JPH10183297A - Steel material for induction hardening, and its production - Google Patents

Steel material for induction hardening, and its production

Info

Publication number
JPH10183297A
JPH10183297A JP34874996A JP34874996A JPH10183297A JP H10183297 A JPH10183297 A JP H10183297A JP 34874996 A JP34874996 A JP 34874996A JP 34874996 A JP34874996 A JP 34874996A JP H10183297 A JPH10183297 A JP H10183297A
Authority
JP
Japan
Prior art keywords
steel
content
induction hardening
hardness
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34874996A
Other languages
Japanese (ja)
Inventor
Koji Watari
宏二 渡里
Kenji Aihara
賢治 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP34874996A priority Critical patent/JPH10183297A/en
Publication of JPH10183297A publication Critical patent/JPH10183297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel material for induction hardening, capable of securing >=Hv800 surface hardness, >=Hv300 core-part hardness, and >=50J core-part toughness by 2mm U-notched Charpy absorption energy by means of induction hardening, and its production. SOLUTION: The steel material for induction hardening has a chemical composition which consists of 0.65-1.0% C, 0.05-1.5% Si, 0.05-2.0% Mn, 0.005-0.05% Al, 0.001-0.03% N, 0.0005-0.005% B, 0-2.5% Ni, 0-0.25% Mo, <=0.08% S, and the balance Fe with inevitable impurities and in which the amount of P among the impurities is regulated to <=0.05% and also has a structure which contains graphite and in which >=50% of C exists in the form of graphite. the steel material is produced by applying heating up to 1050-1300 deg.C to perform hot working, finishing hot working at >=900 deg.C, and then carrying out softening for graphitization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波焼入れ用鋼
材及びその製造方法に関し、詳しくは、高周波焼入れ処
理によって、Hv(ビッカース硬度)で800以上の表
面硬度、Hv300以上の芯部硬度及び2mmUノッチ
シャルピーの吸収エネルギーで50J以上の芯部靭性を
確保することができる高周波焼入れ用鋼材及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material for induction hardening and a method for manufacturing the same, and more particularly, to a surface hardness of 800 or more in Hv (Vickers hardness), a core hardness of 300 or more in Hv, and a 2 mm U notch by induction hardening. The present invention relates to a steel material for induction hardening capable of securing core toughness of 50 J or more with Charpy absorbed energy and a method for producing the same.

【0002】[0002]

【従来の技術】機械構造用などの各種表面硬化部品、例
えば各種の歯車に対して、表面部に大きな硬度を付与し
て耐摩耗性や耐疲労特性を高めるとともに芯部の靭性を
優れたものとするために、SCM420に代表されるよ
うなC含有量の低い所謂「肌焼鋼」が母材鋼として用い
られてきた。
2. Description of the Related Art Various surface hardened parts for mechanical structures, such as various gears, are provided with a large hardness to the surface to enhance wear resistance and fatigue resistance and have excellent core toughness. In order to achieve this, a so-called “case-hardened steel” having a low C content, such as SCM420, has been used as a base material steel.

【0003】前記の「肌焼鋼」には表面硬化処理として
浸炭焼入れ処理が施される。しかし、浸炭焼入れ処理は
ガス雰囲気におけるバッチ処理が主流であり、900℃
を超えるような高い温度で数時間も保持しなければなら
ない。このため、浸炭処理時はガス雰囲気の調整を厳密
に行う必要があり、又、多くの時間とエネルギーを要す
るのでコストが嵩むという問題がある。更に、インライ
ン化が困難であるという問題もある。加えて最近では、
浸炭処理の作業環境を改善したいとする要望もある。
[0003] The above "case hardened steel" is subjected to a carburizing and quenching treatment as a surface hardening treatment. However, the carburizing and quenching process is mainly performed in a batch process in a gas atmosphere.
Must be maintained for several hours at such high temperatures. Therefore, there is a problem that the gas atmosphere must be strictly adjusted at the time of carburizing, and the cost is increased because much time and energy are required. Furthermore, there is a problem that it is difficult to inline. In addition, recently,
There is also a request to improve the working environment of carburizing treatment.

【0004】しかも、表面硬化部品のうち、例えばギア
やピニオンのような部品に対しては、最近では表面硬度
としてHv800以上の大きな値、及び部品としての強
度と靭性を確保するために中心部にもHv300以上の
硬度と2mmUノッチシャルピーの吸収エネルギーで5
0J以上の芯部靭性が要求される場合も生じている。し
かしながら、「肌焼鋼」を浸炭焼入れした場合には、浸
炭焼入れ後の表面硬度は高々Hv780程度であって、
所望の高い表面硬度を安定して確保できない。
In addition, among the surface hardened parts, for example, parts such as gears and pinions, recently, a large surface hardness of Hv 800 or more, and a central part in order to ensure the strength and toughness of the part. With a hardness of Hv300 or more and an absorption energy of 2 mm U notch Charpy
In some cases, core toughness of 0 J or more is required. However, when "case hardened steel" is carburized and quenched, the surface hardness after carburized and quenched is at most about Hv780,
A desired high surface hardness cannot be stably secured.

【0005】上記した問題点のうち、表面硬化のための
処理時間を短縮してエネルギー消費を抑え、且つ、作業
環境をクリーンにするとともにインライン処理化を実現
するための表面硬化処理方法としては、高周波焼入れ処
理を挙げることができる。
[0005] Among the above-mentioned problems, the surface hardening method for shortening the processing time for surface hardening to suppress energy consumption, and also for cleaning the working environment and realizing in-line processing includes the following. Induction hardening can be mentioned.

【0006】しかし、前記のSCM420に代表される
ような肌焼鋼を母材鋼として用いた場合には、鋼のC含
有量が低いため、高周波焼入れしても所望の大きな表面
硬度を部品に付与することができない。このため、中炭
素系のJIS機械構造用炭素鋼(S45CやS50Cな
ど)や合金鋼(SCr440やSCM440など)が、
高周波焼入れして表面硬化させる部品の母材鋼として用
いられてきた。しかし、焼入れ後の硬度は鋼のC含有量
(重量%)に極めて大きく依存する。このため、上記の
中炭素系の鋼を母材鋼とした場合であっても、高周波焼
入れ後に得られる表面硬度は、C含有量が0.5重量%
の場合でも高々Hv700程度であり、前記のギアやピ
ニオンのような部品に対して要求されるHv800以上
の大きな表面硬度を確保することができない。更に、高
周波焼入れで所望の芯部靭性(2mmUノッチシャルピ
ーの吸収エネルギーで50J以上)を確保できないこと
もあった。加えて、上記の中炭素系の鋼のうち合金鋼を
母材鋼として用いた場合にはコスト高になることが避け
られなかった。
However, when case hardening steel typified by the above-mentioned SCM420 is used as a base material steel, since the C content of the steel is low, even if induction hardening is performed, a desired large surface hardness is obtained for the part. Cannot be granted. For this reason, medium carbon JIS carbon steel for machine structural use (S45C, S50C, etc.) and alloy steel (SCr440, SCM440, etc.)
It has been used as a base material steel for components to be hardened by induction hardening. However, the hardness after quenching depends very much on the C content (% by weight) of the steel. Therefore, even when the above-mentioned medium-carbon steel is used as the base material steel, the surface hardness obtained after induction hardening is such that the C content is 0.5% by weight.
In this case, the surface hardness is at most about Hv700, and a large surface hardness higher than Hv800 required for parts such as the gear and the pinion cannot be secured. Furthermore, the desired core toughness (absorbed energy of 2 mm U notch Charpy of 50 J or more) may not be ensured by induction hardening in some cases. In addition, when alloy steel is used as the base material steel among the above-mentioned medium-carbon steels, it is inevitable that the cost increases.

【0007】このため、これまでにいくつかの高周波焼
入れ用鋼が提案されている。
[0007] For this reason, some induction hardening steels have been proposed.

【0008】例えば、特開昭60−169547号公報
には、特定の化学組成を有する「高周波焼入用鋼」が開
示されている。しかし、この公報に記載の鋼を母材鋼と
して用いても、部品の芯部靭性の点で必ずしも充分でな
い場合があった。更に、この公報で提案された鋼は、C
含有量の上限を0.55重量%に規制しなければならな
いため、高周波焼入れ後の表面硬度としてHv800以
上の高い値を確保することができないものであった。
For example, Japanese Unexamined Patent Publication (Kokai) No. 60-169547 discloses "induction hardening steel" having a specific chemical composition. However, even if the steel described in this publication is used as the base material steel, the core toughness of the component may not always be sufficient. Furthermore, the steel proposed in this publication has a C
Since the upper limit of the content must be regulated to 0.55% by weight, a high value of Hv 800 or more cannot be secured as the surface hardness after induction hardening.

【0009】特開昭63−100157号公報には、組
織が75%以上のベイナイトで特定の化学組成からなる
「高周波焼入用非調質鋼」が提案されている。しかし、
この公報で提案された鋼は、75%以上ものベイナイト
組織を有するものであるため、少なくとも所望最終形状
とするための切削加工時に、「被削性」の点で問題を有
するものである。更に、この公報で提案された鋼も、C
含有量の上限を0.6重量%に規制しなければならない
ため、高周波焼入れ後の表面硬度としてHv800以上
の高い値を確保することができないものであった。な
お、この公報中には、C含有量が0.45重量%の鋼の
表面硬さとしてHv750という記載があるが、C含有
量が0.45重量%の鋼の場合にはフルマルテンサイト
の硬度でもHv700程度が上限であることは周知の事
項であり、マルテンサイト以外に87〜90%ものベイ
ナイトを含む組織の前記のHv750の硬度は、例え
ば、Hv650の「誤記」であると推定される。
Japanese Unexamined Patent Publication (Kokai) No. 63-100157 proposes "non-heat-treated steel for induction hardening" comprising bainite having a structure of 75% or more and having a specific chemical composition. But,
The steel proposed in this publication has a bainite structure of 75% or more, and therefore has a problem in terms of "machinability" at least at the time of cutting to obtain a desired final shape. Furthermore, the steel proposed in this publication also has C
Since the upper limit of the content has to be restricted to 0.6% by weight, a high value of Hv800 or more cannot be secured as the surface hardness after induction hardening. In this publication, Hv750 is described as the surface hardness of a steel having a C content of 0.45% by weight. However, in the case of a steel having a C content of 0.45% by weight, full martensite is used. It is a known matter that the hardness is about Hv700 as the upper limit, and the hardness of Hv750 of a structure containing 87 to 90% of bainite in addition to martensite is estimated to be, for example, “wrong” of Hv650. .

【0010】特開平2−179841号公報には、Al
でNを固定するとともにBを含有させて焼入れ性を高
め、硬化層深さを確保するようにした「高周波焼入用非
調質鋼」とその製造方法が提案されている。しかしなが
ら、AlでNを固定するためには比較的多量のAlを含
有させる必要があるが、Alを過剰に添加した場合には
硬いAl23相を形成して被削性が低下してしまうとい
う問題がある。更に、たとえAlでNをAlNとして固
定しても、熱間加工時の加熱条件を適正化しないと、A
lN→Al+Nの反応が進んで固溶Nが生じ、この固溶
NがBとBNを形成するため、所望の焼入れ性が得られ
なくなるという問題もある。
[0010] Japanese Patent Application Laid-Open No. 2-179841 discloses Al
A non-heat treated steel for induction hardening, in which N is fixed and B is contained to enhance the quenchability and secure the depth of the hardened layer, and a method for producing the same have been proposed. However, in order to fix N with Al, it is necessary to contain a relatively large amount of Al. However, when Al is excessively added, a hard Al 2 O 3 phase is formed and machinability is reduced. Problem. Furthermore, even if N is fixed as AlN with Al, unless the heating conditions during hot working are optimized, A
The reaction of 1N → Al + N proceeds to form solid solution N, and since the solid solution N forms B and BN, there is also a problem that desired hardenability cannot be obtained.

【0011】特開平5−33101号公報には、C、M
n及びCrの含有量を調整することによって中心部の硬
さを確保した「高周波焼入れクランクシャフト用非調質
鋼」が開示されている。しかし、この公報における実施
例の記載からも明らかなように、靭性の観点からC含有
量を0.52%以下に規制しなければならない前記の鋼
においては、高周波焼入れ後の表面硬さは高々ロックウ
ェル硬度(HRC )61(Hvで約720)で、部品に
所望の表面硬度を付与することができない場合がある。
Japanese Patent Application Laid-Open No. 5-33101 discloses that C, M
A "non-heat treated steel for induction hardened crankshafts" in which the hardness of the central portion is secured by adjusting the contents of n and Cr is disclosed. However, as is clear from the description of the examples in this publication, the surface hardness after induction hardening is at most as high as that of the steel in which the C content must be regulated to 0.52% or less from the viewpoint of toughness. With a Rockwell hardness (HRC) 61 (about 720 in Hv), it may not be possible to impart a desired surface hardness to a part.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、高周波焼入れ処理でHv800以
上の表面硬度、Hv300以上の芯部硬度及び2mmU
ノッチシャルピーの吸収エネルギーで50J以上の芯部
靭性を確保することができる高周波焼入れ用鋼材及びそ
の製造方法を提供することを目的とする。より詳しく
は、熱間鍛造を初めとする熱間加工後に軟化焼鈍を施し
た鋼材を出発材とし、以後の熱処理としては高周波焼入
れ処理を施すだけでHv800以上の表面硬度、Hv3
00以上の芯部硬度及び2mmUノッチシャルピーの吸
収エネルギーで50J以上の芯部靭性を確保することが
でき、ギアやピニオンのような表面硬化部品に好適な高
周波焼入れ用鋼材及びその製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has a surface hardness of Hv800 or more, a core hardness of Hv300 or more, and 2 mmU
An object of the present invention is to provide a steel material for induction hardening capable of securing core toughness of 50 J or more with notch Charpy absorbed energy and a method for producing the same. More specifically, a steel material subjected to soft annealing after hot working such as hot forging is used as a starting material, and subsequent heat treatment is performed only by induction hardening to obtain a surface hardness of Hv 800 or more and Hv 3
Provided is a steel material for induction hardening, which can secure core toughness of 50 J or more with core hardness of 00 or more and absorbed energy of 2 mm U notch Charpy, and is suitable for surface hardened parts such as gears and pinions, and a method for producing the same. The purpose is to:

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、下記
(1)の高周波焼入れ用鋼材及び(2)の高周波焼入れ
用鋼材の製造方法にある。
The gist of the present invention resides in the following (1) a method for producing a steel material for induction hardening and (2) a method for producing a steel material for induction hardening.

【0014】(1)重量%で、C:0.65〜1.0
%、Si:0.05〜1.5%、Mn:0.05〜2.
0%、Al:0.005〜0.05%、N:0.001
〜0.03%、B:0.0005〜0.005%、N
i:0〜2.5%、Mo:0〜0.25%、S:0.0
8%以下、残部はFe及び不可避不純物で不純物中のP
が0.05%以下の化学組成であって、組織が黒鉛を含
む組織で、且つ、Cの50%以上が黒鉛として存在する
ことを特徴とする高周波焼入れ用鋼材。
(1) C: 0.65 to 1.0% by weight
%, Si: 0.05-1.5%, Mn: 0.05-2.
0%, Al: 0.005 to 0.05%, N: 0.001
0.03%, B: 0.0005 to 0.005%, N
i: 0 to 2.5%, Mo: 0 to 0.25%, S: 0.0
8% or less, with the balance being Fe and unavoidable impurities.
Has a chemical composition of 0.05% or less, the structure is a structure containing graphite, and 50% or more of C is present as graphite.

【0015】(2)上記(1)に記載の化学組成を有す
る鋼を1050〜1300℃に加熱して熱間加工し、9
00℃以上の温度で熱間加工を終了した後、黒鉛化のた
めの軟化焼鈍を行うことを特徴とする高周波焼入れ用鋼
材の製造方法。
(2) The steel having the chemical composition described in the above (1) is heated to 1050 to 1300 ° C. and hot worked.
A method for producing a steel material for induction hardening, comprising performing softening annealing for graphitization after finishing hot working at a temperature of 00 ° C. or higher.

【0016】[0016]

【発明の実施の形態】本発明者らは、部品の切削加工を
容易に行うことができ、しかも高周波焼入れしただけで
部品にHv800以上の表面硬度、Hv300以上の芯
部硬度及び2mmUノッチシャルピーの吸収エネルギー
で50J以上の芯部靭性を付与することができるよう
に、部品母材鋼の化学組成と組織について種々の検討を
行った。その結果、下記〜の知見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have made it possible to easily cut a part, and to obtain a part having a surface hardness of Hv800 or more, a core hardness of Hv300 or more, and a notch Various studies were made on the chemical composition and structure of the base steel of the component so that core toughness of 50 J or more could be imparted by the absorbed energy. As a result, the following findings were obtained.

【0017】熱間鍛造を初めとする熱間加工を行った
鋼材の組織を軟化焼鈍して黒鉛を含む組織とし、更に、
含有C量の50%以上が前記黒鉛を形成するようにすれ
ば、つまり、含有C量の50%以上を黒鉛化させれば、
冷間加工性や切削性が高まる。このため高周波焼入れ処
理前の冷間鍛造や切削などの粗型加工は比較的容易であ
る。
The structure of the steel material that has been subjected to hot working including hot forging is softened and annealed to a structure containing graphite.
If 50% or more of the contained C content forms the graphite, that is, if 50% or more of the contained C content is graphitized,
Cold workability and machinability increase. For this reason, rough die processing such as cold forging or cutting before induction hardening is relatively easy.

【0018】なお、含有C量のうちで黒鉛を形成するC
の比率、つまり黒鉛化の程度は、酸溶解で黒鉛を抽出す
る化学分析で判定できる。
It should be noted that, among the C contents, C which forms graphite
, That is, the degree of graphitization can be determined by chemical analysis of extracting graphite by acid dissolution.

【0019】黒鉛は高周波熱処理のような急速短時間
の加熱処理でもオーステナイト域で基地(オーステナイ
ト)に充分固溶する。したがって、高周波焼入れのため
の加熱でオーステナイト域に加熱された部分の基地中の
固溶C量は芯部よりも高くなる。このため、母材鋼のC
含有量を高くしておけば、高周波焼入れのための加熱で
オーステナイト域に昇温する部分は、次の焼入れで高C
のマルテンサイト組織となるので、硬度を高くすること
ができる。
Graphite is sufficiently solid-dissolved in the matrix (austenite) in the austenite region even by rapid and short-time heat treatment such as induction heat treatment. Therefore, the amount of solute C in the matrix of the portion heated to the austenite region by the heating for induction hardening is higher than that of the core. Therefore, the base steel C
If the content is increased, the part that rises to the austenite region by heating for induction hardening will have a high C content in the next hardening.
, The hardness can be increased.

【0020】高周波加熱処理における加熱温度をAc1
点とAc3点の間の2相域の温度として焼入れ処理すれ
ば、フェライトとマルテンサイトの相からなる組織(以
下、フェライト・マルテンサイト組織という)が形成さ
れる。このフェライト・マルテンサイト組織は、疲労破
壊や衝撃破壊の亀裂の進展を抑制する作用がある。この
ため、高周波焼入れのための加熱でAc1点とAc3点の間
の2相域の温度に昇温後に焼入れされた部分の疲労強度
や靭性は良好である。なお、前記のフェライト・マルテ
ンサイト組織には、その相中に未固溶の黒鉛などが存在
していても良い。
The heating temperature in the high-frequency heating process is set to Ac 1
If the quenching treatment is performed at a temperature in the two-phase region between the point and the Ac 3 point, a structure composed of ferrite and martensite phases (hereinafter referred to as a ferrite-martensite structure) is formed. This ferrite-martensite structure has the effect of suppressing the growth of cracks due to fatigue and impact fracture. For this reason, the fatigue strength and toughness of the portion quenched after heating to a temperature in the two-phase region between the Ac 1 point and the Ac 3 point by induction quenching are good. In the ferrite-martensite structure, undissolved graphite or the like may be present in the phase.

【0021】上記、から、高周波焼入れ時の加熱
を、部品表面部はオーステナイト域、芯部はAc1点とA
c3点の間の2相域の温度になるように条件設定して行
い、その後焼入れ処理すれば、部品表面部は高Cのマル
テンサイト組織となるので、高い硬度を確保することが
できる。一方、芯部はフェライト・マルテンサイト組織
となるので、良好な疲労強度や靭性を確保できる。
From the above, it can be seen that heating during induction quenching is performed in the austenitic region on the surface of the component, and at one point Ac and A on the core.
c If the conditions are set such that the temperature is in the two-phase region between the three points, and then quenching is performed, the surface of the component has a high C martensite structure, so that high hardness can be secured. On the other hand, since the core has a ferrite-martensite structure, good fatigue strength and toughness can be secured.

【0022】高周波焼入れ後に芯部硬度としてHv3
00以上を確保するには、Ac1点とAc3点の間の2相域
の温度から急冷し、マルテンサイトの硬い組織とフェラ
イトとを混合させれば良い。
After induction hardening, the core hardness is Hv3
In order to secure a value of not less than 00, it is sufficient to rapidly cool from the temperature in the two-phase region between the Ac 1 point and the Ac 3 point, and mix the hard structure of martensite with ferrite.

【0023】本発明は、上記の知見に基づいて完成され
たものである。
The present invention has been completed based on the above findings.

【0024】以下、本発明の各要件について詳しく説明
する。なお、成分含有量の「%」は「重量%」を意味す
る。又、「表層から0.5mmの位置における硬度」を
「表面硬度」、「表面部の硬度」と表記する。更に、高
周波焼入れの対象とされる鋼材(部品)の中心部のこと
を「芯部」という。
Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the component content means “% by weight”. Further, “hardness at a position 0.5 mm from the surface layer” is referred to as “surface hardness” and “hardness of the surface portion”. Further, the central part of the steel material (part) to be subjected to induction hardening is referred to as a “core”.

【0025】(A)鋼材の化学組成 C:0.65〜1.0% Cは、鋼の焼入れ性及び強度を高めるとともに高周波焼
入れ後のHv800以上の高い表面硬度を確保するのに
有効な元素である。しかし、Cの含有量が0.65%未
満では添加効果に乏しい。一方、1.0%を超えると、
高周波焼入れでオーステナイトが残留するので、表面部
に高い硬度を付与できない。したがって、Cの含有量
を、0.65〜1.0%とした。なお、上記した効果を
より安定して確保するためには、Cの含有量を0.7〜
0.9%とすることが好ましい。
(A) Chemical composition of steel material C: 0.65 to 1.0% C is an element effective for improving the hardenability and strength of steel and for ensuring a high surface hardness of Hv 800 or more after induction hardening. It is. However, if the content of C is less than 0.65%, the effect of addition is poor. On the other hand, if it exceeds 1.0%,
Since austenite remains by induction hardening, high hardness cannot be imparted to the surface. Therefore, the content of C is set to 0.65 to 1.0%. In order to secure the above-mentioned effect more stably, the content of C is set to 0.7 to 0.7%.
It is preferably set to 0.9%.

【0026】Si:0.05〜1.5% Siは、製鋼時の脱酸に有効な元素である。更に、Si
には黒鉛化を促進する作用がある。しかし、その含有量
が0.05%未満では、上記の作用が期待できない。一
方、1.5%を超えると、前記効果が飽和するばかり
か、靭性の低下をもたらす。したがって、Siの含有量
を0.05〜1.5%とした。なお、上記した効果をよ
り安定して確保するためには、Siの含有量を0.2〜
1.0%とすることが好ましい。
Si: 0.05-1.5% Si is an element effective for deoxidation during steelmaking. Further, Si
Has an effect of promoting graphitization. However, if the content is less than 0.05%, the above effects cannot be expected. On the other hand, when the content exceeds 1.5%, not only the above effect is saturated, but also the toughness is reduced. Therefore, the content of Si is set to 0.05 to 1.5%. In order to secure the above-mentioned effects more stably, the content of Si is set to 0.2 to
It is preferably set to 1.0%.

【0027】Mn:0.05〜2.0% Mnは、鋼の強度と焼入れ性を高めるのに有効な元素で
ある。しかし、その含有量が0.05%未満では所望の
効果が得られない。一方、2.0%を超えるとCの拡散
を低下させて黒鉛化を阻害するので、黒鉛化のための軟
化焼鈍に長時間要することとなって経済的に不利とな
る。更に、高周波焼入れで表面部にはオーステナイトが
残留して表面硬度の低下を招き、一方、芯部にはマルテ
ンサイト量が増えるので硬度が高くなって芯部靭性が低
下してしまう。したがって、Mnの含有量を0.05〜
2.0%とした。なお、Mnの含有量は0.07〜0.
5%とすることが好ましい。
Mn: 0.05 to 2.0% Mn is an element effective for improving the strength and hardenability of steel. However, if the content is less than 0.05%, the desired effect cannot be obtained. On the other hand, if the content exceeds 2.0%, the diffusion of C is reduced to inhibit graphitization, so that it takes a long time for soft annealing for graphitization, which is economically disadvantageous. Further, austenite remains on the surface portion by induction hardening to cause a decrease in surface hardness. On the other hand, the amount of martensite increases in the core portion, so that the hardness increases and the core portion toughness decreases. Therefore, the content of Mn is 0.05 to
2.0%. In addition, the content of Mn is 0.07 to 0.1.
It is preferably set to 5%.

【0028】Al:0.005〜0.05% Alは、強力な脱酸作用を有する元素であり、製鋼時に
所望の脱酸効果を確保するためには0.005%以上含
有させることが必要である。しかし、Alを0.05%
を超えて含有させても前記効果が飽和するばかりか被削
性の低下を招く。したがって、Alの含有量を0.00
5〜0.05%とした。なお、好ましいAl含有量は、
0.005〜0.025%である。
Al: 0.005 to 0.05% Al is an element having a strong deoxidizing effect, and must be contained in an amount of 0.005% or more in order to secure a desired deoxidizing effect during steelmaking. It is. However, 0.05% of Al
In addition, the above effect is not only saturated, but also causes a decrease in machinability. Therefore, the content of Al is 0.00
It was 5 to 0.05%. The preferred Al content is
0.005 to 0.025%.

【0029】N:0.001〜0.03% Nは、Bとの親和力が大きくBと結合して鋼中にBNと
して析出し、黒鉛析出のための核となって黒鉛化を促進
する作用を有する。しかし、その含有量が0.001%
未満では添加効果に乏しい。一方、0.03%を超える
と、靭性の低下を招く。したがって、N含有量を0.0
01〜0.03%とした。なお、Nの含有量は0.00
2〜0.015%とすることが好ましい。
N: 0.001 to 0.03% N has a large affinity for B and binds to B to precipitate as BN in steel, acts as a nucleus for graphite precipitation and promotes graphitization. Having. However, its content is 0.001%
If less, the effect of addition is poor. On the other hand, if it exceeds 0.03%, the toughness is reduced. Therefore, the N content is set to 0.0
01-0.03%. The content of N is 0.00
The content is preferably set to 2 to 0.015%.

【0030】B:0.0005〜0.005% Bは、Nと結合してBNを形成し、黒鉛析出のための核
となって黒鉛化を促進する作用を有する。しかし、その
含有量が0.0005%未満では所望の効果が得られな
い。一方、Bの含有量が0.005%を超えるとBNが
粗大化するので逆に黒鉛化が阻害され、黒鉛化のための
軟化焼鈍に長時間要することとなって経済的に不利とな
る。更に、高周波焼入れで表面部にはオーステナイトが
残留して表面硬度の低下を招き、一方、芯部にはマルテ
ンサイト量が増えるので硬度が高くなって芯部靭性が低
下してしまう。このため、B含有量を0.0005〜
0.005%とした。なお、Bの含有量は0.0005
〜0.003とすることが好ましい。
B: 0.0005% to 0.005% B combines with N to form BN and acts as a nucleus for graphite precipitation to promote graphitization. However, if the content is less than 0.0005%, the desired effect cannot be obtained. On the other hand, if the content of B exceeds 0.005%, BN coarsens, so that graphitization is hindered, and it takes a long time for soft annealing for graphitization, which is economically disadvantageous. Further, austenite remains on the surface portion by induction hardening to cause a decrease in surface hardness. On the other hand, the amount of martensite increases in the core portion, so that the hardness increases and the core portion toughness decreases. Therefore, the B content is 0.0005 to
0.005%. The content of B is 0.0005.
It is preferably set to 0.003.

【0031】Ni:0〜2.5%、 Niは添加しなくても良い。添加すれば、セメンタイト
の分解を速めて黒鉛化を促進する作用を有する。この効
果を確実に得るには、Niは0.2%以上の含有量とす
ることが好ましい。しかし、Niを2.5%を超えて含
有させるとその効果は飽和して経済的に不利になるばか
りか、高周波焼入れでオーステナイトが残留するので、
表面部に高い硬度を付与できない。したがって、Ni含
有量を、0〜2.5%とした。なお、上記した効果をよ
り安定して確保するためには、Niの含有量を0.5〜
2.0%とすることが好ましい。
Ni: 0 to 2.5%, Ni may not be added. If added, it has the effect of accelerating the decomposition of cementite and promoting graphitization. In order to ensure this effect, it is preferable that the content of Ni be 0.2% or more. However, if the content of Ni exceeds 2.5%, the effect is saturated and not only is economically disadvantageous, but also austenite remains due to induction hardening.
High hardness cannot be imparted to the surface. Therefore, the Ni content was set to 0 to 2.5%. In order to secure the above-mentioned effects more stably, the content of Ni is set to 0.5 to
Preferably it is 2.0%.

【0032】Mo:0〜0.25% Moは添加しなくても良い。添加すれば、焼入れ性を高
めて芯部の硬度を確保する作用がある。この効果を確実
に得るには、Moは0.05%以上の含有量とすること
が好ましい。しかし、Moを0.25を超えて含有させ
ると前記の効果が飽和するばかりか、高周波焼入れでオ
ーステナイトが残留するようになって表面部に高い硬度
を付与できない。したがって、Mo含有量を、0〜0.
25%とした。なお、上記した効果をより安定して確保
するために、Moの含有量を0.07〜0.2%とする
ことが好ましい。
Mo: 0 to 0.25% Mo may not be added. If added, it has the effect of increasing the hardenability and ensuring the hardness of the core. To ensure this effect, it is preferable that the content of Mo be 0.05% or more. However, when Mo is contained in excess of 0.25, not only the above effect is saturated, but also austenite remains due to induction quenching, so that a high hardness cannot be imparted to the surface portion. Therefore, the Mo content is set to 0 to 0.
25%. In order to secure the above-mentioned effects more stably, the content of Mo is preferably set to 0.07 to 0.2%.

【0033】S:0.08%以下 Sは含有させなくても良い。含有させれば被削性を高め
る作用がある。この効果を確実に得るには、Sは0.0
15%以上の含有量とすることが好ましい。しかし、S
を多量に含有させると黒鉛化を阻害してしまう。特に、
S含有量が0.08%を超えると黒鉛化を著しく阻害す
るので、黒鉛化のための軟化焼鈍に長時間要することと
なって経済的に不利となる。更に、高周波焼入れで表面
部にはオーステナイトが残留して表面硬度の低下を招
き、一方、芯部にはマルテンサイト量が増えるので硬度
が高くなって芯部靭性が低下してしまう。したがって、
Sの含有量を0.08%以下とした。なお、S含有量の
上限は0.05%とすることが好ましい。
S: 0.08% or less S may not be contained. If contained, it has the effect of enhancing machinability. To ensure this effect, S should be 0.0
The content is preferably 15% or more. However, S
When a large amount of is contained, graphitization is inhibited. Especially,
If the S content exceeds 0.08%, graphitization is significantly inhibited, so that it takes a long time for soft annealing for graphitization, which is economically disadvantageous. Further, austenite remains on the surface portion by induction hardening to cause a decrease in surface hardness. On the other hand, the amount of martensite increases in the core portion, so that the hardness increases and the core portion toughness decreases. Therefore,
The content of S was set to 0.08% or less. The upper limit of the S content is preferably set to 0.05%.

【0034】本発明においては不純物元素としてのPの
含有量を下記のように制限する。
In the present invention, the content of P as an impurity element is limited as follows.

【0035】P:0.05%以下 Pは黒鉛化を阻害する不純物元素である。特に、その含
有量が0.05%を超えると黒鉛化が著しく阻害されて
しまい、黒鉛化のための軟化焼鈍に長時間要することと
なって経済的に不利となる。更に、高周波焼入れで表面
部にはオーステナイトが残留して表面硬度の低下を招
き、一方、芯部にはマルテンサイト量が増えるので硬度
が高くなって芯部靭性が低下してしまう。したがって、
不純物元素としてのPの含有量を0.05%以下と規定
した。なお、Pの含有量は0.02%以下にまで低減す
ることが好ましい。
P: 0.05% or less P is an impurity element that inhibits graphitization. In particular, if the content exceeds 0.05%, graphitization is significantly inhibited, and it takes a long time for soft annealing for graphitization, which is economically disadvantageous. Further, austenite remains on the surface portion by induction hardening and causes a decrease in surface hardness. On the other hand, the amount of martensite increases in the core portion, so that the hardness increases and the core portion toughness decreases. Therefore,
The content of P as an impurity element was specified to be 0.05% or less. Preferably, the content of P is reduced to 0.02% or less.

【0036】(B)鋼材の組織 (A)項で述べた化学組成を有する鋼を母材鋼とする場
合であっても、高周波焼入れで所望のHv800以上の
表面硬度、Hv300以上の芯部硬度及び2mmUノッ
チシャルピーの吸収エネルギーで50J以上の芯部靭性
を確保するためには、鋼材の組織を黒鉛を含む組織で、
且つ、母材鋼のC含有量の50%以上を黒鉛として存在
させる、つまり、母材鋼のC含有量の50%以上を黒鉛
化させることが必要である。
(B) Structure of Steel Material Even when a steel having the chemical composition described in the item (A) is used as the base material steel, the desired surface hardness of Hv 800 or more and the core hardness of Hv 300 or more are obtained by induction hardening. In order to ensure core toughness of 50 J or more with absorbed energy of 2 mm U notch Charpy, the structure of steel material is a structure containing graphite,
In addition, it is necessary that 50% or more of the C content of the base steel be present as graphite, that is, 50% or more of the C content of the base steel be graphitized.

【0037】既に述べたように、黒鉛は高周波熱処理の
ような急速短時間の加熱処理を行った場合でもオーステ
ナイト域で基地に充分固溶する。したがって、母材鋼の
C含有量の50%以上を黒鉛化しておけば、高周波焼入
れのための加熱でオーステナイト域に加熱された部分の
固溶C量を充分に確保でき、次の焼入れで高Cのマルテ
ンサイト組織を得ることができる。このため、高い表面
硬度を確保することができる。一方、オーステナイト域
にまで昇温されない部分では黒鉛の基地への固溶が進ま
ないので、母材鋼のC含有量の50%以上を黒鉛として
存在させておけば、前記の部分の焼入れ性は低く保たれ
る。このため、焼入れしてもフェライト・マルテンサイ
ト組織になるので、良好な疲労強度や靭性を確保でき
る。
As described above, graphite is sufficiently dissolved in the matrix in the austenite region even when heat treatment is performed for a short time such as high-frequency heat treatment. Therefore, if 50% or more of the C content of the base steel is graphitized, the amount of solid solution C in the portion heated to the austenite region by heating for induction hardening can be sufficiently ensured, and high in the next hardening. A martensitic structure of C can be obtained. Therefore, high surface hardness can be ensured. On the other hand, since the solid solution of graphite does not proceed to the matrix in the portion where the temperature is not raised to the austenite region, if 50% or more of the C content of the base steel is present as graphite, the hardenability of the above portion is reduced. Keep low. For this reason, even if it is quenched, a ferrite / martensite structure is obtained, so that good fatigue strength and toughness can be secured.

【0038】上記の理由から、鋼材の組織を黒鉛を含む
組織で、且つ、母材鋼のC含有量の50%以上を黒鉛と
して存在させることとした。
For the above reasons, the structure of the steel material is a structure containing graphite, and 50% or more of the C content of the base steel is present as graphite.

【0039】なお、C含有量のうち黒鉛として存在させ
る比率の上限は、特に規定するものではない。C含有量
のほぼ100%を黒鉛として存在させても良い。
It is to be noted that the upper limit of the ratio of the C content to be present as graphite is not particularly specified. Almost 100% of the C content may be present as graphite.

【0040】(C)熱間加工と黒鉛化のための軟化焼鈍 本発明においては、前記(A)の化学組成を有する鋼を
1050〜1300℃に加熱する。加熱温度が1050
℃未満では、鋼材の熱間加工性が低下して、加工割れを
生ずる場合がある。一方、加熱温度が1300℃を超え
ると、結晶粒が極めて粗大化するため靭性の低下をきた
す。したがって、本発明においては、加熱を1050〜
1300℃の温度域に限定した。
(C) Softening annealing for hot working and graphitization In the present invention, the steel having the chemical composition of (A) is heated to 1050 to 1300 ° C. Heating temperature is 1050
If the temperature is lower than ℃, the hot workability of the steel material is reduced, and a work crack may occur. On the other hand, if the heating temperature exceeds 1300 ° C., the crystal grains become extremely coarse, resulting in a decrease in toughness. Therefore, in the present invention, the heating is 1050 to 1050.
The temperature range was limited to 1300 ° C.

【0041】鋼を上記温度域の温度に加熱した後の、熱
間鍛造や熱間圧延などの熱間加工は900℃以上の温度
で終了しなければならない。熱間加工の終了温度が90
0℃を下回ると、鋼の熱間延性が低下して熱間加工性が
劣化し、加工割れを生ずる場合があるからである。
After the steel is heated to the above temperature range, hot working such as hot forging and hot rolling must be completed at a temperature of 900 ° C. or more. Hot working end temperature is 90
If the temperature is lower than 0 ° C., the hot ductility of the steel decreases, the hot workability deteriorates, and a work crack may occur.

【0042】化学組成が前記(A)に記載の鋼を、上記
の条件で熱間加工を行って鋼材とした後、組織が黒鉛を
含む組織で、且つ、Cの50%以上を黒鉛として存在さ
せるためには黒鉛化のための軟化焼鈍を行う必要があ
る。この軟化焼鈍としては、通常行われる黒鉛化のため
の軟化焼鈍、つまり、600℃〜Ac1点の間の温度域で
3〜50時間の処理を施すだけで充分である。
After the steel having the chemical composition described in the above (A) is subjected to hot working under the above conditions to obtain a steel material, the structure is a structure containing graphite, and 50% or more of C is present as graphite. In order to achieve this, it is necessary to perform soft annealing for graphitization. As this softening annealing, it is sufficient to perform softening annealing for graphitization which is usually performed, that is, treatment for 3 to 50 hours in a temperature range between 600 ° C. and one point of Ac.

【0043】これまでに述べた製造条件によって、本発
明の「高周波焼入れ用鋼材」が得られる。この鋼材は、
次に述べる冷間加工や機械加工などの成形加工によって
所定の部品形状に成形され、次いで高周波焼入れ処理を
施されて、最終製品としての各種表面硬化部品となる。
Under the manufacturing conditions described above, the "steel material for induction hardening" of the present invention is obtained. This steel material
It is formed into a predetermined component shape by a forming process such as cold working or mechanical working described below, and then subjected to induction hardening to obtain various surface-hardened components as final products.

【0044】(D)成形加工 黒鉛化のための軟化焼鈍を施されて所定の組織となった
鋼材は、冷間鍛造などの冷間加工や機械加工を受けて所
望の表面硬化部品に成形される。この成形加工の方法は
特に規定されるものではなく、通常の方法で行えば良
い。
(D) Forming The steel material which has been subjected to softening annealing for graphitization to have a predetermined structure is subjected to cold working such as cold forging or mechanical working to be formed into a desired surface hardened part. You. The forming method is not particularly limited, and may be performed by a usual method.

【0045】(E)高周波焼入れ 高周波焼入れ処理は、上記(D)の成形加工された表面
硬化部品に対して、製品として必要な特性を付与するた
めの必要不可欠な処理である。表面部を高Cマルテンサ
イト組織にしてHv800以上の高い表面硬度を確保す
るとともに、Hv300以上の芯部硬度を確保し、更
に、芯部をフェライト・マルテンサイト組織にして2m
mUノッチシャルピーの吸収エネルギーで50J以上の
芯部靭性や良好な疲労強度を確保するために、所謂「表
層部」だけではなく「芯部」にも熱が入るような条件で
加熱焼入れ処理すれば良い。具体的な処理としては、例
えば、既に述べた鋼材のAc1点とAc3点を実験で求めて
おき、このAc1点からAc3点の間の温度域の温度に5〜
60℃/秒の加熱速度で加熱後その温度で1〜60秒保
持し、次いで950〜1100℃の温度域の温度に30
〜60℃/秒の加熱速度で加熱して1〜60秒保持し、
その後急冷する処理がある。
(E) Induction quenching The induction quenching is an indispensable treatment for imparting the characteristics required as a product to the molded surface-hardened component of (D). The surface has a high C martensite structure to secure a high surface hardness of Hv800 or more, a core hardness of Hv300 or more is secured, and the core has a ferrite-martensite structure of 2 m.
In order to secure core toughness of 50 J or more and good fatigue strength with the absorbed energy of mU notch Charpy, heat quenching treatment is performed under conditions that heat is applied not only to the so-called "surface layer" but also to the "core". good. As a specific process, for example, the Ac 1 point and the Ac 3 point of the steel material described above are obtained by an experiment, and the temperature in the temperature range between the Ac 1 point and the Ac 3 point is set to 5 to 5.
After heating at a heating rate of 60 ° C./sec, the temperature is maintained for 1 to 60 seconds, and then the temperature in the temperature range of 950 to 1100 ° C.
Heating at a heating rate of 6060 ° C./sec and holding for 1 to 60 seconds;
Thereafter, there is a process of quenching.

【0046】以下、実施例により本発明を説明する。Hereinafter, the present invention will be described with reference to examples.

【0047】[0047]

【実施例】表1、2に示す化学組成を有する鋼を、通常
の方法によって150kg真空溶製した。表1における
鋼1〜7及び表2における鋼17〜23は本発明例の鋼
で、表1における鋼8〜16及び表2における鋼24〜
35は成分のいずれかが本発明で規定する含有量の範囲
から外れた比較例の鋼である。なお、比較例の鋼のうち
鋼35はJISのSCM420に相当する肌焼鋼で、浸
炭焼入れに用いた鋼である。
EXAMPLES Steel having the chemical composition shown in Tables 1 and 2 was vacuum-melted in an amount of 150 kg by a conventional method. Steels 1 to 7 in Table 1 and Steels 17 to 23 in Table 2 are steels of the present invention, and are Steels 8 to 16 in Table 1 and Steels 24 to 24 in Table 2.
35 is a steel of a comparative example in which any of the components is out of the range of the content specified in the present invention. In addition, among the steels of the comparative example, steel 35 is case hardening steel corresponding to SCM420 of JIS and used for carburizing and quenching.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】次いで、これらの鋼を1250℃に加熱し
て1000℃で仕上げる熱間鍛造を繰り返して、直径2
5mmの丸棒とした。なお、最終の熱間鍛造後は、常温
(室温)まで空冷した。
Next, hot forging for heating these steels to 1250 ° C. and finishing at 1000 ° C. was repeated to obtain a steel having a diameter of 2 mm.
A 5 mm round bar was used. After the final hot forging, the air was cooled to room temperature (room temperature).

【0051】鍛造後の鋼1〜34の丸棒には、鋼成分に
応じて680〜720℃に40℃/時の加熱速度で加熱
して5〜15時間保持してから600℃まで40℃/時
の冷却速度で冷却した後、常温まで空冷する黒鉛化のた
めの軟化焼鈍を施した。
The forged steel rods 1 to 34 are heated to 680 to 720 ° C. at a heating rate of 40 ° C./hour and maintained for 5 to 15 hours depending on the steel composition, and then maintained at 40 ° C. to 600 ° C. After cooling at a cooling rate of / h, soft annealing was performed for graphitization by air cooling to room temperature.

【0052】鋼1〜34の軟化焼鈍後の丸棒から直径3
mmで長さ10mmの変態点測定用試験片を切り出し、
5〜60℃/秒の加熱速度で加熱した場合のAc1点とA
c3点を測定した。なお、実測した各鋼のAc1点とAc3
を表1、2に併記した。
From the round bar of steels 1-34 after soft annealing, the diameter was 3 mm.
Cut out a test piece for transformation point measurement of 10 mm in length and 10 mm in length,
Ac 1 point and A when heated at a heating rate of 5 to 60 ° C / sec.
c Three points were measured. Tables 1 and 2 show Ac 1 point and Ac 3 point of each steel actually measured.

【0053】軟化焼鈍した鋼1〜34の丸棒は直径20
mmに切削加工し、切削加工したままの直径20mmの
丸棒から、長さ15mmの試験片を切り出し、表層から
0.5mmの位置、R/2部(R=10mm)及び中心
部のビッカース硬度(Hv)の測定を行った。光学顕微
鏡による組織観察も行った。
The round bars of the softened and annealed steels 1 to 34 have a diameter of 20.
mm, and a 15 mm long test piece is cut out from a round bar having a diameter of 20 mm, and the Vickers hardness at a position 0.5 mm from the surface layer, R / 2 part (R = 10 mm) and the center part. (Hv) was measured. The structure was observed using an optical microscope.

【0054】上記の黒鉛化のための軟化焼鈍ままの硬度
は、各鋼種毎に測定位置に拘らずほぼ一定であった。
又、組織は鋼種及び測定位置に拘らず、フェライト、黒
鉛及びセメンタイトからなるものであった。
The hardness as softened and annealed for graphitization was almost constant regardless of the measurement position for each steel type.
The structure was composed of ferrite, graphite and cementite regardless of the steel type and the measurement position.

【0055】又、軟化焼鈍材について、含有C量のうち
で黒鉛を形成するCの比率、つまり黒鉛化の程度を、酸
溶解で抽出した黒鉛を化学分析することによって測定し
た。
In the soft annealed material, the ratio of C forming graphite in the C content, that is, the degree of graphitization was measured by chemically analyzing graphite extracted by acid dissolution.

【0056】切削加工した鋼1〜34の直径20mmの
丸棒には、鋼成分に応じてAc1点からAc3点の間の温度
域の温度に5〜60℃/秒の加熱速度で加熱して1〜6
0秒保持し、更に、950〜1100℃の温度域の温度
に30〜60℃/秒の加熱速度で加熱して1〜60秒保
持後油冷する高周波焼入れ処理を施した。
The round bar having a diameter of 20 mm of each of the cut steels 1 to 34 is heated at a heating rate of 5 to 60 ° C./sec to a temperature in a temperature range between the Ac 1 point and the Ac 3 point depending on the steel composition. Then 1-6
Induction quenching treatment was carried out by holding for 0 second, heating to a temperature in a temperature range of 950 to 1100 ° C. at a heating rate of 30 to 60 ° C./second, holding for 1 to 60 seconds, and oil-cooling.

【0057】高周波焼入れした直径20mmの丸棒の中
心部から、JIS3号シャルピー衝撃試験片を採取し、
室温での衝撃特性を調査した。又、高周波焼入れした直
径20mmの丸棒から長さ15mmの試験片を切り出
し、表層から0.5mmの位置及び中心部のビッカース
硬度(Hv)の測定を行った。光学顕微鏡による中心部
の組織観察も行った。
A JIS No. 3 Charpy impact test piece was collected from the center of the induction hardened round bar having a diameter of 20 mm.
The impact characteristics at room temperature were investigated. Further, a test piece having a length of 15 mm was cut out from a round bar having a diameter of 20 mm subjected to induction hardening, and the Vickers hardness (Hv) at a position 0.5 mm from the surface layer and at the center was measured. The structure of the center was also observed with an optical microscope.

【0058】比較例の鋼のうち肌焼鋼である鋼35は直
径25mmに熱間鍛造した後、940℃で30分加熱
し、次いで、600℃まで炉冷して600℃で1時間保
持後空冷の熱処理を施してから直径20mmに切削加工
した。こうして得た直径20mmの丸棒に、通常の方法
で930℃×10時間(炭素ポテンシャル:0.9%)
の浸炭処理を行った後油焼入れし、更に、170℃×2
時間の焼戻しを施した。浸炭焼入れ・焼戻しした直径2
0mmの丸棒の中心部から、JIS3号シャルピー衝撃
試験片を採取し、室温での衝撃特性を調査した。又、浸
炭焼入れ・焼戻しした直径20mmの丸棒から、長さ1
5mmの試験片を切り出し、表層から0.5mmの位置
及び中心部のビッカース硬度(Hv)の測定を行った。
Of the steels of the comparative examples, case 35, which is case-hardened steel, was hot forged to a diameter of 25 mm, heated at 940 ° C. for 30 minutes, then cooled to 600 ° C. and held at 600 ° C. for 1 hour. After the air-cooled heat treatment, it was cut to a diameter of 20 mm. The thus obtained round bar having a diameter of 20 mm is 930 ° C. × 10 hours (carbon potential: 0.9%) by a usual method.
Oil quenching after carburizing, and then 170 ° C x 2
Tempered for hours. Carburized and tempered diameter 2
A JIS No. 3 Charpy impact test specimen was sampled from the center of a 0 mm round bar, and the impact characteristics at room temperature were investigated. In addition, a carburized and tempered round bar with a diameter of 20 mm
A 5 mm test piece was cut out, and the Vickers hardness (Hv) at a position 0.5 mm from the surface layer and at the center was measured.

【0059】表3、4に各種の調査結果を示す。Tables 3 and 4 show the results of various investigations.

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【表4】 [Table 4]

【0062】表3、4から本発明例の鋼である鋼1〜7
及び鋼17〜23においては、浸炭処理した鋼35の表
面硬度よりも高いHv800以上の表面硬度を有すると
ともに、Hv300以上の芯部硬度及び2mmUノッチ
シャルピーの吸収エネルギーで50J以上の芯部靭性を
有していることが明らかである。
Tables 3 and 4 show that steels 1 to 7, which are steels of the present invention.
And steels 17 to 23 have a surface hardness of Hv 800 or more higher than the surface hardness of the carburized steel 35, and have a core hardness of Hv 300 or more and a core toughness of 50 J or more with a 2 mm U notch Charpy absorbed energy. It is clear that you are.

【0063】これに対して、比較例である鋼8〜16及
び鋼24〜34の場合には、本発明の方法で処理して
も、表面硬度と芯部靭性のいずれかにおいて所望の値が
得られていない。
On the other hand, in the case of steels 8 to 16 and steels 24 to 34, which are comparative examples, even if the treatment is carried out by the method of the present invention, a desired value is obtained in either the surface hardness or the core toughness. Not obtained.

【0064】鋼8及び鋼24はC含有量が本発明で規定
する値よりも低いため、表面硬度が低く、所望のHv8
00以上の値が得られていない。
Since steel 8 and steel 24 have a C content lower than the value specified in the present invention, they have a low surface hardness and a desired Hv8.
A value of 00 or more is not obtained.

【0065】鋼9、鋼25はC含有量が本発明で規定す
る値を超えるため高周波焼入れで表面部にオーステナイ
トが残留するので表面硬度が低い。
Steel 9 and steel 25 have a low surface hardness because the C content exceeds the value specified in the present invention and austenite remains on the surface by induction hardening.

【0066】鋼10及び鋼26はSi含有量が本発明で
規定する値を超えるため芯部の靭性が低い。
Steels 10 and 26 have a low core toughness because the Si content exceeds the value specified in the present invention.

【0067】鋼11及び鋼27はMn含有量が本発明で
規定する値を超えるため黒鉛化が充分進行しておらず、
このため高周波焼入れで表面部にはオーステナイトが残
留して表面硬度が低く、一方、芯部にはマルテンサイト
量が増えるので硬度が高くなって芯部靭性が低い。
Since the Mn content of the steels 11 and 27 exceeds the value specified in the present invention, the graphitization has not sufficiently progressed.
For this reason, austenite remains on the surface portion by induction hardening and the surface hardness is low. On the other hand, the amount of martensite increases in the core portion, so that the hardness increases and the core portion toughness is low.

【0068】鋼12と鋼28はPの含有量が、鋼13と
鋼29はSの含有量が、それぞれ本発明で規定する値を
超えるため、黒鉛化が充分進行しておらず、このため高
周波焼入れで表面部にはオーステナイトが残留して表面
硬度が低く、一方、芯部にはマルテンサイト量が増える
ので硬度が高くなって芯部靭性が低い。
Since the contents of P in steels 12 and 28 and the contents of S in steels 13 and 29 exceed the values specified in the present invention, graphitization has not sufficiently progressed. Austenite remains on the surface by induction hardening and the surface hardness is low. On the other hand, the amount of martensite increases in the core, so that the hardness is high and the core toughness is low.

【0069】鋼14及び鋼32はBの含有量が本発明で
規定する値を下回るため、黒鉛化が充分生じていない。
このため、高周波焼入れで表面部にはオーステナイトが
残留して表面硬度が低く、一方、芯部にはマルテンサイ
ト量が増えるので硬度が高くなって芯部靭性が低い。
Since the steel 14 and steel 32 have a B content lower than the value specified in the present invention, graphitization has not sufficiently occurred.
For this reason, austenite remains on the surface portion by induction hardening and the surface hardness is low. On the other hand, the amount of martensite increases in the core portion, so that the hardness increases and the core portion toughness decreases.

【0070】鋼15及び鋼33はBの含有量が本発明で
規定する値を上回るため、BNが粗大化して黒鉛化が充
分起こらないので高周波焼入れで表面部にはオーステナ
イトが残留して表面硬度が低く、一方、芯部にはマルテ
ンサイト量が増えるので硬度が高くなって芯部靭性が低
い。
In steels 15 and 33, since the B content exceeds the value specified in the present invention, BN coarsens and graphitization does not sufficiently occur, so that austenite remains on the surface by induction hardening and the surface hardness is increased. On the other hand, since the amount of martensite in the core increases, the hardness increases and the core toughness decreases.

【0071】鋼16、鋼34はNの含有量が本発明で規
定する値を上回るため、芯部の靭性が低い。
Steel 16 and steel 34 have low core toughness because the N content exceeds the value specified in the present invention.

【0072】鋼30はNiの含有量が本発明で規定する
値を上回るため、高周波焼入れでオーステナイトが残留
し表面硬度が低い。
Since the Ni content of the steel 30 exceeds the value specified in the present invention, austenite remains due to induction hardening and the surface hardness is low.

【0073】鋼31はMoの含有量が本発明で規定する
値を超えるため高周波焼入れでオーステナイトが残留
し、表面硬度が低い。
Since the content of Mo in the steel 31 exceeds the value specified in the present invention, austenite remains by induction hardening and the surface hardness is low.

【0074】[0074]

【発明の効果】本発明による高周波焼入れ用鋼材は、こ
れを高周波焼入れ処理するだけでHv800以上の表面
硬度、Hv300以上の芯部硬度及び2mmUノッチシ
ャルピーの吸収エネルギーで50J以上の芯部靭性を得
ることができる。このため、機械構造用などの各種表面
硬化部品、なかでもギアやピニオンのような部品の素材
としてこの高周波焼入れ用鋼材を適用すれば、表面硬化
のための処理時間を短縮してエネルギー消費を抑え、且
つ、作業環境をクリーンにするとともにインライン処理
化を実現することが可能となる。この高周波焼入れ用鋼
材は本発明方法によって、比較的容易に製造することが
できる。
The steel material for induction hardening according to the present invention can obtain a surface hardness of not less than Hv800, a core hardness of not less than Hv300 and a core toughness of not less than 50 J with an absorption energy of 2 mm U notch Charpy simply by induction hardening. be able to. Therefore, if this induction hardening steel is used as a material for various surface hardened parts for machine structures, especially gears and pinions, the processing time for surface hardening is shortened and energy consumption is reduced. In addition, it is possible to clean the working environment and realize in-line processing. The steel material for induction hardening can be manufactured relatively easily by the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.65〜1.0%、S
i:0.05〜1.5%、Mn:0.05〜2.0%、
Al:0.005〜0.05%、N:0.001〜0.
03%、B:0.0005〜0.005%、Ni:0〜
2.5%、Mo:0〜0.25%、S:0.08%以
下、残部はFe及び不可避不純物で不純物中のPが0.
05%以下の化学組成であって、組織が黒鉛を含む組織
で、且つ、Cの50%以上が黒鉛として存在することを
特徴とする高周波焼入れ用鋼材。
C. 0.65 to 1.0% by weight, S
i: 0.05 to 1.5%, Mn: 0.05 to 2.0%,
Al: 0.005 to 0.05%, N: 0.001 to 0.
03%, B: 0.0005 to 0.005%, Ni: 0 to 0%
2.5%, Mo: 0 to 0.25%, S: 0.08% or less, with the balance being Fe and unavoidable impurities with P in the impurities of 0.
A steel material for induction hardening, having a chemical composition of not more than 05%, a structure containing graphite, and wherein not less than 50% of C is present as graphite.
【請求項2】請求項1に記載の化学組成を有する鋼を1
050〜1300℃に加熱して熱間加工し、900℃以
上の温度で熱間加工を終了した後、黒鉛化のための軟化
焼鈍を行うことを特徴とする高周波焼入れ用鋼材の製造
方法。
2. A steel having the chemical composition according to claim 1,
A method for producing a steel material for induction hardening, comprising: performing hot working by heating to 050 to 1300 ° C .; performing hot working at a temperature of 900 ° C. or higher; and then performing softening annealing for graphitization.
JP34874996A 1996-12-26 1996-12-26 Steel material for induction hardening, and its production Pending JPH10183297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34874996A JPH10183297A (en) 1996-12-26 1996-12-26 Steel material for induction hardening, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34874996A JPH10183297A (en) 1996-12-26 1996-12-26 Steel material for induction hardening, and its production

Publications (1)

Publication Number Publication Date
JPH10183297A true JPH10183297A (en) 1998-07-14

Family

ID=18399115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34874996A Pending JPH10183297A (en) 1996-12-26 1996-12-26 Steel material for induction hardening, and its production

Country Status (1)

Country Link
JP (1) JPH10183297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163458A (en) * 2006-12-08 2008-07-17 Jfe Steel Kk Steel material for machine structural use excellent in machinability and fatigue characteristic
US9039962B2 (en) 2010-03-30 2015-05-26 Nippon Steel & Sumitomo Metal Corporation Steel for induction hardening, roughly shaped material for induction hardening, producing method thereof, and induction hardening steel part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163458A (en) * 2006-12-08 2008-07-17 Jfe Steel Kk Steel material for machine structural use excellent in machinability and fatigue characteristic
US9039962B2 (en) 2010-03-30 2015-05-26 Nippon Steel & Sumitomo Metal Corporation Steel for induction hardening, roughly shaped material for induction hardening, producing method thereof, and induction hardening steel part
US9890446B2 (en) 2010-03-30 2018-02-13 Nippon Steel & Sumitomo Metal Corporation Steel for induction hardening roughly shaped material for induction hardening

Similar Documents

Publication Publication Date Title
JPH07109518A (en) Production of steel for hot forging excellent in fatigue strength, yield strength, and machinability
JP4581966B2 (en) Induction hardening steel
JP2007146232A (en) Method for producing soft-nitrided machine part made of steel
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JPH09170017A (en) Production of steel plate with high strength and high toughness
JPH05320749A (en) Production of ultrahigh strength steel
JPH039168B2 (en)
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JP4488228B2 (en) Induction hardening steel
JPH11131134A (en) Production of high strength formed part made of non-refining steel
JP2768062B2 (en) Manufacturing method of high strength tough steel
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JPH10183296A (en) Steel material for induction hardening, and its production
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
JPH07157842A (en) Steel for soft-nitriding
JP2549038B2 (en) Method for carburizing heat treatment of high-strength gear with small strain and its gear
JP4450217B2 (en) Non-tempered steel for soft nitriding
JPH10183297A (en) Steel material for induction hardening, and its production
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP2012001765A (en) Bar steel for steering rack bar and method for manufacturing bar steel
JP3419333B2 (en) Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same
JP2008248282A (en) Induction hardened component and manufacturing method thereof
JPH07102340A (en) Production of non-heattreated steel excellent in fatigue characteristic

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040420

Free format text: JAPANESE INTERMEDIATE CODE: A02