can be manufactured in the same manner. It is possible to manufacture the same using a p-InP substrate.
[0063]
Here, a bulk of uniform composition is used as the light-receiving layer 64, but a separate-absorption-graded-multiplication (SAGM) structure, a separate absorption and multiplication superlattice (SAM-SL) structure, etc., used for avalanche photodiodes, etc. Needless to say, a semiconductor layer having a superlattice structure may be used. It goes without saying that other material systems such as InGaAlAs / InGaAsP and AlGaAs / GaAs systems other than InGaAsP / InP systems and material systems with inherent strain may be used.
[0064]
Example 6
FIG. 7 is a sectional perspective view for explaining a sixth embodiment of the present invention. 71 is a light incident surface, 72 is 0.2 μm thick p + -InGaAsP (1.2 μm composition) layer, 73 is 1.5 μm thick p + -InP layer, 74 is 0.4 μm thick InGaAs light receiving layer, 75 is 0.4 μm thick n-InGaAsP (1.45 μm composition) layer, 76 is a semi-insulating InP substrate, 77 is a p electrode, and 78 is an n electrode. is there. Note that the drawing electrode and the pad electrode are omitted in this drawing because the drawing is complicated and obstructs the description.
[0065]
The light receiving layer area of the element is 30 μm × 150 μm. The light incident surface 71 was formed in an inverted mesa shape of 80 degrees with respect to the surface. The reverse mesa may be formed using various wet etching solutions or dry etching methods, or may be formed using a crystal plane or controlling the angle using the adhesion of an etching mask. . Alternatively, the PD portion may be manufactured using a substrate that is off by 10 degrees with respect to the (001) surface, and an incident end face of 80 degrees may be formed by cleaving. An antireflective film is formed on the incident surface 71.
[0066]
The layers 76, 74, and 73 correspond to the main semiconductor layer on the light incident side with respect to the light receiving layer, the light receiving layer, and the main semiconductor layer on the opposite side of the light receiving layer in the claims. To do. In this example, the thin semiconductor layer 75 is included in the interface on one side of the light receiving layer 74, but may be on both sides or on the opposite side.
[0067]
Here, considering the refractive indexes of 3.17, 3.59, and 3.1 of the 76, 74, and 73 layers, the light having a wavelength of 1.55 μm is incident on the light receiving layer 74 at an incident angle of 83.14 °. It becomes incident. At this time, light passes through the InGaAs light receiving layer 74 with a passing angle φ = 28.75 °. For light, the semiconductor layer opposite to the light incident side with respect to the light receiving layer 74 is composed of an InP semiconductor layer 73 having a refractive index smaller than that of the InGaAs light receiving layer 74, and further semi-insulating InP 76 by high concentration doping. The refractive index is smaller than that of the total reflection condition (φ <cos -1 (N 2 / N 1 ); But n 1 Is the refractive index of the light receiving layer 74, n 2 Satisfies the refractive index of the semiconductor layer 73 on the side opposite to the light incident side), and the light is totally reflected at this portion.
[0068]
Light is introduced by a single mode fiber, and 100% of the reflected light again passes through the absorption layer 74 and is absorbed by total reflection, so that the applied reverse bias is 1.0 V and the light receiving sensitivity is greater than 0.8 A / W. A value was obtained. In addition, since light reflection occurs at the interface, the reflectivity and the light phase are not affected by the state of the upper electrode 77 and the like, so that high efficiency and polarization control can be performed with good design. Incidentally, in the conventional configuration in which the reflection is not totally reflected at the interface, the p electrode is present on almost the entire upper surface, and when only the light reflection effect is used here, only about 0.6 A / W was obtained. In addition, instead of a single mode fiber, a pointed fiber is used to reduce the size of the element (light-receiving area is 7 μm × 50 μm), and ultra-high-speed operation of 3 dB bandwidth 30 GHz is possible while maintaining high light-receiving sensitivity. there were.
[0069]
In this embodiment, a highly doped InP semiconductor layer 73 having a refractive index smaller than that of the InGaAs light receiving layer 74 is used as the semiconductor layer opposite to the light incident side with respect to the light receiving layer 74. Any material such as AlAsSb, highly doped InGaAsP, or highly doped InGaAlAs may be used as long as it is appropriately smaller than the rate and can satisfy the conditions of total reflection. Further, although this embodiment has been described with respect to incident light having a wavelength of 1.55 μm, the same effect can be obtained for light of various wavelengths as long as the condition of total reflection can be satisfied.
[0070]
In this embodiment, the p-InP layer 73 on the surface side is formed by crystal growth. However, in the crystal growth, an undoped InP layer is used, and the main conductivity type of the semiconductor on the surface side is Zn diffusion or ion implantation. It may be determined by the method and subsequent annealing.
[0071]
The semiconductor light-receiving element portion is on a semiconductor layer having the first conductivity type, and includes a light-receiving layer and a Schottky formed of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer, or a multiple quantum well semiconductor layer. A multilayer structure in which a semiconductor layer having a high Schottky barrier height having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode is interposed between the electrode and an electrode. The semiconductor light-receiving element formed on the substrate and the semiconductor layer having a high Schottky barrier height are In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) or In 1-xy Ga x Al y As (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) and thin In on it 1-u Ga u As 1-v P v You may comprise with the semiconductor light receiving element characterized by consisting of (0 <= u <= 1,0 <= v <= 1).
[0072]
In this embodiment, a semi-insulating InP 76 is used as a substrate and an n-InGaAsP layer 75 is used on the substrate side. However, even if a p-InGaAs layer is used, the above p and n are reversed. It can be manufactured in the same way, and can also be manufactured using an n-InP or p-InP substrate.
[0073]
Here, a bulk of uniform composition is used as the light-receiving layer 74, but a separate-absorption-graded-multiplication (SAGM) structure, a separate absorption and multiplication superlattice (SAM-SL) structure, etc. used for avalanche photodiodes, etc. Needless to say, a semiconductor layer having a superlattice structure may be used. It goes without saying that other material systems such as InGaAlAs / InGaAsP and AlGaAs / GaAs systems other than InGaAsP / InP systems and material systems with inherent strain may be used.
[0074]
【The invention's effect】
As described above, in a light receiving portion having a semiconductor multilayer structure including a light receiving layer and a semiconductor light receiving element in which incident light passes through the light receiving layer obliquely with respect to the layer thickness direction, The semiconductor layer on the light incident side has a refractive index larger than the refractive index of the semiconductor layer on the opposite side to the light receiving side with respect to the light receiving layer, and is on the side opposite to the light incident side with respect to the light receiving layer. Since the semiconductor layer is made of a semiconductor layer having a refractive index smaller than that of the light receiving layer, and the light is totally reflected at that portion, 100% reflected light passes through the light receiving layer again, and effective light absorption is achieved. The length is greatly increased. For this reason, it is possible to significantly reduce the thickness of the light absorption layer in order to obtain high light receiving sensitivity. In addition, since the light absorption layer is greatly reduced in thickness, it is possible to manufacture an element capable of operating at a high speed while maintaining high light receiving sensitivity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional perspective view illustrating a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a conventional refractive semiconductor light receiving element.
FIG. 3 is a cross-sectional perspective view illustrating a second embodiment of the present invention.
FIG. 4 is a cross-sectional perspective view illustrating a third embodiment of the present invention.
FIG. 5 is a cross-sectional perspective view for explaining a fourth embodiment of the present invention.
FIG. 6 is a cross-sectional perspective view for explaining a fifth embodiment of the present invention.
FIG. 7 is a cross-sectional perspective view for explaining a sixth embodiment of the present invention.
[Explanation of symbols]
12 p + -InGaAsP layer
13 p-InP layer
14 InGaAs light receiving layer
15 n-InGaAsP layer
16 InGaAsP layers
17 p electrode
18 n electrode
21 Light incident surface
22 p-InP layer
23 InGaAs light receiving layer
24 n-InP layer
25 n-InP substrate
26 p electrode
27 n electrode
31 Light incident surface
32 p + -InGaAsP layer
33 p-InP layer
34 InGaAs light receiving layer
35 n-InGaAsP layer
36 InGaAsP layer
37 Semi-insulating InP substrate
38 p electrode
39 n electrode
42 p + -InGaAsP layer
43 p-InP layer
44 InGaAs light receiving layer
45 n-InGaAsP layer
46 Semi-insulating GaAs substrate
47 p electrode
48 n electrode
51 Light incident surface
52 p + -InGaAsP layer
53 p-InP layer
54 InGaAs light receiving layer
55 n-InGaAsP layer
56 Semi-insulating GaAs substrate
57 p electrode
58 n electrode
62 p + -InGaAsP layer
63 p + -InP layer
64 InGaAs light receiving layer
65 n-InGaAsP layer
66 Semi-insulating InP substrate
67p electrode
68 n electrode
71 Light incident surface
72 p + -InGaAsP layer
73 p + -InP layer
74 InGaAs light receiving layer
75 n-InGaAsP layer
76 Semi-insulating InP substrate
77 p electrode
78 n electrode

Claims (6)

光吸収層が前記光吸収層より小さな屈折率を有する第一の半導体層を含む上部半導体層と前記第一の半導体層より屈折率が大きい第二の半導体層を含む下部半導体層で挟まれた積層構造を有し、前記下部半導体層側から入射した入射光が、前記光吸収層を層厚方向に対し斜めに通過し、前記第一の半導体層の前記光吸収層側の界面で全反射し、前記光吸収層を再度斜めに通過することにより、光吸収長が増大することを特徴とする半導体受光素子。The light absorption layer is sandwiched between an upper semiconductor layer including a first semiconductor layer having a smaller refractive index than the light absorption layer and a lower semiconductor layer including a second semiconductor layer having a higher refractive index than the first semiconductor layer. The incident light incident from the lower semiconductor layer side has a laminated structure, passes through the light absorption layer obliquely with respect to the layer thickness direction, and is totally reflected at the interface of the first semiconductor layer on the light absorption layer side. Then , the light absorption length increases by passing through the light absorption layer again obliquely, so that the semiconductor light receiving element is characterized. 前記下部半導体層の少なくとも一部の側壁は、前記光吸収層の面となす角が鋭角な傾斜側壁であり、前記入射光が前記傾斜側壁で屈折して前記光吸収層に入射することを特徴とする請求項1に記載の半導体受光素子。  At least a part of the side wall of the lower semiconductor layer is an inclined side wall having an acute angle with the surface of the light absorption layer, and the incident light is refracted by the inclined side wall and is incident on the light absorption layer. The semiconductor light receiving element according to claim 1. 光受光層を含む半導体多層構造よりなる受光部分と、前記光受光層を入射光が層厚方向に対し斜めに通過するようにした半導体受光素子において、
光受光層に対し光入射側の主たる半導体層の屈折率が、光受光層に対し光入射側と反対側の主たる半導体層の屈折率より大きい半導体層で構成されており、光受光層に対し光入射側と反対側の主たる半導体層が光受光層より屈折率の小さな半導体層よりなり、その部分で光が全反射し前記光吸収層を再度斜めに通過することにより、光吸収長が増大するように構成されていることを特徴とする半導体受光素子。
In a light receiving portion having a semiconductor multilayer structure including a light receiving layer, and a semiconductor light receiving element in which incident light passes through the light receiving layer obliquely with respect to the layer thickness direction,
The refractive index of the main semiconductor layer on the light incident side with respect to the light receiving layer is composed of a semiconductor layer larger than the refractive index of the main semiconductor layer on the side opposite to the light incident side with respect to the light receiving layer. The main semiconductor layer on the side opposite to the light incident side is made of a semiconductor layer having a refractive index smaller than that of the light receiving layer. The light is totally reflected at that portion and passes through the light absorbing layer again obliquely, thereby increasing the light absorption length. It is comprised so that it may do. The semiconductor light receiving element characterized by the above-mentioned.
光受光層を含む半導体多層構造よりなる受光部分と端面に表面側から離れるに従い内側に傾斜した光入射端面を設けることにより、該光入射端面で入射光を屈折させて、前記光受光層を入射光が層厚方向に対し斜めに通過するようにした屈折型半導体受光素子において、
光受光層に対し光入射側の主たる半導体層の屈折率が、光受光層に対し光入射側と反対側の主たる半導体層の屈折率より大きい半導体層で構成されており、光受光層に対し光入射側と反対側の主たる半導体層が光受光層より屈折率の小さな半導体層よりなり、その部分で光が全反射し前記光吸収層を再度斜めに通過することにより、光吸収長が増大するように構成されていることを特徴とする半導体受光素子。
By providing a light receiving portion having a semiconductor multilayer structure including a light receiving layer and a light incident end surface inclined inward as the distance from the surface side increases, the incident light is refracted at the light incident end surface and incident on the light receiving layer. In a refractive semiconductor light receiving element in which light passes obliquely with respect to the layer thickness direction,
The refractive index of the main semiconductor layer on the light incident side with respect to the light receiving layer is composed of a semiconductor layer larger than the refractive index of the main semiconductor layer on the side opposite to the light incident side with respect to the light receiving layer. The main semiconductor layer on the side opposite to the light incident side is made of a semiconductor layer having a refractive index smaller than that of the light receiving layer. The light is totally reflected at that portion and passes through the light absorbing layer again obliquely, thereby increasing the light absorption length. It is comprised so that it may do. The semiconductor light receiving element characterized by the above-mentioned.
前記光受光層に対し光入射側の半導体層が、光受光層に対し光入射側と反対側の半導体層の屈折率より大きい屈折率を有するInGaAsP 半導体層で構成されていることを特徴とする請求項3または請求項4に記載の半導体受光素子。  The semiconductor layer on the light incident side with respect to the light receiving layer is composed of an InGaAsP semiconductor layer having a refractive index larger than that of the semiconductor layer on the opposite side to the light incident side with respect to the light receiving layer. The semiconductor light receiving element according to claim 3 or 4. 前記光受光層に対し光入射側の半導体層が、光受光層に対し光入射側と反対側の半導体層の屈折率より大きい屈折率を有するGaAs半導体層で構成されていることを特徴とする請求項3または請求項4に記載の半導体受光素子。  The semiconductor layer on the light incident side with respect to the light receiving layer is composed of a GaAs semiconductor layer having a refractive index larger than the refractive index of the semiconductor layer on the side opposite to the light incident side with respect to the light receiving layer. The semiconductor light receiving element according to claim 3 or 4.
JP22395699A 1999-08-06 1999-08-06 Semiconductor photo detector Expired - Fee Related JP3710039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22395699A JP3710039B2 (en) 1999-08-06 1999-08-06 Semiconductor photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22395699A JP3710039B2 (en) 1999-08-06 1999-08-06 Semiconductor photo detector

Publications (2)

Publication Number Publication Date
JP2001053328A JP2001053328A (en) 2001-02-23
JP3710039B2 true JP3710039B2 (en) 2005-10-26

Family

ID=16806340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22395699A Expired - Fee Related JP3710039B2 (en) 1999-08-06 1999-08-06 Semiconductor photo detector

Country Status (1)

Country Link
JP (1) JP3710039B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2420941A1 (en) * 2001-05-07 2003-02-27 Anritsu Corporation Semiconductor light receiving device for repeatedly propagating incident light in light absorption layer and method for manufacturing the same
US6909160B2 (en) 2002-07-16 2005-06-21 Anritsu Corporation Semiconductor light-receiving module capable of converting light into current efficiently at light absorbing layer
JP5307750B2 (en) * 2010-03-08 2013-10-02 日本電信電話株式会社 Semiconductor photo detector
WO2015097764A1 (en) * 2013-12-25 2015-07-02 株式会社日立製作所 Light receiving apparatus and light transmitting/receiving system using same
WO2024038897A1 (en) * 2022-08-18 2024-02-22 国立大学法人東京大学 Element, element manufacturing method, and photonic spin register

Also Published As

Publication number Publication date
JP2001053328A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
EP0675549B1 (en) Superlattice avalanche photodiode
US4840446A (en) Photo semiconductor device having a multi-quantum well structure
US7675130B2 (en) Waveguide photodetector
JP5294558B2 (en) Embedded waveguide type light receiving element and manufacturing method thereof
US7038251B2 (en) Semiconductor device
US5075750A (en) Avalanche photodiode with adjacent layers
US7928472B2 (en) Optical semiconductor device with a distributed Bragg reflector layer
US5926585A (en) Waveguide type light receiving element
JP3710039B2 (en) Semiconductor photo detector
US7368750B2 (en) Semiconductor light-receiving device
JP2001320081A (en) Semiconductor light receiving element
KR102307789B1 (en) Backside illuminated avalanche photodiode and manufacturing method thereof
JP2000150923A (en) Backside incidence type light receiving device and manufacture thereof
JP3608772B2 (en) Semiconductor photo detector
US5991473A (en) Waveguide type semiconductor photodetector
GB2364600A (en) Dopant diffusion barrier having more than one layer and not forming a pn junction with an adjacent layer
JP3783903B2 (en) Semiconductor light receiving element and manufacturing method thereof
JPS639163A (en) Semiconductor photodetector
JPH03291979A (en) Avalanche photodiode
JP2700492B2 (en) Avalanche photodiode
EP1107318B1 (en) Semiconductor photodetector
JP2962069B2 (en) Waveguide structure semiconductor photodetector
JP3620761B2 (en) Semiconductor light receiving element and manufacturing method thereof
WO2002091485A1 (en) Semiconductor light receiving element provided with acceleration spacer layers between a plurality of light absorbing layers and method for fabricating the same
JP3708758B2 (en) Semiconductor photo detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050804

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees