JPH10185624A - Optical potentiometer - Google Patents

Optical potentiometer

Info

Publication number
JPH10185624A
JPH10185624A JP8345128A JP34512896A JPH10185624A JP H10185624 A JPH10185624 A JP H10185624A JP 8345128 A JP8345128 A JP 8345128A JP 34512896 A JP34512896 A JP 34512896A JP H10185624 A JPH10185624 A JP H10185624A
Authority
JP
Japan
Prior art keywords
light receiving
output
rotation angle
rotating disk
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8345128A
Other languages
Japanese (ja)
Inventor
Toshiyoshi Maruyama
利喜 丸山
Akira Akaha
章 赤羽
Hideo Asawa
秀夫 浅輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harmonic Drive Systems Inc
Original Assignee
Harmonic Drive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmonic Drive Systems Inc filed Critical Harmonic Drive Systems Inc
Priority to JP8345128A priority Critical patent/JPH10185624A/en
Priority to US08/988,535 priority patent/US5973320A/en
Priority to DE19756883.1A priority patent/DE19756883B4/en
Publication of JPH10185624A publication Critical patent/JPH10185624A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2449Error correction using hard-stored calibration data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical potentiometer capable of eliminating the influence by linearity of a light receiving element, precision of slit pattern of a rotating disc, mounting precision of each part, and the light distributing characteristic of a light emitting element to provide a detected output with high linearity. SOLUTION: In this optical potentiometer, the actual corresponding relation B between the rotating angle of a rotating disc 51 and the output of a light receiving element 54 is measured, and the deviation of the actual light receiving element output B in each rotating angle to an intended linear relation between the rotating angle of the rotating disc 51 and the output of the light receiving element 54 is calculated. The correction value for solving this deviation is preliminarily stored in a ROM 22 in the form of a corresponding table of limited rotating angle of the rotating disc. The rotating angle of the rotating disc is determined on the basis of the actual output B of the light receiving element 54 generated according to the rotating of the rotating disc 51, the correction value corresponding to this rotating angle is determined from the corresponding table, and the determined correction value D is added to the output B of the light receiving element, whereby a detection output E having the linear relation to the rotating angle of the rotating disc 51 is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一定の角度範囲内
を回転する有限回転モータ等の回転位置を検出するため
の光学式ポテンショメータに関するものである。更に詳
しくは、発光手段と受光手段の間にらせん状のスリット
が形成された回転ディスクを備え、当該スリットを通過
した通過光の受光手段での照射位置に基づき回転ディス
クの回転角を検出可能な光学式ポテンショメータに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical potentiometer for detecting a rotational position of a finite rotation motor or the like rotating within a predetermined angle range. More specifically, a rotating disk having a helical slit formed between the light emitting means and the light receiving means is provided, and the rotation angle of the rotating disk can be detected based on the irradiation position of the light passing through the slit by the light receiving means. It relates to an optical potentiometer.

【0002】[0002]

【従来の技術】本件出願人は、先に、実開平4−111
281号公報、同4−110219号公報、同5−88
191号公報等において高精度の光走査等を行うことの
可能な有限回転モータを提案している。図1(A)に
は、この有限回転モータの基本構成を示してある。この
図に示すように、有限回転モータ1のトルク発生部の構
造は基本的にはブラスレスDCモータの1相分と同一で
ある。しかし、永久磁石回転子2の磁極方向と、電磁石
からなる突極を備えた固定子3の磁極方向とが直交する
位置、すなわち、原点位置を安定化するために、固定子
3の一対の突極部分3a、3bの端面の中央に溝3c、
3dを付けてある。この有限回転モータ1は例えば動作
角度範囲が+−15度程度であり、モータ出力軸4には
光走査用ミラー等の被駆動部分が取り付けられる。モー
タ出力軸4の有限回転角度を検出するために、モータ出
力軸4の反対側には位置センサ5が取り付けられてい
る。
2. Description of the Related Art The applicant of the present application has previously disclosed a Japanese Utility Model Application Laid-Open No. 4-111.
No. 281, No. 4-110219, No. 5-88
No. 191 proposes a finite rotation motor capable of performing high-precision optical scanning and the like. FIG. 1A shows a basic configuration of the finite rotation motor. As shown in this figure, the structure of the torque generating unit of the finite rotation motor 1 is basically the same as that of one phase of the brassless DC motor. However, in order to stabilize the position where the magnetic pole direction of the permanent magnet rotor 2 is orthogonal to the magnetic pole direction of the stator 3 having salient poles made of electromagnets, that is, to stabilize the origin position, a pair of projecting A groove 3c at the center of the end face of each of the pole portions 3a and 3b;
3d is attached. The finite rotation motor 1 has, for example, an operating angle range of about + -15 degrees, and a driven portion such as an optical scanning mirror is attached to the motor output shaft 4. In order to detect a finite rotation angle of the motor output shaft 4, a position sensor 5 is mounted on the opposite side of the motor output shaft 4.

【0003】この位置センサ5は、回転角に比例したア
ナログ信号を発生する光学式ポテンショメータである。
この光学式ポテンショメータ5は、モータ出力軸4に固
着した回転ディスク51を備え、この回転ディスク51
には、モータ出力軸4の有限回転角度範囲を包含する角
度範囲に亘り、らせん状のスリット52が形成されてい
る。このスリット52の形成部分を挟み、一方の側には
LED等の発光素子53が配置され、他方の側には受光
素子54が対向配置されている。受光素子54は、その
受光面が回転ディスク51の半径方向に配列され、スリ
ット通過光の半径方向の位置(光学的重心)を検出する
1軸の半導体位置検出素子(PSD)である。
The position sensor 5 is an optical potentiometer that generates an analog signal proportional to the rotation angle.
The optical potentiometer 5 includes a rotating disk 51 fixed to the motor output shaft 4.
Is formed with a spiral slit 52 over an angle range including a finite rotation angle range of the motor output shaft 4. A light emitting element 53 such as an LED is arranged on one side and a light receiving element 54 is arranged on the other side to face the portion where the slit 52 is formed. The light receiving element 54 is a uniaxial semiconductor position detecting element (PSD) whose light receiving surface is arranged in the radial direction of the rotating disk 51 and detects the radial position (optical center of gravity) of the light passing through the slit.

【0004】図1(B)に示すように、回転ディスク5
1のスリット52は、極座標においてr=ro+kφ
(k:定数)の関数で表されるらせん状スリットであ
る。発光素子53から出射された光は、回転ディスク5
1のスリット52を通過して半導体位置検出素子54に
到達して、回転ディスク52の回転角度θが、当該角度
に比例した半導体位置検出素子54の受光面(PSD検
出エリア)54aにおける入射光の照射位置rに変換さ
れる。
[0004] As shown in FIG.
One slit 52 is r = ro + kφ in polar coordinates.
A spiral slit represented by a function of (k: constant). The light emitted from the light emitting element 53 is
After passing through the first slit 52 and reaching the semiconductor position detecting element 54, the rotation angle θ of the rotating disk 52 is proportional to the rotation angle θ of the incident light on the light receiving surface (PSD detection area) 54a of the semiconductor position detecting element 54. It is converted to the irradiation position r.

【0005】半導体位置検出素子54においては、その
受光面54aにおける入射光の位置rに応じて、その両
端から出力される電流が逆比例の関係で変化する。すな
わち、両端から出力される電流をia、ibとし、半導
体位置検出素子の受光面の長さをLすると、これらの電
流値と入射光の位置rの関係は次式で示される。
In the semiconductor position detecting element 54, currents output from both ends of the semiconductor position detecting element 54 change in inverse proportion to the position r of the incident light on the light receiving surface 54a. That is, assuming that the currents output from both ends are ia and ib and the length of the light receiving surface of the semiconductor position detecting element is L, the relationship between these current values and the position r of the incident light is expressed by the following equation.

【0006】 r=(L/2)・(ia−ib)/(ia+ib) 従って、光エネルギによる電流(ia+ib)が一定と
なるように発光素子53の発光量を制御すれば、入射光
の位置rに比例する出力(ia−ib)を得ることがで
きる。
R = (L / 2) · (ia−ib) / (ia + ib) Therefore, if the light emission amount of the light emitting element 53 is controlled so that the current (ia + ib) due to the light energy becomes constant, the position of the incident light An output (ia-ib) proportional to r can be obtained.

【0007】[0007]

【発明が解決しようとする課題】ここで、上記構成の光
学式ポテンショメータ5の重要な特性の一つに直線性が
ある。この直線性は角度に対する検出出力の直線度であ
る。この直線性に影響を与える要因としては、半導体位
置検出素子の直線性、回転ディスクのスリットパターン
の精度、および各部品の取り付け精度、発光素子の配光
特性等が挙げられる。これらの要因を検出出力から除去
しないと、精度の良い回転角度検出を行うとができな
い。
Here, one of the important characteristics of the optical potentiometer 5 having the above structure is linearity. This linearity is the linearity of the detection output with respect to the angle. Factors that affect the linearity include the linearity of the semiconductor position detecting element, the precision of the slit pattern of the rotating disk, the mounting precision of each component, the light distribution characteristics of the light emitting element, and the like. Unless these factors are removed from the detection output, accurate rotation angle detection cannot be performed.

【0008】本発明の課題は、直線性に影響を与える要
因を除去して直線性の高い検出出力を得ることのできる
光学式ポテンショメータを提案することにある。
An object of the present invention is to propose an optical potentiometer capable of removing a factor affecting linearity and obtaining a detection output with high linearity.

【0009】[0009]

【課題を解決するための手段】本発明は、発光手段と、
受光手段と、これらの間に配置され、一定の角度範囲に
亘るらせん状のスリットを備えた回転ディスクとを有
し、当該回転ディスクの回転角度に対応して前記スリッ
トを通過した通過光の前記受光手段の受光面における受
光位置が前記回転ディスクの半径方向に移動して、前記
回転ディスクの回転角度に対応する検出出力を得るよう
になっている光学式ポテンショメータにおいて、次のよ
うにして、回転角度と受光手段の検出出力の間の直線性
を確保するようにしている。
According to the present invention, there is provided a light emitting means,
A light-receiving means, and a rotating disk provided with a helical slit over a certain angular range, disposed between the light-receiving means, and the transmitted light passing through the slit corresponding to the rotation angle of the rotating disk. A light receiving position on a light receiving surface of a light receiving means moves in a radial direction of the rotating disk to obtain a detection output corresponding to a rotation angle of the rotating disk. The linearity between the angle and the detection output of the light receiving means is ensured.

【0010】すなわち、前記回転ディスクの回転角度と
前記受光手段の出力との間の実際の対応関係を測定し、
前記回転ディスクの回転角と前記受光手段の出力との間
の目標とする線形関係に対する各回転角度における実際
の前記受光手段出力の偏差を算出し、当該偏差を解消す
るための補正値を前記回転ディスクの回転角度との対応
テーブルの形態で予め記憶しておき、前記回転ディスク
の回転に伴なって発生する前記受光手段の実際の出力に
基づき前記回転ディスクの回転角度を求め、当該回転角
度に対応する前記補正値を前記対応テーブルから求め、
求まった前記補正値を前記受光手段の出力に加えること
により、前記回転ディスクの回転角度に対して線形関係
の検出出力を得るようにしている。
That is, the actual correspondence between the rotation angle of the rotating disk and the output of the light receiving means is measured,
Calculate the deviation of the actual output of the light receiving means at each rotation angle with respect to the target linear relationship between the rotation angle of the rotating disk and the output of the light receiving means, and calculate the correction value for eliminating the deviation. The rotation angle of the rotating disk is stored in advance in the form of a table corresponding to the rotation angle of the disk, and the rotation angle of the rotating disk is obtained based on the actual output of the light receiving means generated with the rotation of the rotating disk. Finding the corresponding correction value from the correspondence table,
By adding the obtained correction value to the output of the light receiving means, a detection output having a linear relationship with the rotation angle of the rotating disk is obtained.

【0011】ここで、前記受光手段としては、半導体位
置検出素子を備えたものとすることができる。当該半導
体位置検出素子は、前記回転ディスクの半径方向に延び
る受光面での受光位置に応じて両端に現れる出力電圧が
逆比例関係で変化するものである。
Here, the light receiving means may include a semiconductor position detecting element. The output voltage appearing at both ends of the semiconductor position detecting element changes in an inversely proportional relationship according to a light receiving position on a light receiving surface extending in a radial direction of the rotating disk.

【0012】このように構成した本発明の光学式ポテン
ショメータでは、実際に測定した検出出力の偏差に基づ
く補正値を回転角度に対応させて予め記憶してあり、実
際の検出出力に当該補正値を加味することにより、回転
角度に対して線形性に優れた検出出力を得ることができ
る。この結果、検出出力に基づき、高精度の回転角度制
御を実現することができる。
In the optical potentiometer according to the present invention, the correction value based on the deviation of the actually measured detection output is stored in advance in association with the rotation angle, and the correction value is stored in the actual detection output. By taking this into account, it is possible to obtain a detection output excellent in linearity with respect to the rotation angle. As a result, highly accurate rotation angle control can be realized based on the detection output.

【0013】[0013]

【発明の実施の形態】以下に、図面を参照して本発明の
実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図2(A)は光学式ポテンショメータの制
御回路のブロック図である。光学式ポテンショメータの
機械的構成は、図1に示す構成と同一であるので、対応
する部分には同一の符号を付してある。
FIG. 2A is a block diagram of a control circuit of the optical potentiometer. Since the mechanical configuration of the optical potentiometer is the same as the configuration shown in FIG. 1, the corresponding parts are denoted by the same reference numerals.

【0015】この図において、半導体位置検出素子54
の両端電流ia、ibは、それぞれ増幅器11、12に
よって増幅された後に加算器13において加算され、予
め設定されている基準電流値REFとの差が求められ
る。この差は増幅器14を介して増幅されて発光素子5
3の駆動電流にフィードバックされる。この結果、半導
体位置検出措置54の受光量は常に一定となるように制
御される。すなわち、両端電流の和(ia+ib)が一
定となるように制御される。
In this figure, a semiconductor position detecting element 54
Are amplified by the amplifiers 11 and 12, respectively, and then added by the adder 13 to obtain a difference from a preset reference current value REF. This difference is amplified by the amplifier 14 and the light emitting element 5
3 is fed back to the drive current. As a result, the amount of light received by the semiconductor position detecting means 54 is controlled to be always constant. That is, control is performed so that the sum (ia + ib) of the currents at both ends is constant.

【0016】一方、両端電流ia、ibの差が比較回路
15において求められる。この差は、図2(B)に示す
ように、回転ディスク51の回転角度に対して線形関係
(直線A)となることが理想である。しかし、実際に
は、前述したように、半導体位置検出素子54の直線
性、回転ディスク51のスリット52のパターンの精
度、および各部品51、53、54等の取り付け精度、
発光素子53の配光特性等が原因となって、直線性が損
なわれ、図2(B)に示す曲線Bのようになる。そこ
で、本例では、このような誤差(各回転角における直線
Aに対する曲線Bの偏差)を解消するために、線形化補
正回路20を配置してある。
On the other hand, the difference between the two terminal currents ia and ib is obtained in the comparison circuit 15. Ideally, this difference has a linear relationship (straight line A) with respect to the rotation angle of the rotating disk 51, as shown in FIG. However, in actuality, as described above, the linearity of the semiconductor position detecting element 54, the accuracy of the pattern of the slit 52 of the rotating disk 51, and the mounting accuracy of the components 51, 53, 54, etc.
Due to the light distribution characteristics of the light emitting element 53 and the like, the linearity is impaired, resulting in a curve B shown in FIG. Therefore, in this example, in order to eliminate such an error (the deviation of the curve B from the straight line A at each rotation angle), the linearization correction circuit 20 is disposed.

【0017】図2(A)を参照して説明すると、線形化
補正回路20は、比較回路15のアナログ出力Bをデジ
タル化するA/D変換器21と、デジタル化された出力
Cに基づき、補正値を出力するROM22と、当該RO
M22から出力されたデジタル補正値をアナログ値Dに
変換するD/A変換器23を備えている。A/D変換器
21では、アナログ出力Bを、図2(C)に示すよう
に、デジタル値に変換する。ROM22においては、予
め回転ディスク51の回転角度と、当該回転角度に対応
する補正値とが対応テーブルの形態で記憶されている。
すなわち、実際に、回転ディスク51を回転させること
によって得られるアナログ出力Bを計測し、当該アナロ
グ出力と回転角度との間の目標とする線形関係(図2
(B)において破線で示す直線A)に対する当該アナロ
グ出力Bの偏差を求め、当該偏差を解消するための補正
値を回転角度に対応させた対応テーブルの形態で、RO
M22内に格納してある。
Referring to FIG. 2A, the linearization correction circuit 20 is based on an A / D converter 21 for digitizing the analog output B of the comparison circuit 15 and a digitized output C. A ROM 22 for outputting a correction value,
A D / A converter 23 that converts the digital correction value output from M22 to an analog value D is provided. The A / D converter 21 converts the analog output B into a digital value as shown in FIG. In the ROM 22, the rotation angle of the rotary disk 51 and correction values corresponding to the rotation angle are stored in advance in the form of a correspondence table.
That is, an analog output B obtained by actually rotating the rotary disk 51 is measured, and a target linear relationship between the analog output and the rotation angle (see FIG. 2).
In (B), a deviation of the analog output B from the straight line A) indicated by a broken line is obtained, and a correction value for eliminating the deviation is set in the form of a correspondence table corresponding to the rotation angle.
It is stored in M22.

【0018】従って、アナログ出力Bをデジタル化した
出力CがROM22に入力されると、当該出力Cに対応
する回転角度に割り当てられている補正値がテーブルか
ら検索されて出力される。このデジタル補正値はD/A
変換器23によってアナログ正値に変換される。すなわ
ち、図2(D)において棒線で示すデジタル補正値が、
曲線で示すアナログ補正値Dに変換される。このアナロ
グ補正値は、加算器16において、比較器15からのア
ナログ出力Bに加算される。この結果、回転角度に対す
る直線性に優れた検出出力Eが得られる。この出力E
を、図2(E)において直線で示してある。この図にお
いて破線は、実際の検出出力Bを表している。このよう
にして得られた検出出力Eは、増幅器17を介して出力
される。
Therefore, when the output C obtained by digitizing the analog output B is input to the ROM 22, the correction value assigned to the rotation angle corresponding to the output C is retrieved from the table and output. This digital correction value is D / A
The data is converted into an analog positive value by the converter 23. That is, the digital correction value indicated by the bar in FIG.
It is converted to an analog correction value D indicated by a curve. This analog correction value is added to the analog output B from the comparator 15 in the adder 16. As a result, a detection output E having excellent linearity with respect to the rotation angle is obtained. This output E
Is shown by a straight line in FIG. In this figure, the broken line represents the actual detection output B. The detection output E obtained in this way is output via the amplifier 17.

【0019】[0019]

【発明の効果】以上説明したように、本発明の光学式ポ
テンショメータにおいては、回転角度に対応する実際の
検出出力を計測し、計測結果に基づき、回転角度と検出
出力との線形性(直線性)を確保するための検出出力の
補正値を予め求めておき、実際の検出出力に対して、当
該出力が得られる回転角度に対応する補正値を加算する
ようにしている。従って、本発明によれば、回転角度に
対応した線形性の良い検出出力、換言すると、精度の良
い検出出力を得ることができる。
As described above, in the optical potentiometer of the present invention, the actual detection output corresponding to the rotation angle is measured, and based on the measurement result, the linearity (linearity) of the rotation angle and the detection output is measured. The correction value of the detection output for ensuring the above (3) is obtained in advance, and the correction value corresponding to the rotation angle at which the output is obtained is added to the actual detection output. Therefore, according to the present invention, a detection output with good linearity corresponding to the rotation angle, in other words, a detection output with high accuracy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は本発明を適用可能な光学式ポテンショ
メータを備えた有限回転モータを示す概略構成図、
(B)はその光学式ポテンショメータの回転ディスクに
形成したスリットを示す説明図である。
FIG. 1A is a schematic configuration diagram showing a finite rotation motor provided with an optical potentiometer to which the present invention can be applied;
(B) is an explanatory view showing a slit formed in a rotating disk of the optical potentiometer.

【図2】(A)は本発明を適用した光学式ポテンショメ
ータの制御系のブロック図であり、(B)〜(E)は制
御系の動作を説明するためのグラフである。
FIG. 2A is a block diagram of a control system of an optical potentiometer to which the present invention is applied, and FIGS. 2B to 2E are graphs for explaining the operation of the control system.

【符号の説明】[Explanation of symbols]

20 線形化補正回路 21 A/D変換器 22 補正値のテーブルを記憶したROM 23 D/A変換器 5 光学式ポテンショメータ 51 回転ディスク 52 スリット 53 発光素子 54 受光素子 B 受光素子の出力 D デジタル補正値 E 補正後の検出出力 Reference Signs List 20 linearization correction circuit 21 A / D converter 22 ROM storing correction value table 23 D / A converter 5 optical potentiometer 51 rotating disk 52 slit 53 light emitting element 54 light receiving element B light receiving element output D digital correction value E Detection output after correction

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年1月29日[Submission date] January 29, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【図1】 FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅輪 秀夫 長野県南安曇郡穂高町大字牧1856−1 株 式会社ハーモニック・ドライブ・システム ズ穂高工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hideo Asawa 1856-1, Maki, Hodaka-cho, Minamiazumi-gun, Nagano Pref. Harmonic Drive Systems Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発光手段と、受光手段と、これらの間に
配置され、一定の角度範囲に亘るらせん状のスリットを
備えた回転ディスクとを有し、当該回転ディスクの回転
角度に対応して前記スリットを通過した通過光の前記受
光手段の受光面における受光位置が前記回転ディスクの
半径方向に移動して、前記回転ディスクの回転角度に対
応する検出出力が得られる光学式ポテンショメータにお
いて、 前記回転ディスクの回転角度と前記受光手段の出力との
間の実際の対応関係を測定し、前記回転ディスクの回転
角と前記受光手段の出力との間の目標とする線形関係に
対する各回転角度における実際の前記受光手段出力の偏
差を算出し、当該偏差を解消するための補正値を前記回
転ディスクの回転角度の対応テーブルの形態で予め記憶
しておき、前記回転ディスクの回転に伴なって発生する
前記受光手段の実際の出力に基づき前記回転ディスクの
回転角度を求め、当該回転角度に対応する前記補正値を
前記対応テーブルから求め、求まった前記補正値を前記
受光手段の出力に加えることにより、前記回転ディスク
の回転角度に対して線形関係の検出出力を得ることを特
徴とする光学式ポテンショメータ。
1. A light-emitting device, a light-receiving device, and a rotating disk provided between them and having a helical slit extending over a certain angular range, corresponding to a rotation angle of the rotating disk. In the optical potentiometer, a light receiving position of light passing through the slit on a light receiving surface of the light receiving unit moves in a radial direction of the rotating disk to obtain a detection output corresponding to a rotation angle of the rotating disk. The actual correspondence between the rotation angle of the disc and the output of the light receiving means is measured, and the actual correspondence at each rotation angle with respect to the target linear relationship between the rotation angle of the rotating disc and the output of the light receiving means is measured. The deviation of the output of the light receiving means is calculated, and a correction value for eliminating the deviation is stored in advance in the form of a correspondence table of the rotation angle of the rotating disk, The rotation angle of the rotating disk is determined based on the actual output of the light receiving means generated with the rotation of the rotating disk, the correction value corresponding to the rotation angle is determined from the correspondence table, and the determined correction value is obtained. An optical potentiometer, wherein a detection output having a linear relationship with respect to the rotation angle of the rotating disk is obtained by adding the following to the output of the light receiving means.
【請求項2】 請求項1において、前記受光手段は半導
体位置検出素子を備え、当該半導体位置検出素子は、前
記回転ディスクの半径方向に延びる受光面での受光位置
に応じて両端に現れる出力電流が逆比例関係で変化する
ものであることを特徴とする光学式ポテンショメータ。
2. The output current according to claim 1, wherein said light receiving means includes a semiconductor position detecting element, and said semiconductor position detecting element appears at both ends in accordance with a light receiving position on a light receiving surface extending in a radial direction of said rotating disk. The optical potentiometer changes in inverse proportion.
JP8345128A 1996-12-25 1996-12-25 Optical potentiometer Pending JPH10185624A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8345128A JPH10185624A (en) 1996-12-25 1996-12-25 Optical potentiometer
US08/988,535 US5973320A (en) 1996-12-25 1997-12-10 Optical position sensor
DE19756883.1A DE19756883B4 (en) 1996-12-25 1997-12-19 Optical position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8345128A JPH10185624A (en) 1996-12-25 1996-12-25 Optical potentiometer

Publications (1)

Publication Number Publication Date
JPH10185624A true JPH10185624A (en) 1998-07-14

Family

ID=18374481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8345128A Pending JPH10185624A (en) 1996-12-25 1996-12-25 Optical potentiometer

Country Status (3)

Country Link
US (1) US5973320A (en)
JP (1) JPH10185624A (en)
DE (1) DE19756883B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956505B2 (en) 2002-02-28 2005-10-18 Fanuc Ltd Signal processing apparatus for encoder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19858287A1 (en) 1998-12-17 2000-06-21 Schlafhorst & Co W Method and device for non-contact yarn monitoring on a spinning or winding machine
JP2003107386A (en) * 2001-09-28 2003-04-09 Harmonic Drive Syst Ind Co Ltd Scanner of galvanometer type
US7326918B2 (en) * 2005-07-05 2008-02-05 Texas Instruments Incorporated Optical position sensor architecture for servo systems
US7476843B2 (en) * 2005-12-23 2009-01-13 Delphi Technologies, Inc. Method for determining the position of a first moving component relative to a second component and device for applying said method
DE102010003561A1 (en) * 2010-03-31 2011-10-06 Robert Bosch Gmbh Method for the systematic treatment of errors
JP6959835B2 (en) * 2017-11-06 2021-11-05 株式会社東海理化電機製作所 Rotation detector
US11885614B2 (en) * 2020-12-07 2024-01-30 Osi Optoelectronics, Inc. Optical rotary sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2509851A1 (en) * 1981-07-17 1983-01-21 Tesa Sa ELECTRONIC MEASUREMENT SENSOR
JPS60225024A (en) * 1984-04-24 1985-11-09 Jeco Co Ltd Angle sensor
US4761546A (en) * 1985-11-25 1988-08-02 Matsushita Electric Works, Ltd. Optical displacement measuring system with nonlinearity correction
US4789826A (en) * 1987-03-19 1988-12-06 Ampex Corporation System for sensing the angular position of a rotatable member using a hall effect transducer
US5132531A (en) * 1990-11-07 1992-07-21 Eaton Corporation Translational position sensing apparatus employing rotating element and PSD
US5136154A (en) * 1991-05-10 1992-08-04 Advanced Fuel Research, Inc. Method and system for photoconductive detector signal correction
EP0531947B1 (en) * 1991-09-09 1997-01-02 Kabushiki Kaisha Tokai Rika Denki Seisakusho Position detecting apparatus
KR100277139B1 (en) * 1992-03-29 2001-01-15 도고로 아쯔오 Angular acceleration detector
US5352968A (en) * 1992-05-28 1994-10-04 Apple Computer, Inc. Battery charge state determination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956505B2 (en) 2002-02-28 2005-10-18 Fanuc Ltd Signal processing apparatus for encoder

Also Published As

Publication number Publication date
DE19756883B4 (en) 2015-08-06
US5973320A (en) 1999-10-26
DE19756883A1 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US6084234A (en) Position transducer
US20230079776A1 (en) Clutch actuator, sensing system and method for sensing an angular position of a rotational component
JP2002162252A (en) Rotary position detector
JPH10185624A (en) Optical potentiometer
GB2356299A (en) Switched reluctance position sensing
JP2005049183A (en) Variable reluctance type resolver
JP5176208B2 (en) Rotation angle detection method and rotation angle sensor
JPH11160434A (en) Range finder instrument
JP2015108610A (en) Rotation detection device and rotation detection method
JP2001165707A (en) Method and device for correcting phase error of resolver
JP3309027B2 (en) Reluctant resolver
JPH04161085A (en) Synchronous motor control method
EP0500431B1 (en) Angle sensor, in particular for rotating machines at very high speed
JP6685719B2 (en) Rotation angle sensor mounting angle measuring device and rotation angle sensor mounting angle measuring method
JPH0618339A (en) Measuring device for braking torque generated by electromagnetic retarder and torque adjusting device
JP2001264109A (en) Encoder device and signal processing method thereof
JP2004219333A (en) Encoder output signal correcting device
JP5162739B2 (en) Encoder signal processing method, encoder device, and servo motor
US11204260B2 (en) System for determining at least one rotation parameter of a rotating member
US4435987A (en) Device for correcting torque detected by an electric dynamometer
JPH0552583A (en) Magnetic encoder
JP2796296B2 (en) Wafer pre-alignment method
JP3408238B2 (en) Resolver / digital converter and conversion method
FI112300B (en) Method and apparatus for controlling a synchronous permanent magnet motor
US20200292634A1 (en) System for determining at least one rotation parameter of a rotating member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050107