JPH10183220A - Device for controlling pressure in furnace opening hole part of converter - Google Patents

Device for controlling pressure in furnace opening hole part of converter

Info

Publication number
JPH10183220A
JPH10183220A JP8339798A JP33979896A JPH10183220A JP H10183220 A JPH10183220 A JP H10183220A JP 8339798 A JP8339798 A JP 8339798A JP 33979896 A JP33979896 A JP 33979896A JP H10183220 A JPH10183220 A JP H10183220A
Authority
JP
Japan
Prior art keywords
pressure
converter
delay
hole part
opening hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8339798A
Other languages
Japanese (ja)
Other versions
JP3546620B2 (en
Inventor
Yoshihito Oota
快人 太田
Yuji Wakatsuki
裕司 若槻
Osamu Iida
修 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33979896A priority Critical patent/JP3546620B2/en
Publication of JPH10183220A publication Critical patent/JPH10183220A/en
Application granted granted Critical
Publication of JP3546620B2 publication Critical patent/JP3546620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Feedback Control In General (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a furnace opening hole part pressure control device which can restrain and prevent pressure variation to disturbance as much as possible under as table condition due against a process fluctuation by arranging the furnace opening hole part pressure control device rationally executing a trade-off of the stability and the conrollability in a control system on a frequency. SOLUTION: At the time of recovering exhaust gas of a converter with an OG system, a linear model containing the delay of a pressure propagation from the furnace opening hole part 2 to a pressure adjusting device 4 in the converter 1, the delay of movement of the pressure adjusting device 4 and the delay of pressure detection with a pressure detector 5 fitted to the furnace opening hole part 2, is set. A compensator for reducing a complementary sensible function of a closed loop transfer characteristic in a pressure control system in a high frequency range based on an H infinity control theory to the pressure propagation delay variated with the operational condition in this linear model and a progress gain and for reducing this sensible function from low frequency range to the high frequency range as much as possible, is arranged. By this constitution, a time and an arithmetic load needed to the gain adjustment in a trial and error executed at the furnace opening hole part pressure control device 6 are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、OG方式によって
転炉廃ガスを回収する際に転炉の炉口部の圧力を制御す
る装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling a pressure at a furnace mouth of a converter when recovering a converter waste gas by an OG method.

【0002】[0002]

【従来の技術】一般に、OG方式によって転炉廃ガスを
回収する際の炉口部の圧力制御には、所謂PID制御が
用いられている。即ち、図7に示すような圧力制御装置
では、炉口部に取付けられた圧力検出器で当該炉口部内
の圧力と大気圧との差圧を検出し、この検出された差圧
と目標差圧との偏差をPID制御装置に入力し、この制
御装置が前記差圧偏差に応じたPID操作量を圧力調整
装置に指令するように構成されている。そして、このよ
うな制御によって、転炉の炉口部の圧力を大気圧とほぼ
同じ圧力に保持することにより、炉口部から外部への転
炉廃ガスの吹出しや大気の吸込みを抑制防止して、転炉
廃ガスを効率よく回収することが可能となる。
2. Description of the Related Art Generally, so-called PID control is used for pressure control of a furnace port when recovering converter waste gas by the OG method. That is, in the pressure control device as shown in FIG. 7, a pressure detector attached to the furnace port detects a pressure difference between the pressure in the furnace port and the atmospheric pressure, and the detected pressure difference and the target differential pressure are detected. The deviation from the pressure is input to a PID control device, and the control device is configured to instruct the pressure adjustment device to perform a PID operation amount corresponding to the differential pressure deviation. By controlling the pressure at the furnace mouth of the converter at approximately the same pressure as the atmospheric pressure by such control, it is possible to prevent the discharge of converter waste gas from the furnace mouth to the outside and the suction of air. Thus, it becomes possible to efficiently recover the converter waste gas.

【0003】ところで、このような転炉炉口部圧力制御
装置において、当該転炉炉口部の圧力変動を十分に抑制
するためには、例えば前記PID制御装置のゲインを、
制御系が安定な範囲でできるだけ大きくすることが要求
される。しかしながら、PID制御のように単純な補償
要素が3つしかない制御装置では、予想される操業条件
によるプロセスゲインの変化やプロセスの遅れ要素のた
めに制御ゲインを十分に大きく設定することが困難であ
る。
[0003] In such a converter furnace port pressure control device, in order to sufficiently suppress the pressure fluctuation in the converter furnace port, for example, the gain of the PID control device is set as follows.
It is required that the control system be as large as possible within a stable range. However, in a control device having only three simple compensating elements such as PID control, it is difficult to set the control gain sufficiently large due to a change in process gain due to expected operating conditions or a delay factor of the process. is there.

【0004】そこで、例えば特開昭61−174310
号公報に記載されるように、プロセスゲインの変化に対
して制御ゲインを適応させながら変更するゲインスケジ
ュール法や、特開昭63−151506号公報に記載さ
れるように、前記PID制御装置に加え、プロセスの遅
れ要素をモデルとして考慮して外乱量をオンラインで推
定し、これを補償する外乱オブザーバ制御装置を適用す
るものが提案されている。これらの制御手段によれば、
圧力制御系の遅れ要素を考慮して制御装置を設定するた
め、単純なPID制御装置に比して、プロセスが安定な
範囲で、より制御ゲインを大きくすることが可能とな
る。
Accordingly, for example, Japanese Patent Application Laid-Open No. Sho 61-174310
As disclosed in Japanese Patent Application Laid-Open No. 63-151506, a gain schedule method in which a control gain is changed while adapting a control gain in response to a change in process gain. A method has been proposed in which a disturbance observer control device for estimating a disturbance amount on-line in consideration of a delay element of a process as a model and compensating for the disturbance amount is applied. According to these control means,
Since the control device is set in consideration of the delay element of the pressure control system, the control gain can be further increased in a stable process range as compared with a simple PID control device.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の転炉炉口部圧力制御装置では、設定されたプロセスモ
デルの圧力伝播遅れやプロセスゲインが、操業条件によ
って変化したときには、実際のプロセスモデルとの間で
差が生じるため、制御系の安定性が損なわれる恐れがあ
る。また、このような状況を回避するためには、安定性
と制御性とのトレードオフを補うために、例えば最適化
制御を取り入れるなどして、多大な時間と演算処理のエ
ネルギとをかけて制御ゲインの調整や切替えを行わなけ
ればならないという問題がある。
However, in these converter pressure control devices, when the pressure propagation delay or the process gain of the set process model changes due to the operating conditions, it does not match the actual process model. Since there is a difference between them, the stability of the control system may be impaired. Further, in order to avoid such a situation, in order to compensate for a trade-off between stability and controllability, for example, optimization control is incorporated, and a large amount of time and energy for arithmetic processing are used for control. There is a problem that the gain must be adjusted or switched.

【0006】本発明はこれらの諸問題に鑑みて開発され
たものであり、圧力制御系のモデルを考慮しながら、そ
のモデルの誤差についても設定段階から考慮することに
よって、制御系の安定性と制御ゲインの大きさによる制
御性とのトレードオフを効率的に補い、プロセス変動に
対しては安定しており且つ外乱に伴う圧力変動をより抑
制防止可能な転炉炉口部圧力制御装置を提供することを
目的とするものである。
The present invention has been developed in view of these problems. The stability of the control system is improved by considering the model error of the pressure control system from the setting stage while considering the model. Provide a converter furnace pressure control device that efficiently compensates for the trade-off with controllability due to the magnitude of control gain, is stable against process fluctuations, and can further prevent pressure fluctuations due to disturbances. It is intended to do so.

【0007】[0007]

【課題を解決するための手段】本発明の転炉炉口部圧力
制御装置は、転炉の炉口部の圧力を調整するための圧力
調整装置を備えて、OG方式により転炉廃ガスを回収す
る際の転炉の炉口部の圧力を制御する装置であって、前
記転炉の炉口部から圧力調整装置までの圧力伝播の遅れ
及び圧力調整装置の動作の遅れ及び前記転炉の炉口部に
取付けられた圧力検出器による圧力検出の遅れを含む線
形モデルを設定し、この線形モデルにおいて操業条件に
よって変動する圧力伝播遅れ及びプロセスゲインに対し
て、H無限大制御理論に基づいて圧力制御系の閉ループ
伝達特性の相補感度関数を高周波数領域で低減化し且つ
その感度関数を低周波数領域から可及的高周波数領域ま
で低減化する補償器を備えたことを特徴とするものであ
る。
The converter furnace pressure control device of the present invention is provided with a pressure regulator for adjusting the pressure of the furnace mouth of the converter. A device for controlling the pressure at the furnace mouth of the converter at the time of recovery, wherein a delay in pressure propagation from the furnace mouth of the converter to a pressure adjusting device, a delay in operation of the pressure adjusting device, and a A linear model including a delay in pressure detection by a pressure detector attached to the furnace opening is set. Based on the H-infinity control theory, a pressure propagation delay and a process gain that fluctuate depending on operating conditions in this linear model are set. A compensator for reducing a complementary sensitivity function of a closed loop transfer characteristic of the pressure control system in a high frequency region and reducing the sensitivity function from a low frequency region to a high frequency region as much as possible. .

【0008】この発明では、前記諸問題を解決するため
に、圧力制御系のモデルを用いて制御装置の設定を行う
際に、前述のように想定し得る圧力伝播遅れとプロセス
ゲインの変動誤差範囲を、制御系の閉ループ伝達特性の
相補感度関数により評価することによって安定性を確保
し、この制御系の安定性を決定した後に、できるだけ制
御ゲインを上げるように感度関数を低減させる制御装置
を、H無限大制御理論に基づき周波数領域で設定する。
より具体的には、外乱から操作量出力までの伝達関数の
大きさを所望の高周波数領域で小さくするために伝達関
数で表現される安定性重み関数と、当該外乱から当該外
乱が加わる手前までの伝達関数の大きさを所望の低周波
数領域で小さくするために伝達関数で表現される制御性
重み関数とを設定し、少なくとも前記プロセスモデルの
圧力伝播遅れやプロセスゲインの変動に伴うモデル誤差
より常に大きな安定性重み関数及び前記H無限大制御理
論による相補感度関数が高周波数領域で小さく且つ感度
関数が低周波数領域から可及的高周波数領域まで小さい
制御性重み関数を用い、これをH無限大制御理論に基づ
いて解法することによって前記補償器,一般的にはコン
トローラを構成すれば、前述のような安定性と制御性と
を最も効率よくトレードオフして、プロセス変動に対し
ては安定し且つ圧力変動は可及的に抑制防止することが
できる。
According to the present invention, in order to solve the above-mentioned problems, when setting a control device using a model of a pressure control system, as described above, the pressure propagation delay and the fluctuation error range of the process gain can be assumed. Is evaluated by the complementary sensitivity function of the closed-loop transfer characteristic of the control system to ensure stability, and after determining the stability of the control system, a control device that reduces the sensitivity function so as to increase the control gain as much as possible, Set in the frequency domain based on H-infinity control theory.
More specifically, a stability weighting function represented by a transfer function to reduce the magnitude of the transfer function from the disturbance to the manipulated variable output in a desired high-frequency region, and from the disturbance to a point before the disturbance is added A controllability weight function represented by a transfer function is set to reduce the magnitude of the transfer function in a desired low-frequency region, and at least a model error due to a pressure propagation delay of the process model or a variation in process gain is set. A large stability weight function and a control weight function whose complementary sensitivity function based on the H-infinity control theory is small in a high frequency region and whose sensitivity function is small from a low frequency region to a high frequency region as much as possible are used. If the compensator, generally a controller, is constructed by solving based on the large control theory, the above-described stability and controllability are most efficiently achieved. And offs, for process variation stable and pressure fluctuations can be prevented as much as possible suppressed.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は本発明に係る転炉炉口部圧力
制御装置を実施化したOG方式による炉口部の圧力制御
系の主要部のみを抜粋したものである。この圧力制御系
の構成要件についてより具体的に説明すれば、転炉1の
内部に発生した廃ガスは、転炉1の炉口部2上部から配
設された配管3を通じて図示されないファンにより回収
される。この配管3内には、例えばポペット型の圧力調
整弁4aが介装されており、そのポペットの移動量,つ
まり圧力調整弁4aの開度はアクチュエータである油圧
シリンダ4bによって調整される。従って、この圧力調
整弁4aと油圧シリンダ4bとによって圧力調整装置4
が構成される。一方、前記炉口部2には、当該炉口部2
内の圧力を検出して大気圧との差圧を炉圧PVとして出
力する圧力発信器(圧力検出器)5が取付けられてお
り、この圧力発信器5からの炉圧PVと、図示されない
目標炉圧発信器からの目標炉圧SV,即ち炉口部2内の
圧力と大気圧との目標差圧とが、例えばパソコンやワー
クステーション,或いはもっと大掛かりなプロセスコン
ピュータ等から構成される炉口部圧力制御装置(炉圧制
御装置)6に入力され、当該炉圧制御装置6は、両者の
偏差を用いて、前記油圧シリンダへの指令信号Y(n)
出力する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows only a main part of a pressure control system of a furnace port by an OG system in which a converter furnace pressure control apparatus according to the present invention is implemented. The constituent elements of the pressure control system will be described in more detail. Waste gas generated inside the converter 1 is collected by a fan (not shown) through a pipe 3 disposed above the furnace port 2 of the converter 1. Is done. A pressure adjusting valve 4a of, for example, a poppet type is interposed in the pipe 3, and the movement amount of the poppet, that is, the opening of the pressure adjusting valve 4a is adjusted by a hydraulic cylinder 4b as an actuator. Therefore, the pressure regulating device 4 is controlled by the pressure regulating valve 4a and the hydraulic cylinder 4b.
Is configured. On the other hand, the furnace port 2 is
A pressure transmitter (pressure detector) 5 for detecting a pressure in the chamber and outputting a pressure difference from the atmospheric pressure as a furnace pressure PV is attached. The furnace pressure PV from the pressure transmitter 5 and a target not shown The target furnace pressure SV from the furnace pressure transmitter, that is, the target pressure difference between the pressure in the furnace port 2 and the atmospheric pressure, is a furnace port composed of, for example, a personal computer, a workstation, or a larger process computer. The pressure is input to a pressure control device (furnace pressure control device) 6, and the furnace pressure control device 6 outputs a command signal Y (n) to the hydraulic cylinder using the deviation between the two.

【0010】前記炉圧制御装置6は、図示されない入出
力インターフェースや、ハードディスクドライバ(HD
D)等の記憶装置や、動作プログラムを内蔵するRO
M,動作プログラムに従った動作を行うCPU,ワーク
エリア等として動作するRAM等の電子ディバイスで構
成される演算処理装置を備えて構成されることから、こ
の炉圧制御装置6はパーソナルコンピュータやワークス
テーション,場合によってはプロセスコンピュータ等の
情報処理装置で実現可能である。但し、このような情報
処理装置の出力信号そのものでは、前記アクチュエータ
である油圧シリンダを直接駆動することができないの
で、両者の間には適宜のインターフェース或いはドライ
バ等が必要である。
The furnace pressure control device 6 includes an input / output interface (not shown) and a hard disk driver (HD).
D) and other storage devices, and ROs with built-in operation programs
M, a CPU that operates in accordance with the operation program, and an arithmetic processing unit that is composed of an electronic device such as a RAM that operates as a work area. It can be realized by a station or, in some cases, an information processing device such as a process computer. However, the output signal itself of such an information processing device cannot directly drive the hydraulic cylinder as the actuator, so that an appropriate interface or driver is required between the two.

【0011】次に、前記炉圧制御装置(以下、システム
中のそれをコントローラとも称する)の構成の詳細につ
いて説明する。まず、前記図1に示す圧力制御系のプロ
セスのうち、図2に示すように、圧力発信器の検出遅れ
を1次遅れ系の(1/T3 s+1)、配管での圧力伝播
遅れを1次遅れ系の(1/T2 s+1)、圧力調整装置
の動作遅れ,特に油圧系の動作遅れを1次遅れ系の(T
1 s+1)で夫々近似し、更に無駄時間eat,圧力制御
ゲインKを考慮して、これらを直列に結合して、系のプ
ロセスモデルP0(s)を構築する(sは、全てラプラス演
算子)。従って、この系のプロセスモデルP0(s)は下記
1式で表される。
Next, the configuration of the furnace pressure control device (hereinafter, also referred to as a controller in the system) will be described in detail. First, among the processes of the pressure control system shown in FIG. 1, as shown in FIG. 2, the detection delay of the pressure transmitter is reduced to (1 / T 3 s + 1) of the first-order delay system, and the pressure propagation delay in the pipe is reduced to 1 The (1 / T 2 s + 1) of the second- order lag system and the operation delay of the pressure regulator, particularly the operation delay of the hydraulic system, are reduced by (T
1 s + 1), and further, in consideration of the dead time e at and the pressure control gain K, these are connected in series to construct a process model P 0 (s) of the system. Child). Therefore, the process model P 0 (s) of this system is represented by the following equation.

【0012】 次に、前記プロセスモデルP0(s)と、前述したコントロ
ーラC(s) とで図3に示す閉ループを構成し、更に外乱
の加わる箇所を特定して、外乱から操作量出力までの伝
達関数の大きさを所望の高周波数領域で小さくするため
に伝達関数で表現される安定性重み関数W1(s)と、当該
外乱から当該外乱が加わる手前までの伝達関数の大きさ
を所望の低周波数領域で小さくするために伝達関数で表
現される制御性重み関数W2(s)とを設定する。そして、
図3の制御系において相補感度関数(1/(1+P0(s)C
(s))と呼ばれる閉ループ伝達特性が、図4aに示すよう
に高周波数領域で小さくなるように重み関数W1(s)を設
定し、且つ外乱から炉圧変動への影響を示す感度関数
((P0(s)C(s))/(1+P0(s)C(s))と呼ばれるゲイン特
性が、図4bに示すように低周波数領域でできるだけ小
さくなるように重み関数W2(s)を設定することによっ
て、一般化プラントと呼ばれるモデル誤差を考慮したプ
ロセスモデルP(s) を構成する。
[0012] Next, the process model P 0 (s) and the above-described controller C (s) form a closed loop shown in FIG. 3, and further specify a location to which a disturbance is applied, and a transfer function from the disturbance to the manipulated variable output. And a stability weighting function W 1 (s) represented by a transfer function to reduce the magnitude of the transfer function in a desired high-frequency region, and the magnitude of the transfer function from the disturbance to a point before the disturbance is added to the stability weight function. A controllability weight function W 2 (s) expressed by a transfer function is set to reduce the frequency domain. And
In the control system of FIG. 3, the complementary sensitivity function (1 / (1 + P 0 (s) C
(s)), the weighting function W 1 (s) is set so that the closed-loop transfer characteristic is reduced in the high frequency region as shown in FIG. 4A, and the sensitivity function indicating the influence of disturbance on the reactor pressure fluctuation is set.
The weighting function W 2 ((P 0 (s) C (s)) / (1 + P 0 (s) C (s)) is set to be as small as possible in the low frequency region as shown in FIG. By setting s), a process model P (s) that takes into account model errors called a generalized plant is constructed.

【0013】なお、前記二つの重み関数W1(s),W2(s)
は以下のようにして設定する。まず、前述した相補感度
関数の周波数上での具体的な形状を以下のようにして決
定する。即ち、今回モデルとして考慮した図2の各要素
において、圧力調整装置と圧力検出装置である圧力発信
器については、モデルと実際のプロセスとのずれが大き
くなることがないので、無駄時間及び配管圧力伝達遅れ
及びプロセスゲインのモデル誤差について図5に示すモ
デル誤差Δ(s) として見積もる。ここで、前述のよう
に、元来使用されるプロセスモデルP0(s)に対して、こ
のモデル誤差Δ(s) を含んだ一般化されたプロセスモデ
ルP(s) は下記2式の関係で表れる。
The above two weighting functions W 1 (s) and W 2 (s)
Is set as follows. First, the specific shape of the above-described complementary sensitivity function on the frequency is determined as follows. That is, in each element of FIG. 2 considered as a model this time, the pressure transmitter, which is a pressure adjusting device and a pressure detecting device, does not have a large difference between the model and the actual process. The model error of the transmission delay and the process gain is estimated as the model error Δ (s) shown in FIG. Here, as described above, with respect to the process model P 0 (s) originally used, the generalized process model P (s) including the model error Δ (s) is expressed by the following equation (2). It appears in.

【0014】 Δ(s) =(P(s) −P0(s))/・P0(s) ……… (2) この2式において、前述したモデル誤差要因のパラメー
タを変動範囲で変化させてモデル誤差Δ(s) を求め、こ
のモデル誤差Δ(s) に対して、常時下記3式を満足する
前記安定化重み関数W1(s)を設定する。
Δ (s) = (P (s) −P 0 (s)) / · P 0 (s) (2) In these two equations, the parameter of the above-described model error factor is changed within a fluctuation range. Thus, a model error Δ (s) is obtained, and the stabilizing weight function W 1 (s) that always satisfies the following three equations is set for the model error Δ (s).

【0015】 W1(s)>Δ(s) ……… (3) 従って、前述したモデル誤差要因のパラメータを変化さ
せても、前記3式を常時満足する安定化重み関数W1(s)
を用いて、前記図3における相補感度関数を設定すれ
ば、モデル誤差Δ(s) があってもプロセスは安定にな
る。一方、前述した感度関数は、外乱からの感度を規定
するものであり、できるだけ感度関数が小さくなるよう
に制御性重み関数W2(s)を設定したいが、前記定義式か
らも明らかなように相補感度関数と感度関数との和が常
時“1”になることから、相補感度関数が大きな値とな
る周波数領域で、できるだけ感度関数が小さくなるよう
に重み関数W2(s)を設定する。以上より、本実施形態で
設定された安定性重み関数W1(s),及び制御性重み関数
2(s)は下記4式及び5式で表れる。
W 1 (s)> Δ (s) (3) Therefore, even if the parameters of the above-described model error factors are changed, the stabilizing weight function W 1 (s) that always satisfies the above equation (3).
If the complementary sensitivity function in FIG. 3 is set using the above equation, the process becomes stable even if there is a model error Δ (s). On the other hand, the above-described sensitivity function defines the sensitivity from disturbance, and it is desired to set the controllability weight function W 2 (s) so that the sensitivity function becomes as small as possible. Since the sum of the complementary sensitivity function and the sensitivity function is always “1”, the weighting function W 2 (s) is set so that the sensitivity function is as small as possible in a frequency region where the complementary sensitivity function has a large value. As described above, the stability weight function W 1 (s) and the controllability weight function W 2 (s) set in the present embodiment are expressed by the following equations (4) and (5).

【0016】 なお、式中のα,β,γ,c,d,e,f,g,hは、
夫々所定の係数を表す。
[0016] Note that α, β, γ, c, d, e, f, g, and h in the equations are
Each represents a predetermined coefficient.

【0017】このようにして重み関数W1(s),W2(s)を
算出したら、下記6式を満足するコントローラC(s)
を、H無限大制御理論におけるグローバ、ドイルの解法
によって求める(以後、ラプラス演算子sは省略す
る)。
After calculating the weight functions W 1 (s) and W 2 (s) in this manner, the controller C (s) satisfying the following equation (6) is obtained.
Is obtained by the solution of Glover and Doyle in the H-infinity control theory (the Laplace operator s is omitted hereinafter).

【0018】 このようにしてコントローラC(s) を求めると、下記7
式及び8式に示すような状態空間表現の行列A,B,
C,Dを得る。
[0018] When the controller C (s) is obtained in this manner, the following 7 is obtained.
Equations and matrices A, B,
Obtain C and D.

【0019】 dx(t) /dt=Ax(t) +Bu(t) ……… (7) y(t) =Cx(t) +Du(t) ……… (8) なお、A:8×8の正方行列、B:8×1の行列、C:
1×8の行列、D:1×1のパラメータである。
Dx (t) / dt = Ax (t) + Bu (t) (7) y (t) = Cx (t) + Du (t) (8) A: 8 × 8 , B: 8 × 1 matrix, C:
1 × 8 matrix, D: 1 × 1 parameter.

【0020】これを、前述のようなパソコンやプロセス
コンピュータ等のディジタル演算処理装置に実装するた
めに、双一次変換によって離散化すると、下記9式及び
10式を得る。
When this is discretized by bilinear transformation in order to be mounted on a digital arithmetic processing device such as a personal computer or a process computer as described above, the following equations 9 and 10 are obtained.

【0021】 X(n+1) =A”X(n) +B”U(n) ……… (9) Y(n) =C”X(n) +D”U(n) ………(10) なお、式中、A”,B”,C”,D”は、夫々前記行列
A,B,C,Dを双一次変換したものであり、U(n) は
下記11式で与えられる。
X (n + 1) = A "X (n) + B" U (n) ... (9) Y (n) = C "X (n) + D" U (n) ... (10) ) Where A ", B", C ", and D" are the bilinear transformations of the matrices A, B, C, and D, respectively, and U (n) is given by the following equation (11).

【0022】 U(n) =SV(n) −PV(n) ………(11) この演算処理を前記ディジタル演算処理層に実装し、実
機として転炉炉口部圧力制御装置6を構成した。
U (n) = SV (n) -PV (n) (11) This arithmetic processing is mounted on the digital arithmetic processing layer, and a converter furnace port pressure control device 6 is configured as an actual machine. .

【0023】このように構成された本実施形態の炉口部
圧力制御装置において、制御系に外乱が加わる副原料投
入時の炉口部2の圧力変動の様子を図6に、また従来の
PID制御における炉口部圧力変動の様子を図8に示
す。両図から明らかなように、本実施形態の炉口部圧力
制御装置によれば、従来のPID制御によるものよりも
炉口部2の圧力変動が抑制されていることが分かる。ま
た、本実施形態により、従来発生していた圧力変動を約
40%削減できることが確認された。また、制御系の安
定性についても長期間の連続使用において問題なく適用
されている。また、初期設定後の調整においても、時間
や演算負荷等のエネルギをかけることなく対応できてい
る。
FIG. 6 shows a state of the pressure fluctuation of the furnace port 2 when the auxiliary material is charged when a disturbance is applied to the control system in the furnace port pressure control apparatus of the present embodiment thus configured. FIG. 8 shows a state of the furnace port pressure fluctuation in the control. As is clear from both figures, it can be understood that the furnace port pressure control device of the present embodiment suppresses the pressure fluctuation of the furnace port 2 more than the conventional PID control. Further, it was confirmed that the present embodiment can reduce the pressure fluctuation which has conventionally occurred by about 40%. Also, the stability of the control system is applied without any problem in long-term continuous use. The adjustment after the initial setting can be performed without applying energy such as time and calculation load.

【0024】このように本実施形態の炉口部圧力制御装
置では、制御系の安定性と制御性のトレードオフが周波
数上の設定で合理的に行われているために、従来の誤差
を含まないモデルに基づいた制御装置の設定で行ってい
た,所謂試行錯誤でのゲイン調整にかける時間や演算負
荷を軽減でき、且つモデルの精度に応じて制御系の安定
性を確保したまま、炉圧変動を限界まで向上させること
ができる。
As described above, in the furnace port pressure control apparatus of the present embodiment, since the trade-off between the stability of the control system and the controllability is rationally performed by setting the frequency, the conventional error is included. It is possible to reduce the time and calculation load for gain adjustment by so-called trial and error, which was performed by setting the control device based on a model that does not have a furnace pressure, while maintaining the stability of the control system according to the accuracy of the model. Fluctuations can be improved to the limit.

【0025】[0025]

【発明の効果】以上説明したように、本発明の転炉炉口
部圧力制御装置によれば、制御系の安定性と制御性のト
レードオフを周波数上で合理的に行うことにより、制御
装置で行わなければならない試行錯誤でのゲイン調整に
かける時間や演算負荷を軽減でき、プロセス変動に対し
ては安定し且つ圧力変動は可及的に抑制防止することが
できる。
As described above, according to the converter furnace pressure control apparatus of the present invention, the trade-off between the stability of the control system and the controllability is rationally performed on the frequency. It is possible to reduce the time and calculation load required for the gain adjustment by trial and error, which must be performed in step (1), to stabilize the process variation and to prevent and suppress the pressure variation as much as possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の転炉炉口部圧力制御装置を実施化した
制御系の主要概略構成図である。
FIG. 1 is a main schematic configuration diagram of a control system in which a converter furnace pressure control device of the present invention is implemented.

【図2】図1に示す制御系の基本的なプロセスモデルの
ブロック図である。
FIG. 2 is a block diagram of a basic process model of the control system shown in FIG.

【図3】図2に示すプロセスモデルにモデル誤差を含ん
だ一般化されたプロセスモデルのブロック図である。
FIG. 3 is a block diagram of a generalized process model including a model error in the process model shown in FIG. 2;

【図4】図3に示すプロセスモデルで必要とされる相補
感度関数及び感度関数の周波数特性の説明図である。
FIG. 4 is an explanatory diagram of a complementary sensitivity function and a frequency characteristic of the sensitivity function required in the process model shown in FIG. 3;

【図5】モデル誤差を用いて各重み関数を設定するため
の説明図である。
FIG. 5 is an explanatory diagram for setting each weighting function using a model error.

【図6】本実施形態の転炉炉口部圧力制御装置による炉
圧変動を示す説明図である。
FIG. 6 is an explanatory diagram showing a furnace pressure fluctuation by the converter furnace port pressure control device of the present embodiment.

【図7】従来の転炉炉口部圧力制御装置の主要概略構成
図である。
FIG. 7 is a main schematic configuration diagram of a conventional converter furnace port pressure control device.

【図8】従来の転炉炉口部圧力制御装置による炉圧変動
を示す説明図である。
FIG. 8 is an explanatory view showing a furnace pressure fluctuation by a conventional converter furnace port pressure control device.

【符号の説明】[Explanation of symbols]

1は転炉 2は炉口部 3は配管 4は圧力調整装置 5は圧力発信器(圧力検出器) 6は炉口部圧力制御装置 1 is a converter 2 is a furnace mouth 3 is a pipe 4 is a pressure regulator 5 is a pressure transmitter (pressure detector) 6 is a furnace mouth pressure controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 転炉の炉口部の圧力を調整するための圧
力調整装置を備えて、OG方式により転炉廃ガスを回収
する際の転炉の炉口部の圧力を制御する装置であって、
前記転炉の炉口部から圧力調整装置までの圧力伝播の遅
れ及び圧力調整装置の動作の遅れ及び前記転炉の炉口部
に取付けられた圧力検出器による圧力検出の遅れを含む
線形モデルを設定し、この線形モデルにおいて操業条件
によって変動する圧力伝播遅れ及びプロセスゲインに対
して、H無限大制御理論に基づいて圧力制御系の閉ルー
プ伝達特性の相補感度関数を高周波数領域で低減化し且
つその感度関数を低周波数領域から可及的高周波数領域
まで低減化する補償器を備えたことを特徴とする転炉炉
口部圧力制御装置。
An apparatus for controlling the pressure of a furnace mouth of a converter when recovering converter waste gas by an OG method, comprising a pressure adjusting device for adjusting the pressure of the furnace mouth of the converter. So,
A linear model including a delay in pressure propagation from the furnace mouth of the converter to a pressure regulator and a delay in operation of the pressure regulator and a delay in pressure detection by a pressure detector attached to the furnace mouth of the converter. In this linear model, the complementary sensitivity function of the closed-loop transfer characteristic of the pressure control system is reduced in the high frequency region based on H-infinity control theory with respect to the pressure propagation delay and the process gain that fluctuate depending on the operating conditions, and A converter furnace pressure control device comprising a compensator for reducing a sensitivity function from a low frequency range to a high frequency range as much as possible.
JP33979896A 1996-12-19 1996-12-19 Converter furnace pressure control device Expired - Fee Related JP3546620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33979896A JP3546620B2 (en) 1996-12-19 1996-12-19 Converter furnace pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33979896A JP3546620B2 (en) 1996-12-19 1996-12-19 Converter furnace pressure control device

Publications (2)

Publication Number Publication Date
JPH10183220A true JPH10183220A (en) 1998-07-14
JP3546620B2 JP3546620B2 (en) 2004-07-28

Family

ID=18330917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33979896A Expired - Fee Related JP3546620B2 (en) 1996-12-19 1996-12-19 Converter furnace pressure control device

Country Status (1)

Country Link
JP (1) JP3546620B2 (en)

Also Published As

Publication number Publication date
JP3546620B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US5570282A (en) Multivariable nonlinear process controller
JP3574132B2 (en) Neural network based disturbance predictors for model predictive control
KR19990022789A (en) How to Combine Independent Feedforward Control in a Multivariate Predictive Controller
JPH10507856A (en) Variable horizon predictor for controlling dead time dominant processes, multiple variable interactive processes, and processes with time varying dynamics
EP0180292B1 (en) Process control apparatus
EP1806492A2 (en) Method and apparatus for reducing or eliminating oscillations in a gas turbine fuel control system
KR0135586B1 (en) Gain adaptive control device
JP2682575B2 (en) Method and apparatus for controlling water supply level of steam generator
US5796608A (en) Self controllable regulator device
JPH10183220A (en) Device for controlling pressure in furnace opening hole part of converter
JP3772340B2 (en) Valve positioner
Chen et al. Optimal tracking control for unknown nonlinear systems with uncertain input saturation: A dynamic event-triggered ADP algorithm
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
JPH09146610A (en) Multivariable nonlinear process controller
JPH0535306A (en) Dead time compensation control device
Durand et al. Stiction compensation via model predictive control
JP3277484B2 (en) PID controller
JPS5925242B2 (en) Simple predictive control device
EP0710513A1 (en) Interstand tension controller for a continuous rolling mill
JPH10222207A (en) Feedforward controller
JP2002268701A (en) Arithmetic method for non-linear optimal controller
JP4119358B2 (en) Control method and control apparatus
JP2523477B2 (en) Boiler control device
JPH06257711A (en) Steam temperature control device
JPH10187205A (en) Controller and auxiliary control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees