JPH10183143A - Hydrogenation of heavy hydrocarbon oil - Google Patents

Hydrogenation of heavy hydrocarbon oil

Info

Publication number
JPH10183143A
JPH10183143A JP35623496A JP35623496A JPH10183143A JP H10183143 A JPH10183143 A JP H10183143A JP 35623496 A JP35623496 A JP 35623496A JP 35623496 A JP35623496 A JP 35623496A JP H10183143 A JPH10183143 A JP H10183143A
Authority
JP
Japan
Prior art keywords
heavy hydrocarbon
hydrocarbon oil
catalyst
reaction
hydrotreating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35623496A
Other languages
Japanese (ja)
Inventor
Jun Fuchigami
循 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP35623496A priority Critical patent/JPH10183143A/en
Publication of JPH10183143A publication Critical patent/JPH10183143A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for hydrogenation capable of suppressing the polymerization reaction of asphaltene, reducing the coke deactivation of a catalyst and prolonging the life of the catalyst by hydrogenating a radicalized asphaltene. SOLUTION: This method for hydrogenating a heavy hydrocarbon oil comprises (a) subjecting the heavy hydrocarbon oil of a feed raw material to hydrogenating metal removal treatment by a first reaction column, (b) hydrogenating the heavy hydrocarbon oil subjected to the hydrogenating metal removal treatment by the process (a) at a reaction temperature lower than that of the process (a) by a second reaction column and further (c) hydrogenating the heavy hydrocarbon oil treated by the process (b) at a reaction temperature higher than that of the process (a) by a third reaction column.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は重質炭化水素油の水
素化処理方法に関し、さらに詳しくは、重質炭化水素油
の水素化処理方法において、コーク前駆体物質の生成を
抑制することにより触媒上に析出するコーク(炭素質物
質)による触媒の失活を抑制して触媒寿命を延長しうる
水素化処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating heavy hydrocarbon oils, and more particularly, to a method for hydrotreating heavy hydrocarbon oils by suppressing the production of coke precursor substances. The present invention relates to a hydrotreating method capable of suppressing catalyst deactivation by coke (carbonaceous substance) deposited thereon and extending catalyst life.

【0002】[0002]

【従来の技術】従来、炭化水素油、特にアスファルテ
ン、硫黄、金属分などを含有する原油、常圧残渣油、減
圧残渣油などの重質炭化水素油の水素化処理において
は、処理中に金属分やコークが触媒上に析出するために
触媒活性が低下し、触媒寿命が短くなるという問題があ
った。
2. Description of the Related Art Conventionally, in the hydrotreating of hydrocarbon oils, especially heavy hydrocarbon oils such as crude oils containing asphaltenes, sulfur, metals, etc., atmospheric residual oils, and vacuum residual oils, metallization occurs during the treatment. There is a problem that the catalyst activity is reduced due to precipitation of coke and coke on the catalyst, and the catalyst life is shortened.

【0003】そこで、触媒寿命を延長させる方法とし
て、主反応塔の前段に並列に2個の予備反応塔を設置し
て、先ずこの一つの予備反応塔に原料油を通油して水素
化脱メタル反応を行い、続いて主反応塔で水素化脱硫反
応を行う処理方法であって、予備反応塔の触媒が金属分
の析出により失活すると他の予備反応塔に切り替えて処
理する方法が提案されている(特公昭49−6163号
公報)。
[0003] As a method of extending the life of the catalyst, two pre-reaction towers are installed in parallel in front of the main reaction tower. A treatment method in which a metal reaction is performed and then a hydrodesulfurization reaction is performed in the main reaction tower, and when the catalyst in the pre-reaction tower is deactivated due to deposition of metal, a method is proposed in which the treatment is switched to another pre-reaction tower. (Japanese Patent Publication No. 49-6163).

【0004】しかし、この方法は金属分の析出による触
媒の失活に対しては一応の効果を有するものの、コーク
の析出による触媒の失活に対しては効果が見られなかっ
た。何故ならば、金属分の触媒上への析出は触媒層の前
段において起こり、コークの触媒上への析出は触媒層の
後段において起こるからである。
However, although this method has a modest effect on the deactivation of the catalyst due to the deposition of metal, it has no effect on the deactivation of the catalyst due to the deposition of coke. This is because the deposition of metal on the catalyst occurs in the former stage of the catalyst layer, and the deposition of coke on the catalyst occurs in the latter stage of the catalyst layer.

【0005】前述のコークによる失活に注目した触媒寿
命の延長方法として、重質炭化水素油を触媒の存在下で
水素化処理するにあたり、原料油を一定方向に流して所
定時間処理した後に触媒性能の劣化に応じて該触媒に対
する原料油の流れを逆方向にして処理することを特徴と
する炭化水素油の水素化処理方法が提案されている(特
開平7−331254号公報。)
[0005] As a method of extending the catalyst life focusing on the deactivation due to coke described above, in hydrotreating a heavy hydrocarbon oil in the presence of a catalyst, the raw material oil is flowed in a certain direction and is treated for a predetermined time. A method for hydrotreating hydrocarbon oils has been proposed in which the flow of the feedstock oil to the catalyst is reversed in accordance with the performance degradation (JP-A-7-331254).

【0006】また、重質油の水素化処理の際に生成する
コークを著しく抑制して水素化処理装置を長期間連続的
に安定に運転できる重質油の水素化処理法として、原料
重質油に対して0.3〜15重量%のコールタール、タ
ールサンド、オイルシェールまたはビチューメンから得
られる油および石炭液化油から選ばれる少なくとも一種
の油を配合して水素化処理する方法が提案されている
(特開平7−316566号公報)。
Further, as a method for hydrotreating heavy oil, which can stably operate the hydrotreating apparatus continuously for a long period of time by remarkably suppressing coke generated during the hydrotreating of heavy oil, A method has been proposed in which 0.3 to 15% by weight of oil is blended with at least one oil selected from coal liquefied oil and oil obtained from coal tar, tar sands, oil shale or bitumen, and hydrotreated. (JP-A-7-316566).

【0007】しかしながら、前述の方法ではコーク失活
の抑制効果が十分でなく、触媒寿命の延長に関して必ず
しも満足のいくものではなかった。
[0007] However, the above-mentioned method is not sufficiently effective in suppressing coke deactivation and is not always satisfactory with respect to prolonging the catalyst life.

【0008】[0008]

【発明が解決しようとする課題】従来の水素化処理方法
では、重質炭化水素油中に含まれるアスファルテンが脱
メタル触媒で処理されてアスファルテン構造中に存在す
るニッケルやバナジウムなどのメタル成分が除去される
と、アスファルテン構造の一部がラジカル状態になる。
このラジカル状態となったアスファルテンは脱メタル触
媒の水素化能が低いために水素化されずそのまま後段の
水素化脱硫触媒層に送られるが、水素化脱硫触媒層は反
応温度が高温であるため前記ラジカル状態になったアス
ファルテンは、ここでも水素化されずに重合してコーク
化することが分かった。
In the conventional hydrotreating method, asphaltene contained in heavy hydrocarbon oil is treated with a demetallizing catalyst to remove metal components such as nickel and vanadium present in the asphaltene structure. Then, a part of the asphaltene structure becomes a radical state.
The asphaltene in the radical state is sent to the subsequent hydrodesulfurization catalyst layer without being hydrogenated because the hydrogenation ability of the demetallation catalyst is low, but the reaction temperature of the hydrodesulfurization catalyst layer is high, so It was found that the asphaltene in a radical state was polymerized and coked without being hydrogenated here.

【0009】本発明の目的は、前述のラジカル化したア
スファルテンの水素化を行うことにより、その重合反応
を抑制し、触媒のコーク失活を少なくして触媒寿命を延
長しうる水素化処理方法を提供する点にある。
An object of the present invention is to provide a hydrotreating method capable of suppressing the polymerization reaction by hydrogenating the above-mentioned radicalized asphaltenes, reducing the coke deactivation of the catalyst and extending the life of the catalyst. The point is to provide.

【0010】[0010]

【発明を解決するための手段】本発明は、(a)供給原
料の重質炭化水素油を水素化脱メタル処理し、次いで、
(b)(a)工程で水素化脱メタル処理された重質炭化
水素油を(a)工程の反応温度よりも低い反応温度で水
素化処理し、更に、(c)(b)工程で水素化処理され
た重質炭化水素油を(a)工程の反応温度よりも高い反
応温度で水素化処理する、ことを特徴とする重質炭化水
素油の水素化処理方法に関する。前記(b)工程の反応
温度は370℃以下であることが好ましい。
SUMMARY OF THE INVENTION The present invention comprises: (a) hydrodemetallizing a feedstock heavy hydrocarbon oil;
(B) hydrotreating the heavy hydrocarbon oil hydrodemetallized in step (a) at a reaction temperature lower than the reaction temperature in step (a); The present invention relates to a method for hydrotreating heavy hydrocarbon oil, which comprises hydrotreating heavy hydrocarbon oil subjected to hydrotreating at a reaction temperature higher than the reaction temperature in step (a). The reaction temperature in the step (b) is preferably 370 ° C. or lower.

【0011】本発明で水素化処理される供給原料油は、
アスファルテン、硫黄、窒素およびバナジウム、ニッケ
ルなどの金属成分を含有する炭化水素油で、原油、常圧
残渣油、減圧残渣油などの重質炭化水素油が例示され
る。
The feedstock oil to be hydrotreated in the present invention is:
It is a hydrocarbon oil containing asphaltene, sulfur, nitrogen, and metal components such as vanadium and nickel, and includes heavy hydrocarbon oils such as crude oil, atmospheric residual oil, and vacuum residual oil.

【0012】本発明での(a)工程では、前述の供給原
料油を水素化脱メタル触媒が充填された反応塔で水素化
脱メタル処理を行うが、水素化脱メタル処理条件は、通
常の水素化処理方法における水素化脱メタル処理条件が
採用される。好ましくは、脱メタル触媒の劣化に応じて
370〜420℃の範囲で反応温度を上昇させながら、
水素分圧は50〜250kg/cm2の範囲で運転され
る。なお本明細書での反応温度は各触媒層の重量平均反
応温度(WAT)を意味する。
In the step (a) of the present invention, the above-mentioned feedstock oil is subjected to hydrodemetallization treatment in a reaction tower filled with a hydrodemetallization catalyst. Hydrodemetallization conditions in the hydrotreating method are employed. Preferably, while increasing the reaction temperature in the range of 370 to 420 ° C. according to the deterioration of the demetalization catalyst,
The partial pressure of hydrogen is operated in the range of 50 to 250 kg / cm 2 . The reaction temperature in the present specification means the weight average reaction temperature (WAT) of each catalyst layer.

【0013】また、本発明の(a)工程で使用される水
素化脱メタル触媒は、従来の水素化処理方法において使
用される通常の水素化脱メタル触媒が採用可能である。
好ましい水素化脱メタル触媒としては、Al23含有担
体にMoO3及び/又はWO3を0.5から15wt%、
CoO及び/又はNiOを0.5〜5wt%の範囲で含
有する触媒であって、細孔容積が0.4〜1.1ml/
g、平均細孔直径が70〜2000Å、比表面積が10
0〜400m2/g、触媒粒子の平均直径が1/32〜
1/4インチの範囲にあるものが例示される。
Further, as the hydrodemetallation catalyst used in the step (a) of the present invention, an ordinary hydrodemetallation catalyst used in a conventional hydrotreating method can be employed.
Preferred hydrodemetallation catalysts include MoO 3 and / or WO 3 in an Al 2 O 3 -containing support in an amount of 0.5 to 15 wt%,
A catalyst containing CoO and / or NiO in a range of 0.5 to 5% by weight and having a pore volume of 0.4 to 1.1 ml /
g, average pore diameter is 70 to 2000 °, specific surface area is 10
0 to 400 m 2 / g, average diameter of catalyst particles is 1/32 to
Those in the range of 1/4 inch are exemplified.

【0014】本発明の(b)工程では、前述の(a)工
程で水素化脱メタル処理された重質炭化水素油を(a)
工程の反応温度よりも低い反応温度で水素化処理する
が、(b)工程の反応温度が高いと(a)工程の脱メタ
ル処理によりアスファルテン構造中に存在するニッケル
やバナジウムなどのメタル成分が除去されて該構造の一
部分がラジカル状態になったアスファルテンが水素化さ
れずに重合してコーク化することがあるので(b)工程
の反応温度は、370℃以下であることが好ましい。よ
り効果的に前述のラジカル化したアスファルテンの水素
化を行い、重合反応を抑制するため、(b)工程の反応
温度は、より好ましくは360℃以下、さらに好ましく
は200〜350℃の範囲が望ましい。その外の水素化
処理条件は通常の水素化処理方法における条件が採用可
能である。
In the step (b) of the present invention, the heavy hydrocarbon oil hydrodemetallized in the step (a) is treated with the (a)
The hydrogenation treatment is performed at a reaction temperature lower than the reaction temperature of the step, but when the reaction temperature of the step (b) is high, the metal components such as nickel and vanadium present in the asphaltene structure are removed by the demetalization treatment of the step (a). Since the asphaltene in which a part of the structure is in a radical state is polymerized without being hydrogenated and may be coked, the reaction temperature in the step (b) is preferably 370 ° C. or lower. In order to more effectively hydrogenate the above-mentioned radicalized asphaltenes and suppress the polymerization reaction, the reaction temperature in the step (b) is more preferably 360 ° C or lower, and further preferably 200 to 350 ° C. . Other hydrotreating conditions may be the same as those in a normal hydrotreating method.

【0015】また、(b)工程で使用される水素化処理
触媒は、アルミナ、シリカ−アルミナ、シリカ、チタニ
ア−アルミナ、ジルコア−アルミナなどの多孔性無機酸
化物担体にMo、W、Co、Ni、Pd、Pt、Re、
Ru、Rhなどの活性金属成分を担持させた触媒など通
常の水素化能を有するものが使用される。(b)工程で
使用される好ましい水素化処理触媒としては、Al23
含有担体にMoO3及び/又はWO3を8〜30wt%、
CoO及び/又はNiOを1〜10wt%の範囲で含有
せしめた触媒であって、細孔容積が0.4〜1.0ml
/g、平均細孔直径が70〜300Å、比表面積が10
0〜400m2/g、触媒粒子の平均直径が1/32〜
1/4インチの範囲にあるものが例示される。
The hydrotreating catalyst used in the step (b) may be a porous inorganic oxide carrier such as alumina, silica-alumina, silica, titania-alumina, and zircona-alumina. , Pd, Pt, Re,
What has usual hydrogenation ability, such as a catalyst which carried active metal components, such as Ru and Rh, is used. Preferred hydrotreating catalysts used in step (b) include Al 2 O 3
8 to 30 wt% of MoO 3 and / or WO 3 in the containing carrier,
A catalyst containing CoO and / or NiO in a range of 1 to 10% by weight, having a pore volume of 0.4 to 1.0 ml.
/ G, average pore diameter 70-300 °, specific surface area 10
0 to 400 m 2 / g, average diameter of catalyst particles is 1/32 to
Those in the range of 1/4 inch are exemplified.

【0016】本発明の(c)工程では、前述の(b)工
程で水素化処理された重質炭化水素油を(a)工程の反
応温度よりも高い反応温度で水素化処理するが、(c)
工程の反応温度が低いと十分な脱硫活性が得られないこ
とがある。(c)工程の水素化処理条件は、通常の水素
化処理方法における水素化処理条件が採用される。好ま
しくは、生成油の硫黄分が一定になるように水素化処理
触媒の劣化に応じて371〜450℃の範囲で反応温度
を上昇させながら、水素分圧は50〜250Kg/cm
2の範囲で運転される。
In the step (c) of the present invention, the heavy hydrocarbon oil hydrotreated in the step (b) is hydrotreated at a reaction temperature higher than the reaction temperature in the step (a). c)
If the reaction temperature in the step is low, sufficient desulfurization activity may not be obtained. As the hydrotreating conditions in the step (c), hydrotreating conditions in a normal hydrotreating method are employed. Preferably, while increasing the reaction temperature in the range of 371 to 450 ° C. in accordance with the deterioration of the hydrotreating catalyst so that the sulfur content of the produced oil is constant, the hydrogen partial pressure is 50 to 250 kg / cm.
Driven in two ranges.

【0017】また、本発明の(c)工程で使用される水
素化処理触媒は、従来の水素化処理方法において使用さ
れる通常の水素化処理触媒が採用可能である。好ましい
水素化処理触媒としては、Al23含有担体にMoO3
及び/又はWO3を8〜30wt%、CoO及び/又は
NiOを1〜10wt%の範囲で含有する触媒であっ
て、細孔容積が0.4〜1.0ml/g、平均細孔直径
が70〜300Å、比表面積が100〜400m2
g、触媒粒子の平均直径が1/32〜1/4インチの範
囲にあるものが例示される。
Further, as the hydrotreating catalyst used in the step (c) of the present invention, an ordinary hydrotreating catalyst used in a conventional hydrotreating method can be employed. Preferred hydrotreating catalysts include MoO 3 on an Al 2 O 3 -containing support.
And / or WO 3 and 8~30wt%, a catalyst containing at CoO and / or range of NiO of 110 wt.%, A pore volume of 0.4~1.0ml / g, average pore diameter 70-300 °, specific surface area 100-400 m 2 /
g, those having an average diameter of the catalyst particles in the range of 1/32 to 1/4 inch.

【0018】以下に図1の水素化処理方法に従って本発
明の実施形態を述べる。本発明の水素化処理方法では、
(a)供給原料の重質炭化水素油を水素化脱メタル触媒
が充填された第1反応塔で水素化脱メタル処理し、次い
で(b)(a)工程で水素化脱メタル処理された重質炭
化水素油を、水素化脱硫触媒が充填された第2反応塔で
(a)工程の反応温度よりも低い反応温度で水素化処理
し、更に、(c)(b)工程で水素化処理された重質炭
化水素油を、水素化脱硫触媒が充填された第3反応塔で
(a)工程の反応温度よりも高い反応温度で水素化処理
する。
An embodiment of the present invention will be described below in accordance with the hydrotreating method shown in FIG. In the hydrotreating method of the present invention,
(A) A heavy hydrocarbon oil as a feedstock is subjected to hydrodemetallization in a first reaction column filled with a hydrodemetallization catalyst, and then (b) the hydrodemetallized heavy oil in step (a). The high-quality hydrocarbon oil is hydrotreated in a second reaction tower filled with a hydrodesulfurization catalyst at a reaction temperature lower than the reaction temperature in the step (a), and further, in the steps (c) and (b). The heavy hydrocarbon oil thus obtained is hydrotreated at a reaction temperature higher than the reaction temperature in the step (a) in a third reaction tower filled with a hydrodesulfurization catalyst.

【0019】前述の水素化処理に際して、前記供給原料
の重質炭化水素油と(a)工程で水素化脱メタル処理さ
れた重質炭化水素油を第1熱交換器(HE−1)で熱交
換して前記供給原料の重質炭化水素油を昇温すると共
に、(a)工程で水素化脱メタル処理された重質炭化水
素油を冷却することが熱効率の面から経済的であるので
好ましい。
In the above-mentioned hydrotreating, the heavy hydrocarbon oil as the feedstock and the heavy hydrocarbon oil hydrodemetalized in the step (a) are heat-treated in a first heat exchanger (HE-1). It is preferable to exchange the temperature to raise the temperature of the heavy hydrocarbon oil of the feedstock and to cool the heavy hydrocarbon oil hydrodemetalized in the step (a) because it is economical in terms of thermal efficiency. .

【0020】また、前述の水素化処理に際して、前記
(b)工程で水素化処理された重質炭化水素油と(c)
工程で水素化処理された重質炭化水素油を第2熱交換器
(HE−2)で熱交換して(b)工程で水素化処理され
た重質炭化水素油を昇温すると共に(c)工程で水素化
処理された重質炭化水素油を冷却することが熱効率の面
から経済的であるので好ましい。
In the above-mentioned hydrotreating, the heavy hydrocarbon oil hydrotreated in the step (b) and (c)
The heavy hydrocarbon oil hydrotreated in the step is heat-exchanged in the second heat exchanger (HE-2) to raise the temperature of the heavy hydrocarbon oil hydrotreated in the step (b), and (c) It is preferable to cool the heavy hydrocarbon oil that has been hydrotreated in the step (3) because it is economical in terms of thermal efficiency.

【0021】更に本発明の方法では、前記供給原料の重
質炭化水素油と(a)工程で水素化脱メタル処理された
重質炭化水素油を第1熱交換器(HE−1)で熱交換し
て前記供給原料の重質炭化水素油を昇温すると共に
(a)工程で水素化脱メタル処理された重質炭化水素油
を冷却し、さらに、前記(b)工程で水素化処理された
重質炭化水素油と(c)工程で水素化処理された重質炭
化水素油を第2熱交換器(HE−2)で熱交換して
(b)工程で水素化処理された重質炭化水素油を昇温す
ると共に(c)工程で水素化処理された重質炭化水素油
を冷却することが好ましい。
Further, in the method of the present invention, the heavy hydrocarbon oil as the feedstock and the heavy hydrocarbon oil hydrodemetalized in the step (a) are heat-treated in the first heat exchanger (HE-1). The heavy hydrocarbon oil as the feedstock is exchanged to raise the temperature, and the heavy hydrocarbon oil subjected to the hydrodemetallization in the step (a) is cooled, and further subjected to the hydrogenation treatment in the step (b). Heat exchange between the heavy hydrocarbon oil obtained and the heavy hydrocarbon oil hydrotreated in the step (c) in the second heat exchanger (HE-2), and the heavy hydrocarbon oil hydrotreated in the step (b) It is preferable to raise the temperature of the hydrocarbon oil and to cool the heavy hydrocarbon oil hydrotreated in the step (c).

【0022】なお、本発明の方法は、前述の水素化処理
方法を満足することができれば反応塔の数は制限するも
のではない。
The method of the present invention does not limit the number of reaction columns as long as the above-mentioned hydrotreating method can be satisfied.

【0023】[0023]

【実施例】以下に実施例を示し本発明を更に具体的に説
明するが、本発明はこれにより限定されるものではな
い。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0024】実施例1 図1に示す反応装置を使用して表1に示す性状の重質炭
化水素油の水素化処理を行った。第1反応塔に表5に示
す性状の脱メタル触媒を全触媒量の1/3充填し、第2
反応塔および第3反応塔に表5に示す性状の水素化処理
触媒を全触媒量の1/3づつそれぞれ充填し、表2に示
す反応条件で生成油の硫黄濃度を0.30wt%と一定
に維持するように触媒の失活に応じて第1反応塔と第3
反応塔の反応温度を徐々に昇温して運転した。すなわ
ち、第2反応塔の反応温度は350℃一定で運転し、第
1反応塔の反応温度と第3反応塔の反応温度との差を2
0℃にして、触媒の失活に応じて第1反応塔と第3反応
塔の反応温度を徐々に昇温して運転した。
Example 1 Using the reactor shown in FIG. 1, a heavy hydrocarbon oil having the properties shown in Table 1 was hydrotreated. The first reaction tower was filled with a demetalization catalyst having the properties shown in Table 5 to 1/3 of the total catalyst amount, and
The reaction tower and the third reaction tower were each filled with a hydrotreating catalyst having the properties shown in Table 5 by 1/3 of the total catalyst amount, and the sulfur concentration of the produced oil was kept constant at 0.30 wt% under the reaction conditions shown in Table 2. The first reaction tower and the third
The reactor was operated by gradually raising the reaction temperature. That is, the reaction temperature of the second reaction tower is maintained at 350 ° C., and the difference between the reaction temperature of the first reaction tower and the reaction temperature of the third reaction tower is 2
The temperature was raised to 0 ° C., and the reaction temperature of the first reaction tower and the third reaction tower was gradually increased in accordance with the deactivation of the catalyst, and the operation was performed.

【0025】[0025]

【表1】 原料油性状 常圧残渣油 密度 @15℃ 0.9900 g/cm3 硫黄濃度 4.20 wt% Ni+V 80 ppm[Table 1] Raw material properties Normal pressure residual oil Density @ 15 ° C 0.9900 g / cm 3 Sulfur concentration 4.20 wt% Ni + V 80 ppm

【0026】[0026]

【表2】 反応条件 水素圧力 13 MPa 液空間速度(LHSV) 0.20 Hr-1 水素/油比 800 NL/LTable 2 Reaction conditions Hydrogen pressure 13 MPa Liquid hourly space velocity (LHSV) 0.20 Hr -1 Hydrogen / oil ratio 800 NL / L

【0027】第1、2、3反応塔のそれぞれの反応温度
およびその平均反応温度を表6に示した。また、平均反
応温度の昇温曲線を図2に示した。なお、平均反応温度
は重量平均温度(WAT)で求めた。表6および図2か
ら本発明の方法は、従来の方法に比較して平均反応温度
が低く触媒寿命が長いことが分かる。
Table 6 shows the respective reaction temperatures of the first, second and third reaction towers and their average reaction temperatures. FIG. 2 shows the temperature rise curve of the average reaction temperature. The average reaction temperature was determined by weight average temperature (WAT). From Table 6 and FIG. 2, it can be seen that the method of the present invention has a lower average reaction temperature and a longer catalyst life than the conventional method.

【0028】比較例1 実施例1において、生成油を第1熱交換器(HE−1)
と第2熱交換器(HE−2)で熱交換しないことおよび
生成油の硫黄濃度を0.30wt%一定に維持するよう
に触媒の失活に応じて第1反応塔、第2反応塔および第
3反応塔の反応温度を徐々に昇温して運転した以外は、
実施例1と全く同様にして触媒の寿命試験を行った。そ
の結果を表6および図2に示した。
Comparative Example 1 In Example 1, the produced oil was supplied to the first heat exchanger (HE-1).
And the second heat exchanger (HE-2) and the first reaction tower, the second reaction tower and the second reaction tower according to the deactivation of the catalyst so as to keep the sulfur concentration of the produced oil constant at 0.30 wt%. Except that the reaction temperature of the third reaction column was gradually raised and operated.
A catalyst life test was performed in exactly the same manner as in Example 1. The results are shown in Table 6 and FIG.

【0029】実施例2 図1に示す反応装置を使用して表3に示す性状の重質炭
化水素油の水素化処理を行った。第1反応塔に表5に示
す性状の脱メタル触媒を全触媒量の1/5(100c
c)充填し、第2反応塔および第3反応塔に表5に示す
性状の水素化処理触媒を全触媒量の2/5(200c
c)づつそれぞれ充填し、表4に示す反応条件で生成油
の硫黄濃度を0.20wt%と一定に維持するように触
媒の失活に応じて第1反応塔と第3反応塔の反応温度を
徐々に昇温して運転した。すなわち、第2反応塔の反応
温度は360℃一定で運転し、第1反応塔の反応温度と
第3反応塔の反応温度との差を20℃にして、触媒の失
活に応じて第1反応塔と第3反応塔の反応温度を徐々に
昇温して運転した。
Example 2 Using the reactor shown in FIG. 1, a heavy hydrocarbon oil having the properties shown in Table 3 was hydrotreated. In the first reaction tower, a demetalization catalyst having the properties shown in Table 5 was added to 1/5 (100 c
c) packed and the second and third reaction towers were charged with a hydrotreating catalyst having the properties shown in Table 5 at 2/5 (200 c
c) Each of the first and third reaction towers was charged according to the deactivation of the catalyst so that the sulfur concentration of the produced oil was kept constant at 0.20 wt% under the reaction conditions shown in Table 4. Was gradually heated. That is, the reaction temperature of the second reaction tower is operated at a constant 360 ° C., and the difference between the reaction temperature of the first reaction tower and the reaction temperature of the third reaction tower is set to 20 ° C. The reactor was operated by gradually increasing the reaction temperature of the reaction tower and the third reaction tower.

【0030】[0030]

【表3】 原料油性状 常圧残渣油 密度 @15℃ 0.965 g/cm3 硫黄濃度 3.19 wt% Ni+V 41 ppm[Table 3] Raw material properties Normal pressure residual oil Density @ 15 ° C 0.965 g / cm 3 Sulfur concentration 3.19 wt% Ni + V 41 ppm

【0031】[0031]

【表4】 反応条件 水素圧力 13.5 MPa 液空間速度(LHSV) 0.30 Hr-1 水素/油比 700 NL/LTable 4 Reaction conditions Hydrogen pressure 13.5 MPa Liquid hourly space velocity (LHSV) 0.30 Hr -1 hydrogen / oil ratio 700 NL / L

【0032】第1、2、3反応塔のそれぞれの反応温度
およびその平均反応温度を表7に示した。また、平均反
応温度の昇温曲線を図3に示した。表7および図3から
本発明の方法は、従来の方法に比較して平均反応温度が
低く触媒寿命が長いことが分かる。
Table 7 shows the respective reaction temperatures of the first, second and third reaction towers and their average reaction temperatures. FIG. 3 shows a temperature rise curve of the average reaction temperature. From Table 7 and FIG. 3, it can be seen that the method of the present invention has a lower average reaction temperature and a longer catalyst life than the conventional method.

【0033】比較例2 実施例2において、生成油を第1熱交換器(HE−1)
と第2熱交換器(HE−2)で熱交換しないことと、生
成油の硫黄濃度を0.20wt%一定に維持するように
触媒の失活に応じて第1反応塔、第2反応等および第3
反応塔の反応温度を徐々に昇温して運転した以外は、実
施例2と全く同様にして触媒の寿命試験を行った。その
結果を表7および図3に示した。
Comparative Example 2 In Example 2, the produced oil was supplied to the first heat exchanger (HE-1).
Heat exchange in the second heat exchanger (HE-2) and the first reaction tower, the second reaction, etc. according to the deactivation of the catalyst so as to maintain the sulfur concentration of the produced oil constant at 0.20 wt%. And third
A catalyst life test was carried out in exactly the same manner as in Example 2 except that the reaction tower was operated while gradually raising the reaction temperature. The results are shown in Table 7 and FIG.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】本発明の実施態様項を以下に列記する。 (1)(a)供給原料の重質炭化水素油を水素化脱メタ
ル処理し、次いで、(b)(a)工程で水素化脱メタル
処理された重質炭化水素油を(a)工程の反応温度より
も低い反応温度で水素化処理し、更に、(c)(b)工
程で水素化処理された重質炭化水素油を(a)工程の反
応温度よりも高い反応温度で水素化処理する、ことを特
徴とする重質炭化水素油の水素化処理方法。 (2)(a)供給原料の重質炭化水素油を水素化脱メタ
ル触媒が充填された第1反応塔で水素化脱メタル処理
し、次いで、 (b)(a)工程で水素化脱メタル処理された重質炭化
水素油を水素化脱硫触媒が充填された第2反応塔で水素
化処理し、更に、 (c)(b)工程で水素化処理された重質炭化水素油を
水素化脱硫触媒が充填された第3反応塔で水素化処理す
るに際して、(イ)前記供給原料の重質炭化水素油と
(a)工程で水素化脱メタル処理された重質炭化水素油
を第1熱交換器で熱交換して前記供給原料の重質炭化水
素油を昇温すると共に(a)工程で水素化脱メタル処理
された重質炭化水素油を冷却するおよび/または、
(ロ)前記(b)工程で水素化処理された重質炭化水素
油と(c)工程で水素化処理された重質炭化水素油を第
2熱交換器で熱交換して(b)工程で水素化処理された
重質炭化水素油を昇温すると共に(c)工程で水素化処
理された重質炭化水素油を冷却することを特徴とする前
項(1)記載の重質炭化水素の水素化処理方法。 (3) 前記(b)工程の反応温度が370℃以下であ
る前項(1)または(2)記載の重質炭化水素油の水素
化処理方法。 (4) 前記(b)工程の反応温度が360℃以下であ
る前項(1)または(2)記載の重質炭化水素油の水素
化処理方法。 (5) 前記(b)工程の反応温度が200〜350℃
以下である前項(1)または(2)記載の重質炭化水素
油の水素化処理方法。 (6) 前記(c)工程の水素化処理が、生成油の硫黄
分が一定になるように水素化処理触媒の劣化に応じて、
371〜450℃の範囲で反応温度を上昇させながら、
水素分圧を50〜250kg/cm2の範囲で水素化処
理するものである前項(1)〜(5)いずれかに記載の
重質炭化水素油の水素化処理方法。 (7) 前記(b)工程で用いる水素化触媒が細孔容積
0.4〜1.0ml/g、平均細孔直径70〜300
Å、比表面積100〜400m2/g、触媒粒子の平均
直径1/32〜1/4インチのものである前項(1)〜
(6)いずれかに記載の重質炭化水素油の水素化処理方
法。 (8) 前記(c)工程で用いる水素化触媒が細孔容積
0.4〜1.0ml/g、平均細孔直径70〜300
Å、比表面積100〜400m2/g、触媒粒子の平均
直径1/32〜1/4インチのものである前項(1)〜
(7)項いずれかに記載の重質炭化水素油の水素化処理
方法。
The embodiments of the present invention are listed below. (1) (a) The heavy hydrocarbon oil as a feedstock is subjected to hydrodemetallization treatment, and then (b) the heavy hydrocarbon oil subjected to hydrodemetallization treatment in the step (a) is subjected to the hydrodemetallization treatment in the step (a). Hydrotreating at a reaction temperature lower than the reaction temperature, and further hydrotreating the heavy hydrocarbon oil hydrotreated in the steps (c) and (b) at a reaction temperature higher than the reaction temperature in the step (a) A method for hydrotreating heavy hydrocarbon oils. (2) (a) The heavy hydrocarbon oil as a feedstock is subjected to a hydrodemetallization treatment in a first reaction column packed with a hydrodemetallization catalyst, and then (b) a hydrodemetallization step (a). The treated heavy hydrocarbon oil is hydrotreated in a second reaction tower filled with a hydrodesulfurization catalyst, and further, the heavy hydrocarbon oil hydrotreated in steps (c) and (b) is hydrogenated. At the time of hydrotreating in the third reaction tower filled with a desulfurization catalyst, (a) the heavy hydrocarbon oil as the feedstock and the heavy hydrocarbon oil hydrodemetallized in step (a) are subjected to the first process. Heat exchange in a heat exchanger to raise the temperature of the heavy hydrocarbon oil as the feedstock, and cooling the heavy hydrocarbon oil hydrodemetalized in step (a) and / or
(B) heat-exchanging the heavy hydrocarbon oil hydrotreated in the step (b) with the heavy hydrocarbon oil hydrotreated in the step (c) in a second heat exchanger; The heavy hydrocarbon oil hydrotreated in the step (c) and cooling the heavy hydrocarbon oil hydrotreated in the step (c) is cooled by the step (c). Hydrotreating method. (3) The method for hydrotreating heavy hydrocarbon oil according to the above (1) or (2), wherein the reaction temperature in the step (b) is 370 ° C. or lower. (4) The method for hydrotreating heavy hydrocarbon oil according to the above (1) or (2), wherein the reaction temperature in the step (b) is 360 ° C. or lower. (5) The reaction temperature in the step (b) is 200 to 350 ° C.
The method for hydrotreating heavy hydrocarbon oil according to the above (1) or (2), which is as follows. (6) The hydrotreating in the step (c) is performed in accordance with the deterioration of the hydrotreating catalyst so that the sulfur content of the produced oil is constant.
While increasing the reaction temperature in the range of 371 to 450 ° C,
The method for hydrotreating heavy hydrocarbon oil according to any one of (1) to (5), wherein the hydrogenation is performed at a hydrogen partial pressure in the range of 50 to 250 kg / cm 2 . (7) The hydrogenation catalyst used in the step (b) has a pore volume of 0.4 to 1.0 ml / g and an average pore diameter of 70 to 300.
Å, a specific surface area of 100 to 400 m 2 / g, and an average diameter of catalyst particles of 1/32 to 1/4 inch (1) to
(6) The method for hydrotreating heavy hydrocarbon oil according to any one of (1) to (4). (8) The hydrogenation catalyst used in the step (c) has a pore volume of 0.4 to 1.0 ml / g and an average pore diameter of 70 to 300.
Å, a specific surface area of 100 to 400 m 2 / g, and an average diameter of catalyst particles of 1/32 to 1/4 inch (1) to
(7) The method for hydrotreating heavy hydrocarbon oil according to any one of the above (7).

【0038】[0038]

【効果】本発明により、触媒のコーク失活を少なくして
触媒寿命を延長することができた。
According to the present invention, the catalyst life can be extended by reducing the coke deactivation of the catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で用いた反応装置のフローシー
トである。
FIG. 1 is a flow sheet of a reaction apparatus used in Examples of the present invention.

【図2】実施例1の平均反応温度の昇温曲線を示す。FIG. 2 shows a temperature rise curve of an average reaction temperature in Example 1.

【図3】実施例2の平均反応温度の昇温曲線を示す。FIG. 3 shows a temperature rise curve of an average reaction temperature in Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)供給原料の重質炭化水素油を水素化
脱メタル処理し、次いで、(b)(a)工程で水素化脱
メタル処理された重質炭化水素油を(a)工程の反応温
度よりも低い反応温度で水素化処理し、更に、(c)
(b)工程で水素化処理された重質炭化水素油を(a)
工程の反応温度よりも高い反応温度で水素化処理する、
ことを特徴とする重質炭化水素油の水素化処理方法。
(1) Hydrodemetallizing a heavy hydrocarbon oil as a feedstock, and (b) converting the heavy hydrocarbon oil hydrodemetallized in the step (a) into (a) Hydrogenation at a reaction temperature lower than the reaction temperature of the step, and (c)
The heavy hydrocarbon oil hydrotreated in step (b)
Hydrotreating at a reaction temperature higher than the reaction temperature of the process,
A method for hydrotreating heavy hydrocarbon oils.
【請求項2】(a)供給原料の重質炭化水素油を水素化
脱メタル触媒が充填された第1反応塔で水素化脱メタル
処理し、次いで、 (b)(a)工程で水素化脱メタル処理された重質炭化
水素油を水素化脱硫触媒が充填された第2反応塔で水素
化処理し、更に、 (c)(b)工程で水素化処理された重質炭化水素油を
水素化脱硫触媒が充填された第3反応塔で水素化処理す
るに際して、(イ) 前記供給原料の重質炭化水素油と
(a)工程で水素化脱メタル処理された重質炭化水素油
を第1熱交換器で熱交換して前記供給原料の重質炭化水
素油を昇温すると共に(a)工程で水素化脱メタル処理
された重質炭化水素油を冷却するおよび/または、
(ロ) 前記(b)工程で水素化処理された重質炭化水
素油と(c)工程で水素化処理された重質炭化水素油を
第2熱交換器で熱交換して(b)工程で水素化処理され
た重質炭化水素油を昇温すると共に(c)工程で水素化
処理された重質炭化水素油を冷却することを特徴とする
請求項1記載の重質炭化水素の水素化処理方法。
(2) Hydrodemetallizing a heavy hydrocarbon oil as a feedstock in a first reaction column packed with a hydrodemetallizing catalyst, and then (b) hydrogenating in step (a) The demetallized heavy hydrocarbon oil is hydrotreated in a second reaction tower filled with a hydrodesulfurization catalyst, and the heavy hydrocarbon oil hydrotreated in steps (c) and (b) is further treated. When hydrotreating in the third reaction column filled with the hydrodesulfurization catalyst, (a) the heavy hydrocarbon oil as the feedstock and the heavy hydrocarbon oil hydrodemetallized in step (a) Heat exchange in the first heat exchanger to raise the temperature of the heavy hydrocarbon oil as the feedstock, and cooling the heavy hydrocarbon oil hydrodemetalized in the step (a) and / or
(B) heat-exchanging the heavy hydrocarbon oil hydrotreated in the step (b) with the heavy hydrocarbon oil hydrotreated in the step (c) in a second heat exchanger; 2. The hydrogen of heavy hydrocarbon according to claim 1, wherein the temperature of the heavy hydrocarbon oil hydrotreated in step (c) is increased and the heavy hydrocarbon oil hydrotreated in step (c) is cooled. Treatment method.
JP35623496A 1996-12-25 1996-12-25 Hydrogenation of heavy hydrocarbon oil Pending JPH10183143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35623496A JPH10183143A (en) 1996-12-25 1996-12-25 Hydrogenation of heavy hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35623496A JPH10183143A (en) 1996-12-25 1996-12-25 Hydrogenation of heavy hydrocarbon oil

Publications (1)

Publication Number Publication Date
JPH10183143A true JPH10183143A (en) 1998-07-14

Family

ID=18448016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35623496A Pending JPH10183143A (en) 1996-12-25 1996-12-25 Hydrogenation of heavy hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPH10183143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144882B2 (en) 2010-10-28 2018-12-04 E I Du Pont De Nemours And Company Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144882B2 (en) 2010-10-28 2018-12-04 E I Du Pont De Nemours And Company Hydroprocessing of heavy hydrocarbon feeds in liquid-full reactors

Similar Documents

Publication Publication Date Title
KR102327288B1 (en) Multistage resid hydrocracking
KR100625373B1 (en) Hydrogenation catalyst and method of hydrogenating heavy oil
JPH0753967A (en) Hydrotreatment of heavy oil
JPS6326157B2 (en)
JP2011508018A (en) Target hydrogenation / hydrocracking
KR101230809B1 (en) Process for hydrorefining heavy hydrocarbon oil
KR20010022250A (en) Hydrotreating process for residual oil
EP2169031A1 (en) Hydrorefining method for hydrocarbon oil
JPH10183143A (en) Hydrogenation of heavy hydrocarbon oil
US6589418B2 (en) Method for selective cat naphtha hydrodesulfurization
JP3269900B2 (en) Desulfurization of cracked gasoline fraction
EP0640678A2 (en) Process for hydrotreating heavy hydrocarbon oil
WO1993017082A1 (en) Process for hydrotreating heavy hydrocarbon oil
JP2000005609A (en) Method for regeneration of hydrotreating catalyst
JP5371327B2 (en) Method for producing hydrocarbon oil
JP3464047B2 (en) Hydroprocessing of heavy oil
JP2000265177A (en) Hydrogenation treatment of heavy oil
JP3516383B2 (en) Hydroprocessing of heavy oil
CN109705897B (en) Residual oil hydrogenation method
JP2000178566A (en) Method for hydrotreatment of hydrocarbon oil
JP3708381B2 (en) Regeneration method of heavy oil hydrotreating catalyst and regenerated hydrotreating catalyst
JP2000256678A (en) Method for hydro-refining of heavy oil
US9017545B2 (en) Process for hydrotreating inferior naphtha fraction
JP2012197350A (en) Hydrorefining method of heavy oil
JP2008074998A (en) Manufacturing method of gasoline base material having high octane number