JPH10189456A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPH10189456A
JPH10189456A JP34167196A JP34167196A JPH10189456A JP H10189456 A JPH10189456 A JP H10189456A JP 34167196 A JP34167196 A JP 34167196A JP 34167196 A JP34167196 A JP 34167196A JP H10189456 A JPH10189456 A JP H10189456A
Authority
JP
Japan
Prior art keywords
deposition
mask
buried layer
mesa
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34167196A
Other languages
Japanese (ja)
Inventor
Saburo Nakai
三郎 中井
Hiromi Ito
弘巳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP34167196A priority Critical patent/JPH10189456A/en
Publication of JPH10189456A publication Critical patent/JPH10189456A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method in which a mesa comprising a mask is buried on a surface so as to be flat by an MOCVD method. SOLUTION: A manufacturing method is composed of a first deposition process in which the deposition speed of a buried layer 7 is faster in a part near a mask 2 than in a region separated from the mask 2 and of a second deposition process in which the deposition speed of the buried layer 7 is slower in the part near the mask 2 than in the region separated from the mask 2. The flow rate ratio of a group V source gas to a group III source gas is designated as UN/UM, and a deposition temperature is designated as T. Then, a constant A and a constant C for an expression of log (UN/UM)=A(1/T)+C are found on the basis of UN/UM and T when the deposition speed in the part near the mask is equal to that in the region separated from the mask, a first deposition condition is expressed by log (UN/UM)>A(1/T<0> )+C, and a second deposition condition is expressed by log (UN/UM)<A(1/T<0> )+C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,化合物半導体装置
の製造方法に関し,特に選択堆積用マスクが上面に設け
られたメサを有機金属化学堆積法により平坦に埋め込む
化合物半導体の堆積方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a compound semiconductor device, and more particularly to a method of depositing a compound semiconductor in which a mesa provided with a selective deposition mask on its upper surface is buried flat by an organometallic chemical deposition method.

【0002】化合物半導体装置の製造では,基板表面に
形成されたメサの両側を化合物半導体により埋め込む必
要がしばしば生ずる。例えば,半導体レーザのメサスト
ライプを埋め込む場合である。かかる埋め込みには,有
機金属化学堆積法(MOCVD法)が多く用いられてい
る。
In the manufacture of a compound semiconductor device, it is often necessary to embed both sides of a mesa formed on a substrate surface with a compound semiconductor. For example, there is a case where a mesa stripe of a semiconductor laser is embedded. For such embedding, a metal organic chemical deposition (MOCVD) method is often used.

【0003】しかし,埋め込まれるメサの上面にSiO
2 等のマスクが設けられている場合,マスクの近傍と遠
方とで堆積速度が異なるためメサを平坦に埋め込むこと
が難しい。このため,上面にマスクを有するメサを平坦
に埋め込む化合物半導体の有機金属化学堆積法が要望さ
れている。
However, the upper surface of the buried mesa has SiO
When a second mask or the like is provided, it is difficult to bury the mesa flatly because the deposition rates are different between near and far from the mask. Therefore, there is a demand for a metal organic chemical vapor deposition method of a compound semiconductor in which a mesa having a mask on the upper surface is buried flat.

【0004】[0004]

【従来の技術】以下,従来の化合物半導体装置における
メサの形成及びメサの埋め込み工程を,メサストライプ
半導体レーザの例により説明する。
2. Description of the Related Art A mesa formation and a mesa embedding process in a conventional compound semiconductor device will be described below with reference to an example of a mesa stripe semiconductor laser.

【0005】図5は従来例メサ断面図であり,図5
(a)は化合物半導体基板表面に形成されたメサを,図
5(b)及び(c)はメサと埋め込み層の形状を表して
いる。まず,図5(a)を参照して,InP基板1上に
InGaAsP活性層4,InPクラッド層5及びIn
GaAsPコンタクト層6をこの順序で堆積する。次い
で,コンタクト層6表面にストライプ状のSiO2 マス
ク2を形成し,このマスク2をエッチングマスクとして
コンタクト層6,クラッド層5及び活性層4をエッチン
グし,マスク2直下に化合物半導体からなるメサ3を形
成する。このメサ3は上面の幅がマスク2幅より小さく
なるように形成される。従って,メサ3上面にマスク2
が庇状に張出した形で残留する。
FIG. 5 is a cross-sectional view of a conventional mesa.
5A shows a mesa formed on the surface of the compound semiconductor substrate, and FIGS. 5B and 5C show shapes of the mesa and the buried layer. First, referring to FIG. 5A, an InGaAsP active layer 4, an InP cladding layer 5, and an InP
The GaAsP contact layer 6 is deposited in this order. Next, a stripe-shaped SiO 2 mask 2 is formed on the surface of the contact layer 6, and the contact layer 6, the cladding layer 5 and the active layer 4 are etched using the mask 2 as an etching mask. To form The mesa 3 is formed such that the width of the upper surface is smaller than the width of the mask 2. Therefore, the mask 2 is
Remains in an overhanging shape.

【0006】次いで,図5(b)を参照して,メサ3形
成時にエッチングマスクとして使用したマスク2をその
まま有機金属化学堆積法の選択堆積用マスクとして利用
し,メサ3の両側に有機金属化学堆積法により選択的に
化合物半導体,例えばInPからなる埋め込み層7を堆
積し,メサ3を埋め込む。
Next, referring to FIG. 5B, the mask 2 used as an etching mask at the time of forming the mesa 3 is used as it is as a selective deposition mask in the metal organic chemical deposition method, and the metal organic chemical A buried layer 7 made of a compound semiconductor, for example, InP is selectively deposited by a deposition method, and the mesa 3 is buried.

【0007】しかし,上述した工程で堆積された従来の
埋め込み層は,図5(b)を参照して,マスク2の庇状
に突出する部分(以下「庇部」という。)の直下又は近
傍の埋め込み層7の表面に窪みが形成され,場合によっ
てはマスク2の庇部の下に空隙が形成されることがあ
る。さらに,堆積条件によって,図5(c)を参照し
て,マスク2の庇部の両側近傍の埋め込み層7の表面が
異常に速く堆積して,盛り上がり9を生ずることがあ
る。このため,メサ3を平坦に埋め込むことが困難であ
った。
[0007] However, the conventional buried layer deposited in the above-described step, as shown in FIG. 5B, is directly under or in the vicinity of a protruding portion of the mask 2 in an eave-like shape (hereinafter referred to as an “eave portion”). Are formed on the surface of the buried layer 7, and a gap may be formed under the eaves of the mask 2 in some cases. Further, depending on the deposition conditions, referring to FIG. 5C, the surface of the buried layer 7 near both sides of the eaves portion of the mask 2 may be deposited abnormally fast, and a bulge 9 may occur. For this reason, it was difficult to bury the mesa 3 flatly.

【0008】かかるマスクの庇部近傍の埋め込み層表面
の窪み及び盛り上がりは,毒性が強くかつ高圧ボンベを
必要とするホスフィンに代えて毒性が弱く液体で取り扱
われるため取扱が容易な有機燐,例えばターシャリブチ
ルホスフィン(TBP)を燐の供給原料ガスとして使用
するとき特に顕著に現れやすく,取扱が容易な有機燐を
使用する障害となっている。
The depressions and bulges on the surface of the buried layer in the vicinity of the eaves of the mask are highly toxic and are less toxic and are handled with a liquid instead of phosphine requiring a high-pressure cylinder. Libutylphosphine (TBP) is particularly prominent when it is used as a feed gas for phosphorus, which hinders the use of organic phosphorus which is easy to handle.

【0009】[0009]

【発明が解決しようとする課題】上述したように従来の
化合物半導体装置の製造方法では,有機金属化学堆積法
により化合物半導体を堆積し上面にマスクを有するメサ
を埋め込む場合,マスクの両側近傍の埋め込み層表面が
窪み又は盛り上がるため,平坦に埋め込むことができな
かった。また,かかる窪み及び盛り上がりは有機燐を原
料ガスとするとき顕著になるため,取扱の容易な有機燐
を使用することが困難であった。
As described above, in the conventional method of manufacturing a compound semiconductor device, when a compound semiconductor is deposited by an organic metal chemical deposition method and a mesa having a mask on the upper surface is embedded, the embedding near both sides of the mask is performed. Since the surface of the layer was depressed or raised, it could not be embedded flat. Further, since such depressions and swells become remarkable when organic phosphorus is used as a raw material gas, it is difficult to use organic phosphorus which is easy to handle.

【0010】本発明は,マスク近傍の埋め込み層の堆積
速度が遅いためマスクの両側近傍が窪む条件で堆積した
埋め込み層と,マスク近傍の埋め込み層の堆積速度が速
いためマスクの両側近傍が盛り上がる条件で堆積した埋
め込み層とを積層して堆積することにより,上面にマス
クを有するメサを有機金属化学堆積法により平坦に埋め
込むことができる化合物半導体装置の製造方法を提供す
ることを目的としている。
According to the present invention, the buried layer deposited under the condition that both sides of the mask are depressed because the deposition rate of the buried layer near the mask is low, and the vicinity of both sides of the mask are raised because the deposition rate of the buried layer near the mask is fast. An object of the present invention is to provide a method of manufacturing a compound semiconductor device in which a mesa having a mask on an upper surface can be buried flat by an organic metal chemical deposition method by laminating and depositing a buried layer deposited under conditions.

【0011】[0011]

【課題を解決するための手段】図1は本発明の実施形態
例メサ断面図であり,埋め込み層の表面形状を表してい
る。なお,埋め込み層7中の複数の線はマーカ7aであ
り,埋め込み層7の堆積途中で一定時間間隔ごとにトリ
メチルガリウムを導入してGaに富む層をマーカ7aと
して形成したものである。
FIG. 1 is a cross-sectional view of a mesa according to an embodiment of the present invention, showing the surface shape of a buried layer. The plurality of lines in the buried layer 7 are markers 7a, and a layer rich in Ga is formed as a marker 7a by introducing trimethylgallium at regular intervals during the deposition of the buried layer 7.

【0012】上記課題を解決するための本発明の第一の
構成は,図1を参照して,基板1上に上面が選択堆積用
マスク2で覆われた化合物半導体のメサ3を形成する工
程と,有機金属化学堆積法(MOCVD法)を用いて該
メサ3の外側の該基板1上にIII-V 化合物半導体又はII
-VI 化合物半導体からなる埋め込み層7を堆積する該メ
サ3の埋め込み工程とを有する化合物半導体装置の製造
方法において,該埋め込み工程は,該埋め込み層7の堆
積速度が該マスク2から離れた領域より該マスク2の外
縁近傍で速い第一の堆積工程と,該埋め込み層7の堆積
速度が該マスク2から離れた領域より該マスク2の外縁
近傍で遅い第二の堆積工程とからなることを特徴として
構成し,及び,第二の構成は,第一の構成の化合物半導
体装置の製造方法において,該埋め込み層7の堆積速度
が該マスク2の外縁近傍と該マスク2から離れた領域と
で等しくなるときの堆積条件下の,II族若しくはIII 族
元素を供給する第一の原料ガスの流量UM O に対するV
族若しくはVI族元素を供給する第二の原料ガスの流量U
N O の比UN O /UM O 及び堆積温度TO を測定し,測
定された該比UN O /U M O 及び該堆積温度TO を用い
て, log(UN O /UM O )=A(1/TO )+C なる等式の定数A及び定数Cのうちの一方又は双方を決
定する工程を有し,該第一の堆積工程は,該第一の原料
ガスの流量をUM ,該第二の原料ガスの流量をU N 及び
該埋め込み工程の堆積温度をTとするとき, log(UN /UM )>A(1/T)+C なる条件下で堆積し,該第二の堆積工程は, log(UN /UM )<A(1/T)+C なる条件下で堆積することを特徴として構成し,及び,
第三の構成は,第一又は第二の構成の化合物半導体装置
の製造方法において,該埋め込み工程は,有機燐化合物
を原料ガスとする有機金属化学堆積法を用いたことを特
徴として構成する。
The first object of the present invention for solving the above problems is as follows.
The configuration is as shown in FIG.
Forming mesa 3 of compound semiconductor covered with mask 2
And metalorganic chemical deposition (MOCVD).
III-V compound semiconductor or II on the substrate 1 outside the mesa 3
For depositing the buried layer 7 made of a -VI compound semiconductor
Manufacturing of compound semiconductor device having burying process of semiconductor device 3
In the method, the embedding step comprises depositing the embedding layer 7.
The product velocity is outside the mask 2 from a region far from the mask 2.
First deposition step fast near the edge and deposition of the buried layer 7
The outer edge of the mask 2 from the region where the velocity is far from the mask 2
Characterized by comprising a second deposition process that is slow in the vicinity
And the second configuration is a compound semiconductor of the first configuration.
In the method of manufacturing a body device, the deposition rate of the buried layer 7 is
Are in the vicinity of the outer edge of the mask 2 and in a region away from the mask 2
II or III under sedimentation conditions when equal
The flow rate U of the first source gas for supplying the elementM OV for
Flow rate U of the second source gas for supplying the group V or VI element
N ORatio UN O/ UM OAnd deposition temperature TOAnd measure
The specified ratio UN O/ U M OAnd the deposition temperature TOUsing
And log (UN O/ UM O) = A (1 / TO) + C Determine one or both of constant A and constant C in the equation
The first deposition step comprises:
Set the gas flow rate to UM, The flow rate of the second source gas is U Nas well as
When the deposition temperature in the embedding step is T, log (UN/ UM)> A (1 / T) + C, and the second deposition step is performed by log (UN/ UM) <A (1 / T) + C.
The third configuration is a compound semiconductor device of the first or second configuration
The embedding step, the organic phosphorus compound
Is that the metal organic chemical deposition method using
Configure as a sign.

【0013】埋め込み層表面の窪み及び盛り上がりは,
II族若しくはIII 族元素を供給する第一の原料ガスに対
するV 族若しくはVI族元素を供給する第二の原料ガスの
流量比UN /UM (本明細書中で単に流量比とは,当該
第一原料ガスに対する当該第二原料ガスの流量比UN
M をいう。)及び堆積温度Tに依存する。本発明の発
明者は,埋め込み層の堆積条件と埋め込み層表面の窪み
及び盛り上がりとの関係を明確にすべく,実験的検討を
おこなった。その結果,埋め込み層表面が窪む堆積条件
下での堆積と盛り上がる堆積条件下での堆積とを組み合
わせて堆積することで,メサが平坦に埋め込まるれこと
を明らかにした。本件発明はかかる事実に基づきなされ
た。以下,埋め込み層と埋め込み層表面の窪み及び盛り
上がりの関係を検討した実験結果を説明する。
The depressions and swells on the surface of the buried layer are
Simply the flow rate ratio in Group II or III elements first of second material gas supplied group V or group VI element to the raw material gas flow rate ratio U N / U M (herein supplies, the The flow ratio of the second source gas to the first source gas, U N /
It refers to U M. ) And the deposition temperature T. The inventor of the present invention has conducted an experimental study in order to clarify the relationship between the deposition conditions of the buried layer and the depressions and protrusions on the surface of the buried layer. As a result, it was clarified that the mesa was buried flat by depositing under the deposition condition where the buried layer surface is depressed and the deposition under the deposition condition where the buried layer rises. The present invention has been made based on this fact. In the following, the results of experiments examining the relationship between the buried layer and the depressions and swells on the surface of the buried layer will be described.

【0014】図2は埋め込み層形状の原料ガス流量比依
存性を表す断面図であり,III 族原料ガスとV族原料ガ
スとの流量比を変えてメサ埋め込み層を堆積したとき
の, 埋め込み層表面形状の変化を表している。
FIG. 2 is a cross-sectional view showing the dependency of the shape of the buried layer on the flow rate of the source gas, and shows the buried layer when the mesa buried layer is deposited by changing the flow rate ratio between the group III source gas and the group V source gas. This represents a change in surface shape.

【0015】まず,図2(a)〜(d)を参照して,I
nP基板1上に,上面に庇状に張り出すSiO2 膜から
なるマスク2を有するメサ3を形成した。このメサ3の
構造及び形成方法は既述の従来例と同一である。次い
で,原料ガス流量比及び堆積温度を変えて,有機金属化
学堆積法によりメサ3を埋め込む化合物半導体からなる
埋め込み層7を堆積し,埋め込み層7の表面形状を観察
した。
First, referring to FIGS. 2A to 2D, I
On a nP substrate 1, a mesa 3 having a mask 2 made of a SiO 2 film projecting like an eave on the upper surface was formed. The structure and forming method of the mesa 3 are the same as those of the conventional example described above. Next, a buried layer 7 made of a compound semiconductor for burying the mesa 3 was deposited by metal organic chemical deposition while changing the source gas flow ratio and the deposition temperature, and the surface shape of the buried layer 7 was observed.

【0016】III 族元素を供給する原料ガスをトリメチ
ルインジウム(TMI),V族元素を供給する原料ガス
をターシャリブチルホスフィン(TBP)とする有機金
属化学堆積法により,InPの埋め込み層7を両原料ガ
スの流量比が異なる条件下で堆積した結果を図2に示し
た。なお,埋め込み層7が形成される堆積期間中は同一
堆積条件を維持している。また,堆積温度は全て843
K,堆積時の圧力は76Torrとした。
The InP buried layer 7 is formed on both of the buried layers 7 by an organometallic chemical deposition method using trimethyl indium (TMI) as a source gas for supplying a group III element and tertiary butyl phosphine (TBP) as a source gas for supplying a group V element. FIG. 2 shows the results of deposition under conditions where the flow ratios of the source gases were different. Note that the same deposition conditions are maintained during the deposition period in which the buried layer 7 is formed. The deposition temperature was 843
K, the pressure during deposition was 76 Torr.

【0017】図2(a)は,パブリングによりIII 族元
素の供給ガスであるトリメチルインジウムを含有させた
流量300cc/分の水素ガスをキャリアガスとし, V族元素
の供給ガスとして流量UN =8cc/ 分のターシャリブチ
ルホスフィンを用いて, InPの埋め込み層7を堆積し
た結果である。このとき,III 族元素の供給ガスに対す
るV族元素の供給ガスの流量比UN /UM は80であっ
た。なお,本明細書の流量比はモル比で表示した。図2
(a)を参照して,メサ3から遠い位置即ちマスク2か
ら離れた領域で基板1上にメサ3の高さととほぼ同じ厚
さまで埋め込み層7を堆積した場合,埋め込み層7はマ
スク2近傍で異常に速く堆積し,マスク2上に覆いかぶ
さるような盛り上がり9を生ずる。この盛り上がり9
は,マスク2近傍の堆積速度がマスク2から離れた領域
での堆積速度より速いために生ずる。しかし,マスク2
両端に盛り上がり9が発生しているにもかかわらず,マ
スク2の両端下に空隙8を生じている。この空隙8は,
マスク2直下に原料ガスが十分に供給されず堆積が遅く
なるために発生したものである。
[0017] FIG. 2 (a), a group III element flow 300 cc / min of hydrogen gas which contains trimethylindium a feed gas as a carrier gas by Paburingu, flow rate U N = 8 cc as feed gas V group element 4 shows the result of depositing an InP buried layer 7 using tert-butylphosphine / min. At this time, the flow rate ratio U N / U M of the feed gas of Group V element to the feed gas of the group III element was 80. In addition, the flow ratio in this specification was shown by the molar ratio. FIG.
Referring to (a), when the buried layer 7 is deposited on the substrate 1 at a position far from the mesa 3, that is, a region far from the mask 2, to a thickness substantially equal to the height of the mesa 3, the buried layer 7 is located near the mask 2. Deposits abnormally fast, causing a swell 9 that covers the mask 2. This excitement 9
Occurs because the deposition rate in the vicinity of the mask 2 is higher than the deposition rate in a region away from the mask 2. However, mask 2
Despite the rise 9 at both ends, a gap 8 is formed below both ends of the mask 2. This gap 8
This is generated because the source gas is not sufficiently supplied directly below the mask 2 and the deposition is delayed.

【0018】図2(b)は,III 族元素の供給ガスとV
族元素の供給ガスとの流量比UN /UM が30の場合で
ある。マスク2の両外側に図(a)よりも小さい盛り上
がり9が見られる。また,マスク2の両側下に空隙8も
残っている。なお,埋め込み層7中に描かれた複数の曲
線は一定時間毎に導入されたマーカ7aを表している。
FIG. 2 (b) shows the supply gas of the group III element and V
Flow ratio U N / U M of the feed gas of group element is the case of 30. On both outer sides of the mask 2, bulges 9 smaller than those shown in FIG. In addition, a gap 8 is left below both sides of the mask 2. Note that a plurality of curves drawn in the buried layer 7 represent the markers 7a introduced at regular intervals.

【0019】図2(c)は,III 族元素の供給ガスとV
族元素の供給ガスとの流量比UN /UM が20の場合で
ある。この条件では,盛り上がり9は見られず,埋め込
み層7は平坦に堆積される。しかし,マスク両側下面の
空隙8は,流量比UN /UMが80及び30の場合より
大きい。
FIG. 2 (c) shows the supply gas of the group III element and V
Flow ratio U N / U M of the feed gas of group element is the case of 20. Under this condition, no swell 9 is seen and the buried layer 7 is deposited flat. However, the gap 8 on the lower surface on both sides of the mask is larger than when the flow ratio U N / UM is 80 and 30.

【0020】図2(d)は,III 族元素の供給ガスとV
族元素の供給ガスとの流量比UN /UM が10の場合で
ある。この条件では盛り上がりは生じないが,マスク2
近傍の堆積速度が著しく遅くなるためマスク2の両側近
傍の埋め込み層7表面が大きく窪み,マスク2下面との
間に大きな空隙8を発生する。
FIG. 2D shows the supply gas of the group III element and V
Flow ratio U N / U M of the feed gas of group element is the case of 10. Under these conditions, no swelling occurs, but mask 2
Since the deposition rate in the vicinity becomes extremely slow, the surface of the buried layer 7 near both sides of the mask 2 is greatly depressed, and a large gap 8 is generated between the buried layer 7 and the lower surface of the mask 2.

【0021】上述の実験結果は,マスク両側の埋め込み
層の盛り上がり及び窪みの発生及び大きさが,III 族元
素の供給ガスとV族元素の供給ガスとの流量比UN /U
M に依存し,かつ流量比UN /UM が20の場合にメサ
が平坦に埋め込まれることを明らかにしている。しか
し,この平坦な場合も,マスク下面の空隙乃至窪みを消
滅する又は十分に小さくすることはできない。
The above experimental results show that the occurrence and size of the bulges and depressions of the buried layer on both sides of the mask are caused by the flow ratio U N / U of the supply gas of the group III element and the supply gas of the group V element.
Depending on the M, and the flow rate ratio U N / U M is mesa in the case of 20 reveals to be embedded in the flat. However, even in the case of this flat surface, the void or dent on the lower surface of the mask cannot be eliminated or sufficiently reduced.

【0022】さらに,本発明の発明者は,III 族元素の
供給ガスとV族元素の供給ガスとの流量比UN /UM
一定とし,堆積温度Tのみを変えて埋め込み層を堆積す
る実験を行った。その結果,マスク両側の埋め込み層の
盛り上がり及び窪みの発生及び大きさは,流量比UN
M の他に堆積温度Tにも依存すること,及び,メサを
平坦に埋め込む堆積条件が堆積温度Tと流量比UM /U
N との簡単な関係で表現されることを明らかにした。そ
の結果を図4を参照して詳細に説明する。
Furthermore, the inventors of the present invention, the flow rate ratio U N / U M of the feed gas of the feed gas and the group V element of the Group III element is constant, depositing a buried layer by changing only the deposition temperature T An experiment was performed. As a result, the occurrence and size of the bulge and depression of the buried layer on both sides of the mask are determined by the flow rate ratio U N /
Dependence on the deposition temperature T in addition to U M , and the deposition conditions for embedding the mesa flatly depend on the deposition temperature T and the flow rate ratio U M / U
Clarified that it can be expressed in a simple relationship with N. The result will be described in detail with reference to FIG.

【0023】図4は埋め込み層形状の堆積条件依存性を
表す図であり,実験的に確認された埋め込み層表面の盛
り上がり及び窪みが発生する堆積条件の範囲を表してい
る。図4を参照して,破線イ上の4点は堆積温度を一定
とし流量比を変えた場合の既述の実験の堆積条件であり
, その結果は図2に示されている。この破線イ上にあっ
, 点bはメサが平坦に埋め込まれる条件であり,これ
より流量比UN /UMが大きい範囲では盛り上がりが発
生し,流量比UN /UM が小さい範囲では窪みが発生す
る。破線ロは流量比を一定とし堆積温度を変えた場合の
堆積条件を表している。破線ロ上の点cは,メサが平坦
に埋め込まれる条件であり,これより堆積温度Tが低い
範囲では盛り上がりが発生し,堆積温度Tが高い範囲で
は窪みが発生する。
FIG. 4 is a graph showing the dependence of the shape of the buried layer on the deposition conditions, and shows the range of deposition conditions in which bulges and depressions on the surface of the buried layer are experimentally confirmed. Referring to FIG. 4, the four points on the broken line a are the deposition conditions in the above-described experiment when the deposition temperature was kept constant and the flow rate ratio was changed.
, The results are shown in Figure 2. On this broken line a , the point b is a condition where the mesa is buried flat, and a bulge occurs in a range where the flow ratio U N / UM is large, and in a range where the flow ratio U N / UM is small. Depression occurs. A broken line B indicates the deposition conditions when the deposition temperature is changed while the flow rate ratio is kept constant. The point c on the broken line B is a condition where the mesa is buried flat, and a swelling occurs in a range where the deposition temperature T is lower than this, and a dent occurs in a range where the deposition temperature T is higher.

【0024】かかるメサが平坦に埋め込まれる条件は,
堆積温度及び流量比を変えて埋め込み層を堆積した実験
により決定することができる。図4中の点a〜dは,こ
のような実験でメサが平坦に埋め込まれたときの堆積条
件を示している。曲線ハは,III 族元素の供給ガスに対
するV族元素の供給ガスとの流量比UN /UM と堆積温
度Tとが,
The conditions under which such mesas are buried flat are:
It can be determined by experiments in which the buried layer is deposited by changing the deposition temperature and the flow ratio. Points a to d in FIG. 4 show the deposition conditions when the mesa is buried flat in such an experiment. The curve C shows that the flow ratio U N / UM and the deposition temperature T of the supply gas of the group V element to the supply gas of the group III element are as follows.

【数1】 log(UN /UM )=A(1/T)+C (式1) を満たす1条件を表している。ここで,A及びCは定数
であり,点a〜dに最も一致するように定めた。図4
は,点a〜dが曲線ハ上にあること,即ち式1により,
メサが平坦に埋め込まれる堆積条件,具体的には原料ガ
スの流量比UN /U M と堆積温度Tとの関係がよく表さ
れることを明らかにしている。従って,曲線ハの右上の
領域,即ち,
## EQU1 ## log (UN/ UM) = A (1 / T) + C (Equation 1) represents one condition. Where A and C are constants
And determined so as to most closely match points a to d. FIG.
Is that points ad are on curve c, that is,,
The deposition conditions under which the mesas are buried flat, specifically,
Flow ratio UN/ U MAnd the relationship between deposition temperature T
It is clear that it will be. Therefore, the upper right corner of the curve C
Territory, ie

【数2】 log(UN /UM )>A(1/T)+C (式2) の条件では,マスク近傍の堆積速度が遠方より速いため
盛り上がりを生ずる第一の堆積条件を表し,他方,曲線
ハの左下の領域,即ち,
## EQU2 ## Under the condition of log ( UN / UM )> A (1 / T) + C (Equation 2), the first deposition condition in which the swelling occurs because the deposition rate near the mask is faster than that at a distant place. , The lower left area of curve c,

【数3】 log(UN /UM )<A(1/T)+C (式3) の条件では,マスク近傍の堆積速度が遠方より遅いため
マスク近傍に窪みを生ずる第二の堆積条件を表すことに
なる。
Under the condition of log ( UN / UM ) <A (1 / T) + C (Equation 3), the second deposition condition that causes a depression near the mask because the deposition rate near the mask is slower than that at a distant place. Will be represented.

【0025】図3はメサを平坦に埋め込む埋め込み層断
面図であり,図4中の点a〜dに示すメサを平坦に埋め
込む条件で堆積された,埋め込み層の堆積過程と表面形
状とを表している。なお,図3(a)〜(d)は,それ
ぞれ図4中の点a〜dに対応している。図3を参照し
て,埋め込み層7は,堆積初期にはメサ3側壁に沿って
堆積する。その後,メサ3上面とマスク2との接触部か
ら発生する特定の結晶面8a,例えば(111)面が発
達する。この結晶面8a上への堆積速度は遅いため,そ
の後の堆積では,メサから離れているため結晶面8aが
発達しない領域に埋め込み層が厚く堆積され,結晶面8
a上では薄くしか堆積しないため,埋め込み層7表面に
窪みが形成される。かかる窪みが形成されると,マスク
2が庇上に突出しているためマスク2下面の窪みに原料
ガス,とくにV族又はVI族元素を供給する原料ガスが拡
散しにくくなり,窪みが形成された領域の堆積速度は益
々遅くなる。その結果,メサが平坦に埋め込まれた後も
窪みは空隙8として残る。
FIG. 3 is a cross-sectional view of a buried layer in which the mesa is buried flat. FIG. 3 shows the deposition process and surface shape of the buried layer deposited under the condition of burying the mesa shown at points a to d in FIG. ing. 3A to 3D correspond to points a to d in FIG. 4, respectively. Referring to FIG. 3, buried layer 7 is deposited along the side wall of mesa 3 in the initial stage of deposition. Thereafter, a specific crystal plane 8a, for example, a (111) plane generated from a contact portion between the upper surface of the mesa 3 and the mask 2 is developed. Since the deposition rate on the crystal plane 8a is low, in the subsequent deposition, a thick buried layer is deposited in a region where the crystal plane 8a does not develop because it is far from the mesa, and the crystal plane 8a
Since only a thin layer is deposited on a, a depression is formed on the surface of the buried layer 7. When such a depression is formed, the mask 2 protrudes above the eaves, so that the source gas, particularly the source gas for supplying the group V or group VI element, is difficult to diffuse into the depression on the lower surface of the mask 2, and the depression is formed. The deposition rate in the area becomes increasingly slower. As a result, the depression remains as the void 8 even after the mesa is buried flat.

【0026】以上の実験は,いずれも従来技術と同様に
一定の堆積条件の下で堆積したものである。これに対
し,本発明の発明者は,堆積条件を堆積途中で変えると
窪み乃至空隙及び盛り上がりを発生することなく,平坦
にメサを埋め込むことができることを発見した。即ち,
埋め込み層の堆積速度がマスク遠方よりマスク近傍で大
きい第一の堆積条件下で堆積した後,続けて堆積速度が
マスク遠方よりマスク近傍で小さな第二の堆積条件下で
堆積することにより,窪み乃至空隙及び盛り上がりを発
生することなく,平坦にメサが埋め込まれる。なお,第
一の堆積条件と第二の堆積条件との先後を逆にしても同
様であるが,堆積面の乱れは第一の堆積条件下で先に堆
積した方が少ない傾向があり,高品位の埋め込み層を形
成する見地からは第一の堆積条件下で先に堆積する方が
好ましい。一般に,マスク近傍と遠方とで化合物半導体
の埋め込み層の堆積速度が相違するのは,(111)結
晶面での金属元素のマイグレーションとマスクにより庇
状に覆われた領域への原料,特に非金属元素の表面層中
の拡散とのバランスに基づくものと考えられている。従
って,上述したIII-V 族化合物半導体についての結果
は,II-VI族化合物半導体についても同様に適用される。
In each of the above experiments, deposition was performed under certain deposition conditions as in the prior art. On the other hand, the inventor of the present invention has found that when the deposition conditions are changed during the deposition, the mesas can be buried flat without generating depressions, voids and swelling. That is,
After deposition under the first deposition condition in which the deposition rate of the buried layer is higher near the mask than in the distant area of the mask, and subsequently, deposition is performed under the second deposition condition in which the deposition rate is lower near the mask than in the distant area of the mask, The mesa is buried flat without generating voids and bulges. The same is true even if the first deposition condition and the second deposition condition are reversed, but the turbulence of the deposition surface tends to be smaller when the first deposition condition is deposited under the first deposition condition. From the viewpoint of forming a high-quality buried layer, it is more preferable to deposit first under the first deposition condition. In general, the difference in the deposition rate of the buried layer of the compound semiconductor between the vicinity of the mask and the distant place is caused by the migration of the metal element on the (111) crystal plane and the raw material, particularly the non-metal It is thought to be based on the balance with the diffusion of the element in the surface layer. Therefore, the results for the III-V group compound semiconductors described above are similarly applied to the II-VI group compound semiconductors.

【0027】本発明はかかる実験事実に基づき考案され
た。本発明の第一の構成では,上面が選択堆積用マスク
で覆われたメサを有機金属化学堆積法で埋め込む際に,
埋め込み層を第一の堆積条件下の堆積工程と第二の堆積
条件下での堆積工程との両方の工程によりそれぞれ堆積
された2層以上の多層膜として形成する。従って,すぐ
上で説明したように,図1を参照して,窪み乃至空隙又
は盛り上がりを生ずることなく平坦にメサ3を埋め込み
堆積することができる。なお,埋め込み層は,III −V
族化合物半導体の他,II−VI族化合物であってもよい。
The present invention has been devised based on such experimental facts. In the first configuration of the present invention, when a mesa whose upper surface is covered with a mask for selective deposition is embedded by metalorganic chemical deposition,
The buried layer is formed as a multilayer film of two or more layers, which are respectively deposited by both the deposition process under the first deposition condition and the deposition process under the second deposition condition. Therefore, as described immediately above, referring to FIG. 1, the mesa 3 can be buried and deposited flat without any depression, void or bulge. The buried layer is III-V
In addition to group II compound semiconductors, II-VI group compounds may be used.

【0028】かかる第一及び第二の堆積条件間の移行
は,流量比UN /UM を変えて,又は堆積温度Tを変え
て,さらには流量比UN /UM 及び堆積温度Tの両方を
変えて行うことができる。しかし,迅速な移行を確実に
するためには,堆積温度を一定に保持したまま流量比を
変える方法が好ましい。
The transition between such first and second deposition conditions, by changing the flow rate ratio U N / U M, or by changing the deposition temperature T, more flow ratio U N / U M and deposition temperature T You can do both. However, in order to ensure a quick transition, it is preferable to change the flow rate ratio while keeping the deposition temperature constant.

【0029】第一及び第二の堆積条件は,堆積温度Tと
原料ガスの流量比UN /UM とを選定することで実現す
ることができる。例えば,第一の堆積条件を,図4中の
曲線ハの右上領域で示される,II族若しくはIII 族元素
を供給する第一の原料ガスの流量UM とV 族若しくはVI
族元素を供給する第二の原料ガスの流量UN との流量比
M /UN が式2を満たす条件とし,第二の堆積条件
を,図4中の曲線ハの左下領域で示される,第一の原料
ガスと第二の原料ガスとの流量比UN /UM が式3を満
たす条件とすることで定めることができる。式2及び式
3に含まれる定数A及びCは,平坦な埋め込み層が堆積
されるときの流量比UN O /UM O 及び堆積温度TO
実験的に求め,式1中でUN /UM =UN O /UM O
T=TO とおくことにより決定することができる。平坦
な埋め込み層が堆積される流量比U N O /UM O 及び堆
積温度TO の組が実験により2組求められれば定数A及
びCは決定され,3組以上求められる場合は,式1に最
も一致するように定数A及びCを定めることもできる。
見いだされた流量比UN O /UM O 及び堆積温度TO
組が一組の場合は,定数A,Cを決定することはできな
い。しかしこの場合でも,堆積温度T又は流量比UN
M の何れか一方をそのままTO 又はUN O /UM O
保持し,他方をTO 又はUN O /UM O を挟んで変化す
ることにより第一の堆積条件と第二の堆積条件との間の
移行を実現することができる。
The first and second deposition conditions are the deposition temperature T and
Source gas flow ratio UN/ UMIs achieved by selecting
Can be For example, the first deposition condition is changed as shown in FIG.
Group II or III element shown in the upper right area of curve c
Flow rate U of the first source gas for supplyingMAnd V or VI
Flow rate U of the second source gas for supplying the group III elementNAnd the flow ratio
UM/ UNIs the condition that satisfies Equation 2, and the second deposition condition
Is shown in the lower left area of curve C in FIG.
Flow ratio U between gas and second source gasN/ UMSatisfies Equation 3.
It can be determined by adding conditions. Equation 2 and Equation
The constants A and C included in 3 indicate that a flat buried layer is deposited.
Flow ratio UN O/ UM OAnd deposition temperature TOTo
It is determined experimentally and UN/ UM= UN O/ UM O,
T = TOCan be determined. flat
Flow rate U at which a buried layer is deposited N O/ UM OAnd bank
Product temperature TOIf two sets are determined experimentally, the constant A and
And C are determined, and if more than three sets are required,
The constants A and C can also be determined so that
The flow ratio U foundN O/ UM OAnd deposition temperature TOof
In the case of one set, the constants A and C cannot be determined.
No. However, even in this case, the deposition temperature T or the flow ratio UN/
UMEither of TOOr UN O/ UM OTo
Hold and the other TOOr UN O/ UM OChanges across
Between the first deposition condition and the second deposition condition
A transition can be realized.

【0030】本発明は,有機燐を原料ガスとする有機金
属化学堆積法にとくに有効に適用される。有機燐は,例
えばホスフィンよりも気体中の拡散長が短いため,マス
クが庇状に延びた部分の直下への燐の供給が不足し,大
きな窪みを生じ易いからである。
The present invention is particularly effectively applied to an organic metal chemical deposition method using organic phosphorus as a source gas. This is because, for example, organic phosphorus has a shorter diffusion length in gas than phosphine, so that the supply of phosphorus directly below the portion where the mask extends in an eaves-like manner is insufficient, and large depressions are likely to occur.

【0031】[0031]

【発明の実施の形態】以下,本発明をメサストライプ半
導体レーザの製造に適用した実施形態例を参照して詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to an embodiment in which the present invention is applied to manufacture of a mesa stripe semiconductor laser.

【0032】先ず,図1(a)を参照して,InP基板
1上にInGaAsP活性層4,InPクラッド層5,
InGaAsPコンタクト層6をこの順序で堆積する。
次いで,コンタクト層6表面にSiO2 又はSiONか
らなる幅3.0μmのストライプ状のマスク2を形成す
る。次いで,マスク2をエッチングマスクとしてコンタ
クト層6,クラッド層5及び活性層4をエッチングし,
マスク2の下にコンタクト層6,クラッド層5及び活性
層4からなる高さ2.5μmの逆メサ3を形成する。な
お,逆メサ3の上面の幅はマスク2幅より狭く形成さ
れ,従って,マスク2の両側はメサ3の両側に庇状に水
平に突出する。
First, referring to FIG. 1A, an InGaAsP active layer 4, an InP clad layer 5,
The InGaAsP contact layer 6 is deposited in this order.
Next, a stripe-shaped mask 2 of 3.0 μm width made of SiO 2 or SiON is formed on the surface of the contact layer 6. Next, the contact layer 6, the cladding layer 5 and the active layer 4 are etched using the mask 2 as an etching mask,
An inverted mesa 3 having a height of 2.5 μm and including a contact layer 6, a clad layer 5, and an active layer 4 is formed under the mask 2. In addition, the width of the upper surface of the inverted mesa 3 is formed smaller than the width of the mask 2, and therefore, both sides of the mask 2 protrude horizontally on both sides of the mesa 3 like eaves.

【0033】次いで,原料ガスの流量比及び堆積温度が
異なる条件でInP埋め込み層7を堆積し,メサ3が平
坦に埋め込まれる条件を実験的に求めた。この実験での
埋め込み層7の堆積は,マスク2を選択的堆積用マスク
として用いる有機金属化学堆積法によりなされた。な
お,この実験は上述したメサ3が形成された基板1と同
じ方法でメサが形成された複数の実験用基板を用いてい
る。この堆積では,V族元素を供給する原料ガスとして
ターシャリブチルホスフィン(TBP)を供給し,III
族元素の供給ガスとして,流量300cc/分の水素ガス
にバブリングによりトリメチルインジウム(TMI)を
含有させて供給した。圧力は76Torrである。
Next, the InP buried layer 7 was deposited under the conditions that the flow rate ratio of the source gas and the deposition temperature were different, and the conditions under which the mesa 3 was buried flat were experimentally determined. The deposition of the buried layer 7 in this experiment was performed by a metal organic chemical deposition method using the mask 2 as a selective deposition mask. This experiment uses a plurality of experimental substrates on which mesas are formed in the same manner as the substrate 1 on which the mesas 3 are formed. In this deposition, tertiary butyl phosphine (TBP) is supplied as a source gas for supplying a group V element, and III
As a group element supply gas, trimethylindium (TMI) was supplied to bubbling hydrogen gas at a flow rate of 300 cc / min. The pressure is 76 Torr.

【0034】続いて,埋め込まれたメサ3を劈開で破断
し,埋め込み層7の断面形状を走査型電子顕微鏡により
観測して,埋め込み層7が平坦に堆積されるときのター
シャリブチルホスフィンの流量UN O とトリメチルイン
ジウムの流量UM O との流量比UN O /UM O 及び堆積
温度TO を求めた。かかる工程で求められた流量比U N
O /UM O 及び堆積温度TO を,図4中の点a〜dで示
した。なお,点aではターシャリブチルホスフィンの流
量UN O =65cc/ 分, 流量比UN O /UM O=10,
堆積温度TO =823Kであり,点bではUN O =24
cc/ 分, UN O/UM O =20,堆積温度TO =843
K,点cではUN O =16cc/ 分, UN O /UM O =3
0,堆積温度TO =853K,点dではUN O =8cc/
分, UN O /UM O =80,堆積温度TO =873Kで
あった。この結果から,点a〜dが式1に最も合うよう
に試行錯誤により定数A及びCを決定した。その結果,
定数A=−1.58×104 及び定数C=20.0が求
められた。図4中の曲線ハは,この定数A及びCを式1
に代入して得られた,流量比UN /UM と堆積温度Tと
の関係を描いたものである。
Subsequently, the embedded mesa 3 is broken by cleavage.
Then, the cross-sectional shape of the buried layer 7 is measured with a scanning electron microscope.
Observation shows that the burial layer 7 has a flat
Shaributylphosphine flow rate UN OAnd trimethylin
Dium flow rate UM OAnd the flow ratio UN O/ UM OAnd deposition
Temperature TOI asked. The flow rate ratio U determined in this step N
O/ UM OAnd deposition temperature TOAre indicated by points a to d in FIG.
did. At point a, the flow of tertiary butyl phosphine was
Quantity UN O= 65cc / min, flow ratio UN O/ UM O= 10,
Deposition temperature TO= 823K, and at point b, UN O= 24
cc / min, UN O/ UM O= 20, deposition temperature TO= 843
K, U at point cN O= 16cc / min, UN O/ UM O= 3
0, deposition temperature TO= 853K, U at point dN O= 8cc /
Minutes, UN O/ UM O= 80, deposition temperature TO= 873K
there were. From these results, it is assumed that the points a to d best fit Equation 1.
The constants A and C were determined by trial and error. as a result,
Constant A = -1.58 × 10FourAnd constant C = 20.0
Was called. The curve C in FIG.
The flow ratio U obtained by substitutingN/ UMAnd the deposition temperature T
It depicts the relationship.

【0035】次いで,マスク2を選択堆積用マスクとし
て用い,メサ3の両側をInPの埋め込み層7で埋め込
んだ。この埋め込み工程は,上述のメサを平坦に埋め込
む実験と同様の有機金属化学堆積法によりなされるが,
途中で堆積条件を変えた2段階の堆積工程から構成され
る。
Next, using the mask 2 as a mask for selective deposition, both sides of the mesa 3 were buried with a burying layer 7 of InP. This embedding process is performed by the same metalorganic chemical deposition method as in the above-described experiment of embedding the mesa flatly.
It consists of a two-stage deposition process in which deposition conditions are changed on the way.

【0036】最初の第一の堆積工程では,流量24cc/
分のターシャリブチルホスフィンと,バブリングにより
トリメチルインジウムを含有させた流量300cc/分の
水素ガスとを原料ガスとして供給した。この場合のトリ
メチルインジウムに対するターシャリブチルホスフィン
の流量比は30であった。なお,圧力は76Torr,堆積
温度は843Kである。このとき,マスク遠方での堆積
速度は3μm/時となり,20分間で1.0μm堆積し
た。図4を参照して,この堆積条件は曲線ハの右上に位
置するから,堆積速度はマスク近傍で速くマスク遠方で
遅い。なお,堆積条件を変えてもマスク遠方の堆積速度
は一定であり,マスク近傍の堆積が変動する。
In the first first deposition step, a flow rate of 24 cc /
Of tertiary butylphosphine per minute and hydrogen gas containing trimethylindium by bubbling at a flow rate of 300 cc / min were supplied as raw material gases. In this case, the flow ratio of tertiary butyl phosphine to trimethyl indium was 30. The pressure is 76 Torr and the deposition temperature is 843K. At this time, the deposition rate at a distance from the mask was 3 μm / hour, and the deposition was 1.0 μm in 20 minutes. Referring to FIG. 4, since this deposition condition is located at the upper right of curve C, the deposition speed is high near the mask and slow at a distant location of the mask. Even if the deposition conditions are changed, the deposition rate far from the mask is constant, and the deposition near the mask fluctuates.

【0037】引続き原料ガスの流量比を変えた次の第二
の堆積工程を行った。この第二の堆積工程では,トリメ
チルインジウムに対するターシャリブチルホスフィンの
流量比が10となるように,ターシャリブチルホスフィ
ンの流量を8cc/分とし,これにバブリングによりトリ
メチルインジウムを含有させた流量300cc/分の水素
ガスとを併せて供給した。76Torrの圧力及び843K
の堆積温度はそのまま維持した。このときのマスク遠方
での堆積速度は3μm/時であり,30分間で1.5μ
m堆積した。なお,図4を参照して,この堆積条件は曲
線ハの左下に位置するから,堆積速度はマスク近傍で遅
くマスク遠方で速い。この結果,図1(a)を参照し
て,メサ3を平坦に埋め込む埋め込み層7が形成され
た。
Subsequently, the following second deposition step in which the flow ratio of the raw material gas was changed was performed. In this second deposition step, the flow rate of tertiary butyl phosphine was set to 8 cc / min so that the flow rate ratio of tertiary butyl phosphine to trimethyl indium was 10, and the flow rate of 300 cc / min containing trimethyl indium by bubbling was used. Of hydrogen gas. 76 Torr pressure and 843K
Was maintained as it was. At this time, the deposition rate at a distance from the mask is 3 μm / hour, and 1.5 μm in 30 minutes.
m. Referring to FIG. 4, since the deposition condition is located at the lower left of curve C, the deposition speed is low near the mask and high at a distance from the mask. As a result, referring to FIG. 1A, a buried layer 7 for burying the mesa 3 flatly was formed.

【0038】なお第一及び第二の堆積工程を通して,図
1を参照して,一定時間間隔ごとにトリメチルガリウム
をパルス状に供給し,埋め込み層7にGaに富んだ薄層
を形成しこれを堆積状況を表すマーカ7aとして利用し
た。
Throughout the first and second deposition steps, referring to FIG. 1, trimethylgallium is supplied in a pulsed manner at regular time intervals to form a Ga-rich thin layer in the buried layer 7, and this is formed. It was used as a marker 7a indicating the deposition status.

【0039】図1(a)を参照して,本実施形態例によ
り堆積された埋め込み層7は,メサ3を平坦に埋め込
む。その一方,マスク2の庇状部分の下面は埋め込み層
7により完全に充填されており,従来の方法で堆積した
場合に生ずる埋め込み層7表面の窪み乃至空隙は見られ
ない。また,従来例と比較して,マスク2両側近傍の埋
め込み層7表面の盛り上がりも極めて小さい。図1
(b)は,第一の堆積工程時間と第二の堆積工程時間と
を同じ25分間とした場合であり,マスク2の庇状部分
の下面に形成される結晶面8a近傍においてマーカ7a
の乱れが図1(a)より小さく,堆積の乱れが少ないこ
とを表している。
Referring to FIG. 1A, the buried layer 7 deposited according to the present embodiment buryes the mesa 3 flat. On the other hand, the lower surface of the eaves-like portion of the mask 2 is completely filled with the buried layer 7, and no dents or voids on the surface of the buried layer 7 generated when deposition is performed by a conventional method are seen. In addition, the swelling of the surface of the buried layer 7 near both sides of the mask 2 is extremely small as compared with the conventional example. FIG.
(B) is a case where the first deposition step time and the second deposition step time are the same 25 minutes, and the marker 7a is formed near the crystal plane 8a formed on the lower surface of the eave-shaped portion of the mask 2.
1A is smaller than that of FIG. 1A, which means that the disturbance of the deposition is small.

【0040】本発明の他の実施形態例は,上記実施形態
例の第二の堆積工程を堆積温度を高温とする例に関す
る。即ち,本他の実施形態例では,上記実施形態例の第
一の堆積工程と同一条件で埋め込み層の下層を堆積した
後,第二の堆積工程を以下の条件下でおこなった。第二
の堆積工程の堆積温度Tは第一の堆積温度853Kより
高い863Kとし,トリメチルインジウムに対するター
シャリブチルホスフィンの流量比は第一の堆積工程と同
じ30に維持する。なお,他の堆積条件は全て第一の堆
積工程と同じである。かかる本他の実施形態例における
第二の堆積工程の堆積条件は,図4を参照して,曲線ハ
の左下に位置し,堆積速度はマスク近傍で遅くマスク遠
方で速い。この結果,図1に示す埋め込み層と同様,平
坦かつ空隙,窪み及び盛り上がりの無い埋め込み層7が
堆積された。
Another embodiment of the present invention relates to an example in which the second deposition step of the above embodiment is performed at a high deposition temperature. That is, in the other embodiment, after the lower layer of the buried layer is deposited under the same conditions as the first deposition step of the above-described embodiment, the second deposition step is performed under the following conditions. The deposition temperature T in the second deposition step is 863 K, which is higher than the first deposition temperature 853 K, and the flow ratio of tertiary butyl phosphine to trimethylindium is maintained at 30, which is the same as in the first deposition step. All other deposition conditions are the same as in the first deposition step. Referring to FIG. 4, the deposition condition in the second deposition step in this other embodiment is located at the lower left of curve C, and the deposition rate is low near the mask and high in the distance to the mask. As a result, similarly to the buried layer shown in FIG. 1, a buried layer 7 which is flat and free from voids, depressions, and protrusions is deposited.

【0041】本発明の別の実施形態例は,上記実施形態
例の第一の堆積工程と第二の堆積工程との順序を逆にし
た例である。即ち,初めに第二の堆積工程の堆積条件下
で埋め込み層を堆積した後,続けて原料ガスの流量比を
変えた第一の堆積条件の堆積条件下で埋め込み層の堆積
を続行する。その結果,多少マーカの乱れが見られるが
ほぼ上記実施形態例と同様の埋め込み層を堆積すること
ができた。
Another embodiment of the present invention is an example in which the order of the first deposition step and the second deposition step of the above embodiment is reversed. That is, after the buried layer is first deposited under the deposition conditions of the second deposition step, the deposition of the buried layer is continued under the deposition conditions of the first deposition condition in which the flow ratio of the source gas is changed. As a result, although the marker was slightly disturbed, a buried layer substantially similar to that of the above-described embodiment could be deposited.

【0042】[0042]

【発明の効果】本発明によれば,上面に庇状のマスクを
有するメサを,有機金属化学堆積法により堆積したII-V
I 族化合物半導体又はIII-V 族化合物半導体により埋め
込む場合に, 埋め込み層の表面に形成される窪み及び盛
り上がりを小さくすることができるので, 特性の優れた
化合物半導体装置を製造することができ, 半導体装置の
性能向上に寄与するところが大きい。
According to the present invention, a mesa having an eaves-shaped mask on its upper surface is formed by metal-organic chemical deposition.
When buried with a group I compound semiconductor or a group III-V compound semiconductor, dents and bulges formed on the surface of the buried layer can be reduced, so that a compound semiconductor device having excellent characteristics can be manufactured. It greatly contributes to improving the performance of the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態例メサ断面図FIG. 1 is a cross-sectional view of a mesa according to an embodiment of the present invention.

【図2】 埋め込み層形状の原料ガス流量比依存性を表
す図
FIG. 2 is a diagram showing the dependence of a buried layer shape on a flow rate ratio of a source gas.

【図3】 メサを平坦に埋め込む埋め込み層断面図FIG. 3 is a sectional view of a buried layer in which a mesa is buried flat.

【図4】 埋め込み層形状の堆積条件依存性を表す図FIG. 4 is a diagram showing the deposition condition dependence of the buried layer shape.

【図5】 従来例メサ断面図FIG. 5 is a cross-sectional view of a conventional mesa.

【符号の説明】[Explanation of symbols]

1 基板 2 マスク 3 メサ 4 活性層 5 クラッド層 6 コンタクト層 7 埋め込み層 7a マーカ 8 空隙 8a 結晶面 9 盛り上がり DESCRIPTION OF SYMBOLS 1 Substrate 2 Mask 3 Mesa 4 Active layer 5 Cladding layer 6 Contact layer 7 Buried layer 7a Marker 8 Void 8a Crystal plane 9 Rise

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に上面が選択堆積用マスクで覆わ
れた化合物半導体のメサを形成する工程と,有機金属化
学堆積法(MOCVD法)を用いて該メサの外側の該基
板上にIII-V 化合物半導体又はII-VI 化合物半導体から
なる埋め込み層を堆積する該メサの埋め込み工程とを有
する化合物半導体装置の製造方法において,該埋め込み
工程は,該埋め込み層の堆積速度が該マスクから離れた
領域より該マスクの外縁近傍で速い第一の堆積工程と,
該埋め込み層の堆積速度が該マスクから離れた領域より
該マスクの外縁近傍で遅い第二の堆積工程とからなるこ
とを特徴とする化合物半導体装置の製造方法。
1. A step of forming a mesa of a compound semiconductor whose upper surface is covered with a mask for selective deposition on a substrate, and a step of forming a mesa on the substrate outside the mesa by using a metal organic chemical deposition (MOCVD) method. A buried layer of a mesa for depositing a buried layer made of a -V compound semiconductor or a II-VI compound semiconductor, wherein the burying step comprises the step of increasing the deposition rate of the buried layer away from the mask. A first deposition step faster near the outer edge of the mask than in the region;
A second deposition step in which the deposition rate of the buried layer is lower near the outer edge of the mask than in a region remote from the mask.
【請求項2】 請求項1記載の化合物半導体装置の製造
方法において,該埋め込み層の堆積速度が該マスクの外
縁近傍と該マスクから離れた領域とで等しくなるときの
堆積条件下の,II族若しくはIII 族元素を供給する第一
の原料ガスの流量UM O に対するV 族若しくはVI族元素
を供給する第二の原料ガスの流量UN O の比UN O /U
M O 及び堆積温度TO を測定し,測定された該比UN O
/UM O 及び該堆積温度TO を用いて, log(UN O /UM O )=A(1/TO )+C なる等式の定数A及び定数Cのうちの一方又は双方を決
定する工程を有し,該第一の堆積工程は,該第一の原料
ガスの流量をUM ,該第二の原料ガスの流量をUN 及び
該埋め込み工程の堆積温度をTとするとき, log(UN /UM )>A(1/T)+C なる条件下で堆積し,該第二の堆積工程は, log(UN /UM )<A(1/T)+C なる条件下で堆積することを特徴とする化合物半導体装
置の製造方法。
2. The method of manufacturing a compound semiconductor device according to claim 1, wherein the deposition rate of the buried layer is equal to that of a region near an outer edge of the mask and a region remote from the mask. flow rate U N ratio of O U N O / U of the second material gas supplied group V or VI element to the flow rate U M O of the first material gas supplying or III group element
M O and the deposition temperature T O were measured, and the measured ratio U N O
/ Using U M O and the deposition temperature T O, determine one or both of the log (U N O / U M O) = A (1 / T O) + C becomes constant equations A and the constant C and a step of, said first deposition step, when the flow rate of the first material gas U M, the flow rate of the second source gas deposition temperature of U N and the embedding step is T, The deposition is performed under a condition of log ( UN / UM )> A (1 / T) + C, and the second deposition step is performed under a condition of log ( UN / UM ) <A (1 / T) + C. A method for manufacturing a compound semiconductor device, comprising:
【請求項3】 請求項1又は2記載の化合物半導体装置
の製造方法において,該埋め込み工程は,有機燐化合物
を原料ガスとする有機金属化学堆積法を用いたことを特
徴とする化合物半導体装置の製造方法。
3. The method of manufacturing a compound semiconductor device according to claim 1, wherein said embedding step uses an organometallic chemical deposition method using an organic phosphorus compound as a source gas. Production method.
JP34167196A 1996-12-20 1996-12-20 Manufacture of compound semiconductor device Withdrawn JPH10189456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34167196A JPH10189456A (en) 1996-12-20 1996-12-20 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34167196A JPH10189456A (en) 1996-12-20 1996-12-20 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH10189456A true JPH10189456A (en) 1998-07-21

Family

ID=18347891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34167196A Withdrawn JPH10189456A (en) 1996-12-20 1996-12-20 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH10189456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518076B2 (en) 1998-08-05 2003-02-11 Nec Corporation Semiconductor laser device and manufacturing method of the same
JP2005005468A (en) * 2003-06-11 2005-01-06 Sumitomo Electric Ind Ltd Semiconductor laser and manufacturing method therefor
JP2005064080A (en) * 2003-08-08 2005-03-10 Furukawa Electric Co Ltd:The Semiconductor element and its fabricating process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518076B2 (en) 1998-08-05 2003-02-11 Nec Corporation Semiconductor laser device and manufacturing method of the same
JP2005005468A (en) * 2003-06-11 2005-01-06 Sumitomo Electric Ind Ltd Semiconductor laser and manufacturing method therefor
JP2005064080A (en) * 2003-08-08 2005-03-10 Furukawa Electric Co Ltd:The Semiconductor element and its fabricating process

Similar Documents

Publication Publication Date Title
JP3123061B2 (en) Buried flattening method by bias ECR-CVD method
US7682944B2 (en) Pendeo epitaxial structures and devices
JP2827326B2 (en) Manufacturing method of semiconductor laser
US4797374A (en) Method for selective heteroepitaxial III-V compound growth
GB2160823A (en) Semiconductor devices and their fabrication
US4980314A (en) Vapor processing of a substrate
JPH10189456A (en) Manufacture of compound semiconductor device
JP2005223300A (en) Method for manufacturing semiconductor device
JP3045115B2 (en) Method for manufacturing optical semiconductor device
US20080006829A1 (en) Semiconductor layered structure
US20100081225A1 (en) Mask pattern for selective area growth of semiconductor layer and selective area growth method using the mask pattern for semiconductor layer
Park et al. Lateral overgrowth and epitaxial lift-off of InP by halide vapor-phase epitaxy
JPH1032189A (en) Dry etching method of iii nitride semiconductor and device
JPH03250684A (en) Manufacture of mesa buried type optical semiconductor device
JPH09326529A (en) Method of fabricating laser diode
JP2002289538A (en) Method for fabricating semiconductor element and semiconductor element
JP4121539B2 (en) Manufacturing method of semiconductor device
JP5028811B2 (en) Method for fabricating compound semiconductor optical device
JP2021077909A (en) Semiconductor substrate, semiconductor substrate manufacturing method, and semiconductor element manufacturing method
JPH08306631A (en) Manufacture of semiconductor device
CN117995964A (en) Substrate surface micro-processing method, patterned substrate and LED epitaxial wafer
JPH04133315A (en) Manufacture of semiconductor device
JPH09181388A (en) Mask for forming buried layer of buried-type semiconductor laser and manufacture of buried-type semiconductor laser
KR0130610B1 (en) METHOD FOR MAKING QUANTOM FINE-WELL USING GaAs/AIGaAs SUBSTRATE
JPH0697569A (en) Manufacture method of semiconductor laser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302