JP5371327B2 - Method for producing hydrocarbon oil - Google Patents

Method for producing hydrocarbon oil Download PDF

Info

Publication number
JP5371327B2
JP5371327B2 JP2008218928A JP2008218928A JP5371327B2 JP 5371327 B2 JP5371327 B2 JP 5371327B2 JP 2008218928 A JP2008218928 A JP 2008218928A JP 2008218928 A JP2008218928 A JP 2008218928A JP 5371327 B2 JP5371327 B2 JP 5371327B2
Authority
JP
Japan
Prior art keywords
oil
less
distillation temperature
reaction
hydrocarbon oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008218928A
Other languages
Japanese (ja)
Other versions
JP2010053235A (en
Inventor
俊 窪田
英輝 宮崎
隆太郎 小出
中村  憲治
達史 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008218928A priority Critical patent/JP5371327B2/en
Publication of JP2010053235A publication Critical patent/JP2010053235A/en
Application granted granted Critical
Publication of JP5371327B2 publication Critical patent/JP5371327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱分解油を含有する炭化水素を効率的に水素化処理して接触改質するのに好適な炭化水素油を製造する方法に関する。   The present invention relates to a method for producing a hydrocarbon oil suitable for efficiently hydrotreating and catalytically reforming a hydrocarbon containing pyrolysis oil.

ベンゼン、トルエン、及びキシレン(BTX)は、ポリマー及び他の石油化学合成のために非常に重要な石油化学原料である。BTXに対する世界的な需要は常に成長している。BTXは典型的にはナフサ留分の接触改質によって製造できる。
重質な石油留分を熱分解することによって製造される熱分解油に含まれるナフサ留分は、他のナフサ留分に比べ経済的に製造できるが、熱分解油に含まれるナフサ留分には多量の不飽和分、硫黄分及び窒素分が含まれるため、接触改質原料としては好適に使用することができなかった。
Benzene, toluene, and xylene (BTX) are very important petrochemical feedstocks for polymers and other petrochemical syntheses. Global demand for BTX is constantly growing. BTX can typically be produced by catalytic reforming of a naphtha fraction.
Naphtha fractions contained in pyrolysis oil produced by pyrolyzing heavy petroleum fractions can be produced more economically than other naphtha fractions, but naphtha fractions contained in pyrolysis oil Has a large amount of unsaturated component, sulfur component and nitrogen component, it cannot be suitably used as a catalytic reforming raw material.

一般的に、接触改質原料中に不飽和分が含まれていると接触改質触媒上にコークが堆積しやすく、そのため改質触媒の活性が低下して触媒再生の再生温度や再生頻度などを上げる必要が生じ、また、硫黄分や窒素分が含まれていると接触改質触媒の貴金属や酸点を被毒して活性低下を招くことが知られている。そのため、熱分解油を接触改質原料として用いる場合には、熱分解油中に含まれる不飽和分や硫黄分及び窒素分を接触改質原料として受容できるレベルまで水素化脱硫などの方法により除去する必要がある。   In general, when unsaturated components are contained in the catalytic reforming raw material, coke tends to be deposited on the catalytic reforming catalyst, so that the activity of the reforming catalyst is reduced and the regeneration temperature and regeneration frequency of catalyst regeneration are reduced. In addition, it is known that when a sulfur content or a nitrogen content is contained, the noble metal and acid sites of the catalytic reforming catalyst are poisoned to reduce the activity. For this reason, when using pyrolysis oil as a catalytic reforming raw material, it is possible to remove unsaturation, sulfur and nitrogen contained in the pyrolysis oil to a level that can be accepted as a catalytic reforming raw material by a method such as hydrodesulfurization. There is a need to.

熱分解油の一般的な処理方法としては、多段階の水素化脱硫が知られている(特許文献1〜3)。しかし、不飽和分を水素化するとオクタン価が低下する。不飽和分の損失を防ぎオクタン価の損失を少なくするために、低圧で反応を行うと硫黄分や窒素分の低減が十分でなく、接触改質原料として受容できるレベルではなかった。
水素化脱硫条件のシビアリティーを上げると、熱分解油中に含まれる不飽和分の重合反応などにより、炭素析出を起こしやすく、反応器や熱交換器の閉塞(ファウリング)、急激な触媒の劣化を起こすという課題があった。
特表2003−528942号公報 特表2005−516078号公報 特表2006−508196号公報
Multi-stage hydrodesulfurization is known as a general processing method for pyrolysis oil (Patent Documents 1 to 3). However, hydrogenation of the unsaturated component reduces the octane number. In order to prevent the loss of unsaturated components and reduce the loss of octane number, when the reaction is carried out at a low pressure, the sulfur content and the nitrogen content are not sufficiently reduced, and the level is not acceptable as a catalytic reforming raw material.
Increasing the severity of hydrodesulfurization conditions can easily cause carbon precipitation due to polymerization reaction of unsaturated components contained in pyrolysis oil, causing clogging of reactor and heat exchanger (fouling), rapid catalyst There was a problem of causing deterioration.
Special Table 2003-52842 JP-T-2005-516078 JP-T-2006-508196

本発明は、上記課題を解決するもので、熱分解油を処理するに当たり、水素化処理工程において炭素析出を防止しつつ、経済的に接触改質原料を提供することを課題とする。   This invention solves the said subject, and when processing pyrolysis oil, it makes it a subject to provide a catalytic reforming raw material economically, preventing carbon precipitation in a hydrotreating process.

本発明者らは熱分解油の処理について鋭意研究した結果、熱分解油を他の重質原料と特定比率で混合して、特定の水素化条件化で2段の水素化処理を行うことにより、ファウリング等を起こさずに好適な接触改質原料を得ることができることを見出し本発明に想到した。   As a result of diligent research on the treatment of pyrolysis oil, the present inventors mixed pyrolysis oil with other heavy raw materials at a specific ratio, and performed two-stage hydrotreatment under specific hydrogenation conditions. The inventors have found that a suitable catalytic reforming raw material can be obtained without causing fouling or the like, and have arrived at the present invention.

すなわち、本発明の炭化水素油の製造方法は、熱分解油を1〜25容量%含有する第1の炭化水素油を水素化処理して第1の水素化処理油を得る第1工程と、第1工程で得られた第1の水素化処理油から5%留出温度が30℃以上、95%留出温度が180℃以下である第2の炭化水素油を得る第2工程と、第2工程で得られた第2の炭化水素油をさらに水素化処理して第2の水素化処理油を得る第3工程と、第3工程で得られた第2の水素化処理油から5%留出温度が80℃以上、95%留出温度が180℃以下である第3の炭化水素油を得る第4工程を含む炭化水素油の製造方法である。   That is, the method for producing a hydrocarbon oil of the present invention includes a first step of hydrotreating a first hydrocarbon oil containing 1 to 25% by volume of pyrolysis oil to obtain a first hydrotreated oil; A second step of obtaining a second hydrocarbon oil having a 5% distillation temperature of 30 ° C or higher and a 95% distillation temperature of 180 ° C or lower from the first hydrotreated oil obtained in the first step; The third hydrocarbon oil obtained in the second step is further hydrotreated to obtain a second hydrotreated oil, and 5% from the second hydrotreated oil obtained in the third step. This is a method for producing a hydrocarbon oil comprising a fourth step of obtaining a third hydrocarbon oil having a distillation temperature of 80 ° C. or higher and a 95% distillation temperature of 180 ° C. or lower.

前記第1工程の水素化処理において反応圧力が5.0MPaG以上であることが好ましく、また、前記第3工程の水素化処理において水素オイル比が10〜50NL/Lであることが好ましい。
さらに、第1工程の水素化処理における反応温度が第3工程の水素化処理における反応温度より40℃以上高い温度であることが好ましい。
In the hydrogenation treatment in the first step, the reaction pressure is preferably 5.0 MPaG or more, and in the hydrogenation treatment in the third step, the hydrogen oil ratio is preferably 10 to 50 NL / L.
Furthermore, it is preferable that the reaction temperature in the hydrogenation treatment in the first step is 40 ° C. or higher than the reaction temperature in the hydrogenation treatment in the third step.

以上説明したように、本発明は、熱分解油を他の重質留分と特定比率で混合し、特定の水素化条件下で2段の水素化処理を行うことにより、ファウリング等を起こさずに好適な接触改質原料を得ることができる。また、その結果、直留ナフサに比べて経済的に接触改質原料を提供できる利点がある。   As described above, the present invention causes fouling and the like by mixing pyrolysis oil with other heavy fractions at a specific ratio and performing a two-stage hydrotreatment under specific hydrogenation conditions. A suitable catalytic reforming raw material can be obtained. As a result, there is an advantage that the catalytic reforming raw material can be provided more economically than straight-run naphtha.

本発明の炭化水素油の製造方法は、熱分解油を1〜25容量%含有する第1の炭化水素油を水素化処理して第1の水素化処理油を得る第1工程と、第1工程で得られた第1の水素化生成油から5%留出温度が30℃以上、95%留出温度が180℃以下である第2の炭化水素油を得る第2工程と、第2工程で得られた第2の炭化水素油をさらに水素化処理して第2の水素化処理油を得る第3工程と、第3工程で得られた第2の水素化処理油から5%留出温度が80℃以上、95%留出温度が180℃以下である第3の炭化水素油を得る第4工程を含む炭化水素油の製造方法である。   The method for producing a hydrocarbon oil of the present invention includes a first step of obtaining a first hydrotreated oil by hydrotreating a first hydrocarbon oil containing 1 to 25% by volume of pyrolysis oil, A second step of obtaining a second hydrocarbon oil having a 5% distillation temperature of 30 ° C. or higher and a 95% distillation temperature of 180 ° C. or lower from the first hydrogenated product oil obtained in the step; The third hydrocarbon oil obtained in step 3 is further hydrotreated to obtain a second hydrotreated oil, and 5% is distilled from the second hydrotreated oil obtained in the third step. This is a method for producing a hydrocarbon oil comprising a fourth step of obtaining a third hydrocarbon oil having a temperature of 80 ° C. or higher and a 95% distillation temperature of 180 ° C. or lower.

[熱分解油]
本発明において用いる熱分解油を得るプロセスは、熱分解装置、原料油、運転条件を特に限定するものではなく、公知の任意の製造工程を採用できる。熱分解装置は、触媒を用いることなく、常圧残渣油や減圧残渣油、接触分解残渣油などから得られる重質炭化水素を高温下で分解し、軽質炭化水素を得る装置である。例えば、石油学会編「石油精製プロセス」講談社サイエンティフィック、1998年)に記載のあるビスブレーキングプロセス、フレキシコーキングプロセス、ディレードコーキングプロセス、ユリカプロセス、HSCプロセスなどがよく知られている。
[Pyrolysis oil]
The process for obtaining the pyrolysis oil used in the present invention is not particularly limited to the pyrolysis apparatus, the raw oil, and the operating conditions, and any known production process can be employed. The thermal cracking device is a device that decomposes heavy hydrocarbons obtained from atmospheric residue oil, vacuum residue oil, catalytic cracking residue oil, and the like without using a catalyst at a high temperature to obtain light hydrocarbons. For example, a visbreaking process, a flexi coking process, a delayed coking process, a yurika process, an HSC process, etc., which are described in the Petroleum Society edition of “Oil Refinery Process” Kodansha Scientific, 1998) are well known.

熱分解油としては、以下の性状を有するものを好適に使用することができる。5%留出温度が40〜90℃、好ましくは50〜80℃、95%留出温度が120〜190℃、好ましくは130〜180℃であり、臭素価は15〜100gBr/100g、好ましくは20〜90gBr/100g、より好ましくは25〜80gBr/100gであり、硫黄分は、50〜15000質量ppm、好ましくは100〜13000質量ppm、より好ましくは300〜10000質量ppmであり、窒素分は、1〜100質量ppm、好ましくは3〜90質量ppm、より好ましくは5〜70質量ppmであり、密度(15℃)は、0.680〜0.770g/cm、好ましくは0.690〜0.760g/cm、より好ましくは0.700〜0.750g/cmである。 As the pyrolysis oil, oil having the following properties can be preferably used. 5% distillation temperature of 40 to 90 ° C., preferably 50 to 80 ° C., 95% distillation temperature of 120 to 190 ° C., preferably from 130 to 180 ° C., bromine number is 15~100gBr 2 / 100g, preferably 20~90gBr 2 / 100g, more preferably 25~80gBr 2 / 100g, sulfur content, 50 to 15,000 mass ppm, preferably from 100 to 13,000 mass ppm, more preferably from 300 to 10,000 mass ppm, nitrogen content Is 1 to 100 ppm by mass, preferably 3 to 90 ppm by mass, more preferably 5 to 70 ppm by mass, and the density (15 ° C.) is 0.680 to 0.770 g / cm 3 , preferably 0.690. ˜0.760 g / cm 3 , more preferably 0.700 to 0.750 g / cm 3 .

[第1工程の原料油(第1の炭化水素油)]
本発明において熱分解油は、単独で処理を行うものではなく、重質留分と混合して第1工程で水素化処理する。熱分解油と混合する重質留分としては、例えば直留軽油、減圧軽油、熱分解軽油等が挙げられる。
重質留分としては、以下の性状を有するものを好適に使用することができる。5%留出温度が200〜350℃、好ましくは240〜320℃、95%留出温度が500〜600℃、好ましくは530〜560℃であり、臭素価は1〜20gBr/100g、好ましくは1〜12gBr/100gであり、硫黄分は、1.0〜5.0質量%、好ましくは1.5〜3.0質量%であり、窒素分は400〜2000質量ppm、好ましくは550〜1500質量ppmであり、密度(15℃)は0.850〜0.960g/cm、好ましくは0.860〜0.950g/cmである。
[First Step Raw Material Oil (First Hydrocarbon Oil)]
In the present invention, the pyrolysis oil is not treated alone, but is mixed with a heavy fraction and hydrotreated in the first step. Examples of the heavy fraction mixed with the pyrolysis oil include straight-run gas oil, vacuum gas oil, and pyrolysis gas oil.
As the heavy fraction, those having the following properties can be suitably used. 5% distillation temperature is 200 to 350 ° C, preferably 240 to 320 ° C, 95% distillation temperature is 500 to 600 ° C, preferably 530 to 560 ° C, and bromine number is 1 to 20 gBr 2/100 g, preferably 1~12gBr a 2/100 g, sulfur content, 1.0 to 5.0 wt%, preferably from 1.5 to 3.0 wt%, nitrogen content is 400 to 2,000 mass ppm, preferably 550 to It is 1500 mass ppm, and the density (15 ° C.) is 0.850 to 0.960 g / cm 3 , preferably 0.860 to 0.950 g / cm 3 .

前記熱分解油は重質留分と混合して第1工程の水素化処理に供するが、原料油中の熱分解油の含有量は1〜25容量%、好ましくは3〜20容量%、より好ましくは5〜15容量%である。熱分解油が25容量%を超えると、熱分解油中に含まれる不飽和分の重合反応などにより、炭素析出が起こりやすく、反応器や熱交換器の閉塞(ファウリング)、急激な触媒の劣化が起こるため好ましくなく、1容量%未満であると、実質的に熱分解油を処理できず熱分解油の処理効率が低下するため好ましくない。
熱分解油と重質留分の混合方法に関しては、それぞれが十分に混合した状態で水素化処理装置に提供できれば良く、特に混合方法は制限されず既存の方法を使用することができる。
The pyrolysis oil is mixed with the heavy fraction and used for the hydrotreatment in the first step. The content of pyrolysis oil in the raw oil is 1 to 25% by volume, preferably 3 to 20% by volume. Preferably, it is 5 to 15% by volume. If the pyrolysis oil exceeds 25% by volume, carbon deposition is likely to occur due to the polymerization reaction of the unsaturated component contained in the pyrolysis oil, and the reactor and heat exchanger are clogged (fouling), and sudden catalyst Since deterioration occurs, it is not preferable, and if it is less than 1% by volume, it is not preferable because the pyrolysis oil cannot be processed substantially and the processing efficiency of the pyrolysis oil decreases.
As for the method for mixing the pyrolysis oil and the heavy fraction, it is only necessary to provide the hydrotreating apparatus in a sufficiently mixed state, and the mixing method is not particularly limited, and an existing method can be used.

本発明における第1工程の原料油(第1の炭化水素油)は5%留出温度が130〜180℃であることが好ましく、より好ましくは140〜170℃であり、95%留出温度は450〜600℃が好ましく、より好ましくは500〜550℃である。
臭素価は40gBr/100g以下が好ましく、より好ましくは30gBr/100g以下である。臭素価が40gBr/100gを超えると、不飽和分の重合反応などにより重合物を生成し、ファウリングが起こりやすくなり、反応器や熱交換器の閉塞、急激な触媒の劣化などのリスクが高まるため好ましくない。
硫黄分は5.0質量%以下が好ましく、より好ましくは3.0質量%以下、窒素分は2.0質量%以下が好ましく、より好ましくは1.5質量%以下である。硫黄分が5.0質量%を超えたり、窒素分が1.5質量%を超えると第1工程及び第3工程の水素化処理で十分に脱硫、脱窒素されず、接触分解原料として受容できるレベルに達しないため好ましくない。
The feed oil (first hydrocarbon oil) in the first step in the present invention preferably has a 5% distillation temperature of 130 to 180 ° C, more preferably 140 to 170 ° C, and a 95% distillation temperature of 450-600 degreeC is preferable, More preferably, it is 500-550 degreeC.
Bromine number is preferably at most 40gBr 2 / 100g, more preferably not more than 30gBr 2 / 100g. When bromine number exceeds 40gBr 2 / 100g, a polymer produced by such unsaturation of the polymerization reaction, is likely to occur fouling, the risk of reactor and heat exchanger clogging, rapid catalyst deterioration Since it increases, it is not preferable.
The sulfur content is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, and the nitrogen content is preferably 2.0% by mass or less, more preferably 1.5% by mass or less. If the sulfur content exceeds 5.0% by mass or the nitrogen content exceeds 1.5% by mass, it will not be sufficiently desulfurized and denitrified by the hydrogenation treatment in the first step and the third step, and can be accepted as a catalytic cracking raw material. Since it does not reach the level, it is not preferable.

[第1工程]
本発明の第1工程の水素化処理は、通常の水素化脱硫装置より実施することができる。反応装置は、バッチ式、流通式、固定床式、流動床式等の反応形式に特に制限はないが、固定床流通式反応装置に充填された水素化処理触媒に水素と原料油とを連続的に供給して接触させる形式が好ましい。
反応温度は300〜500℃が好ましく、より好ましくは340〜450℃である。反応温度が300℃未満であると、水素化反応が十分に進行せず、脱硫、脱窒素、不飽和分の水素化の効果が低いため好ましくない。また、反応温度が500℃を超えると、水素化処理触媒の活性が急激に低下してしまうため好ましくない。
反応圧力は、5.0MPaG以上が好ましく、より好ましくは5.6〜25MPaG、さらに好ましくは7.0〜15MPaGである。反応圧力が5.6MPaG未満であると、水素化反応が十分に進行せず、脱硫、脱窒素、不飽和の水素化の効果が低いため好ましくない。また、15MPaGを超えると、装置建設費用及び運転における水素費用が増大し、経済性が低下するため好ましくない。
反応に使用する水素の純度は、60vol%以上が好ましく、より好ましくは65〜90vol%、さらに好ましくは70〜85vol%である。水素純度が60vol%未満であると、水素化反応が十分に進行せず、脱硫、脱窒素、不飽和の水素化の効果が低いため好ましくない。また、90vol%を超えると、装置建設費用及び運転における水素費用が増大し、経済性が低下するため好ましくない。
[First step]
The hydrotreatment of the 1st process of this invention can be implemented from a normal hydrodesulfurization apparatus. There are no particular restrictions on the reaction system such as batch type, flow type, fixed bed type, fluidized bed type, etc., but hydrogen and feedstock are continuously added to the hydrotreating catalyst packed in the fixed bed flow type reactor. The type of supplying and contacting is preferable.
The reaction temperature is preferably 300 to 500 ° C, more preferably 340 to 450 ° C. If the reaction temperature is less than 300 ° C., the hydrogenation reaction does not proceed sufficiently, and the effects of desulfurization, denitrogenation, and hydrogenation of unsaturated components are low, such being undesirable. Moreover, since reaction activity will fall rapidly when reaction temperature exceeds 500 degreeC, it is unpreferable.
The reaction pressure is preferably 5.0 MPaG or more, more preferably 5.6 to 25 MPaG, and even more preferably 7.0 to 15 MPaG. When the reaction pressure is less than 5.6 MPaG, the hydrogenation reaction does not proceed sufficiently, and the effects of desulfurization, denitrogenation, and unsaturated hydrogenation are low, which is not preferable. On the other hand, if it exceeds 15 MPaG, the equipment construction cost and the hydrogen cost in operation increase, and the economic efficiency decreases, which is not preferable.
The purity of hydrogen used in the reaction is preferably 60 vol% or more, more preferably 65 to 90 vol%, and still more preferably 70 to 85 vol%. When the hydrogen purity is less than 60 vol%, the hydrogenation reaction does not proceed sufficiently and the effects of desulfurization, denitrogenation and unsaturated hydrogenation are low, which is not preferable. Moreover, when it exceeds 90 vol%, the apparatus construction cost and the hydrogen cost in operation increase, and the economic efficiency is lowered, which is not preferable.

液空間速度(LHSV)は0.5〜4.0h−1が好ましく、より好ましくは1.0〜3.0h−1である。LHSVが0.5h−1未満であると、経済性を確保できず好ましくない。また、LHSVが4.0h−1を超えると、水素化反応が十分に進行せず、脱硫、脱窒素、不飽和分の水素化の効果が低いため好ましくない。
水素/油比は100〜1000NL/Lが好ましく、より好ましくは200〜500NL/Lである。水素/油比が100NL/L未満であると、水素化反応が十分に進行せず、脱硫、脱窒素、不飽和分の水素化の効果が低いため好ましくない。また、水素/油比が1000NL/Lを超えると、経済性が著しく低下するため好ましくない。
The liquid hourly space velocity (LHSV) is preferably from 0.5~4.0h -1, more preferably 1.0~3.0h -1. When the LHSV is less than 0.5 h −1, it is not preferable because economic efficiency cannot be secured. On the other hand, if the LHSV is more than 4.0 h −1 , the hydrogenation reaction does not proceed sufficiently, and the effects of desulfurization, denitrogenation, and unsaturated hydrogenation are low.
The hydrogen / oil ratio is preferably 100 to 1000 NL / L, more preferably 200 to 500 NL / L. A hydrogen / oil ratio of less than 100 NL / L is not preferable because the hydrogenation reaction does not proceed sufficiently and the effects of desulfurization, denitrogenation, and unsaturated hydrogenation are low. On the other hand, if the hydrogen / oil ratio exceeds 1000 NL / L, it is not preferable because economic efficiency is remarkably lowered.

水素化処理触媒は、NiMo触媒を含む、少なくとも1種類の触媒からなる。ここでいうNiMo触媒とは、活性金属元素としてニッケルおよびモリブデンを含有する触媒であり、ニッケルおよびモリブデンの含有量は、好ましくはニッケルが1〜10質量%、モリブデンが2〜30質量%である。水素化触媒の製造方法に特に制限はないが、アルミナ、シリカ、シリカ−アルミナのような酸化物である多孔質無機酸化物担体に前述の活性金属元素を含ませて製造することが好ましい。また、リン、ホウ素、フッ素などの元素を含むものであってよい。さらに、エチレンジアミン四酢酸(EDTA)、trans−1,2−シクロヘキサンジアミン−N,N,N’,N’−四酢酸、ニトリロ三酢酸、クエン酸等、キレート性の有機化合物を含ませた水素化処理触媒を用いても構わない。   The hydrotreating catalyst is composed of at least one type of catalyst including a NiMo catalyst. Here, the NiMo catalyst is a catalyst containing nickel and molybdenum as active metal elements, and the nickel and molybdenum contents are preferably 1 to 10% by mass of nickel and 2 to 30% by mass of molybdenum. The method for producing the hydrogenation catalyst is not particularly limited, but it is preferable to produce the hydrogenation catalyst by including the above-mentioned active metal element in a porous inorganic oxide carrier that is an oxide such as alumina, silica, or silica-alumina. Further, it may contain an element such as phosphorus, boron or fluorine. Further, hydrogenation containing a chelating organic compound such as ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediamine-N, N, N ′, N′-tetraacetic acid, nitrilotriacetic acid, citric acid, etc. A treatment catalyst may be used.

[第2工程]
本発明の第2工程は、第1工程で得られた第1の水素化処理油から5%留出温度が30℃以上、95%留出温度が180℃以下である第2の炭化水素油を得る工程である。分留は通常用いられる蒸留により行うことができ、5%留出温度が30℃以上、好ましくは40℃以上となるよう、また95%留出温度が180℃以下、好ましくは160℃以下となるよう行う。5%留出温度が30℃未満であると、低級炭化水素が多く含まれるようになり、第3工程の水素化処理において低級炭化水素がガス化し、反応塔内の水素純度が低下するため好ましくない。95%留出温度が180℃を超えると、含有される硫黄分、窒素分が増加し、第3工程の水素化処理で十分に脱硫、脱窒素ができず、接触改質の原料として受容できるレベルに達しないため好ましくない。
[Second step]
The second step of the present invention is a second hydrocarbon oil having a 5% distillation temperature of 30 ° C. or higher and a 95% distillation temperature of 180 ° C. or lower from the first hydrotreated oil obtained in the first step. It is the process of obtaining. Fractionation can be carried out by commonly used distillation, so that the 5% distillation temperature is 30 ° C or higher, preferably 40 ° C or higher, and the 95% distillation temperature is 180 ° C or lower, preferably 160 ° C or lower. Do so. When the 5% distillation temperature is lower than 30 ° C., a large amount of lower hydrocarbons are contained, and the lower hydrocarbons are gasified in the hydrotreatment of the third step, and the hydrogen purity in the reaction tower is lowered. Absent. If the 95% distillation temperature exceeds 180 ° C., the sulfur content and nitrogen content increase, and the hydrotreatment of the third step cannot be sufficiently desulfurized and denitrified, and can be accepted as a raw material for catalytic reforming. Since it does not reach the level, it is not preferable.

第2工程で得られたナフサ留分(第2の炭化水素油)は、硫黄分が1質量%以下であることが好ましく、より好ましくは0.5質量%以下、さらに好ましくは0.3質量%以下であり、窒素分は5質量ppm以下が好ましく、より好ましくは3質量ppm以下、さらに好ましくは1質量ppm以下であり、臭素価は10gBr/100g以下が好ましく、より好ましくは5gBr/100g以下、さらに好ましくは3gBr/100g以下である。
第2工程で得られる第2の炭化水素油以外の留分については特に制限はないが、軽質留分はLPG等のガス留分として、また、重質留分は、例えば灯油原料、接触分解原料などに使用することができる。
The naphtha fraction (second hydrocarbon oil) obtained in the second step preferably has a sulfur content of 1% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.3% by mass. % or less, the nitrogen content is preferably from 5 mass ppm, more preferably 3 ppm by mass or less, more preferably 1 mass ppm, a bromine number is preferably from 10gBr 2 / 100g, more preferably 5gBr 2 / 100g, more preferably not more than 3gBr 2 / 100g.
The fraction other than the second hydrocarbon oil obtained in the second step is not particularly limited, but the light fraction is a gas fraction such as LPG, and the heavy fraction is, for example, kerosene raw material, catalytic cracking It can be used as a raw material.

[第3工程]
本発明の第3工程は、第2工程で得られた第2の炭化水素油をさらに水素化処理する工程である。第3工程の原料油としては、第2工程で得られた第2の炭化水素油と同程度の沸点範囲、硫黄分、窒素分、不飽和分である油、例えば直留ナフサなどと混合して使用することもできる。
第3工程の水素化処理も、通常の水素化脱硫装置により実施することができる。反応装置は、バッチ式、流通式、固定床式、流動床式等の反応形式に特に制限はないが、固定床流通式反応装置に充填された水素化処理触媒に水素と原料油とを連続的に供給して接触させる形式が好ましい。
[Third step]
The third step of the present invention is a step of further hydrotreating the second hydrocarbon oil obtained in the second step. The feed oil in the third step is mixed with an oil having a boiling point range, sulfur content, nitrogen content, and unsaturated content similar to the second hydrocarbon oil obtained in the second step, such as straight-run naphtha. Can also be used.
The hydrogenation treatment in the third step can also be performed with a normal hydrodesulfurization apparatus. There are no particular restrictions on the reaction system such as batch type, flow type, fixed bed type, fluidized bed type, etc., but hydrogen and feedstock are continuously added to the hydrotreating catalyst packed in the fixed bed flow type reactor. The type of supplying and contacting is preferable.

反応温度は250〜350℃が好ましく、より好ましくは280〜320℃である。反応温度が250℃未満であると、水素化反応が十分に進行せず、硫黄分、窒素分、不飽和分を所定量まで低減することができなくなるため好ましくない。また、反応温度が320℃を超えると、水素化処理触媒の活性が著しく低下してしまうため好ましくない。
第1工程と第3工程の各水素化処理における反応温度は、第1工程の反応温度が第3工程より少なくとも40℃以上高いことが好ましく、より好ましくは50℃以上である。第1工程の反応温度が第3工程のより40℃以上大きくないと、第1工程で不飽和分が十分に水素化されず第3工程でファウリングやリコンビネーション反応が起こってしまうため好ましくない。
The reaction temperature is preferably 250 to 350 ° C, more preferably 280 to 320 ° C. When the reaction temperature is less than 250 ° C., the hydrogenation reaction does not proceed sufficiently, and the sulfur content, nitrogen content, and unsaturated content cannot be reduced to a predetermined amount. Moreover, since reaction activity will fall remarkably when reaction temperature exceeds 320 degreeC, it is unpreferable.
The reaction temperature in each of the hydrogenation treatments in the first step and the third step is preferably at least 40 ° C. higher than the third step, more preferably 50 ° C. or higher. If the reaction temperature in the first step is not 40 ° C. or higher than that in the third step, the unsaturated portion is not sufficiently hydrogenated in the first step, and fouling and recombination reactions occur in the third step. .

反応圧力は、0.5〜10MPaGが好ましく、より好ましくは1〜4MPaGである。反応圧力が0.5MPaG未満であると、水素化反応が十分に進行せず、脱硫、脱窒素、不飽和分の水素化の効果が低いため好ましくない。また、10MPaGを超えると、装置建設費用及び運転における水素費用が増大し、経済性が低下するため好ましくない。
反応に使用する水素の純度は、50vol%以上が好ましく、より好ましくは55〜75vol%である。水素純度が50vol%未満であると、水素化反応が十分に進行せず、脱硫、脱窒素、不飽和の水素化の効果が低いため好ましくない。また、75vol%を超えると、装置建設費用及び運転における水素費用が増大し、経済性が低下するため好ましくない。
The reaction pressure is preferably 0.5 to 10 MPaG, more preferably 1 to 4 MPaG. When the reaction pressure is less than 0.5 MPaG, the hydrogenation reaction does not proceed sufficiently, and the effects of desulfurization, denitrogenation, and unsaturated hydrogenation are low, which is not preferable. On the other hand, if it exceeds 10 MPaG, the equipment construction cost and the hydrogen cost in operation increase, which is not preferable because the economy is lowered.
The purity of hydrogen used in the reaction is preferably 50 vol% or more, more preferably 55 to 75 vol%. When the hydrogen purity is less than 50 vol%, the hydrogenation reaction does not proceed sufficiently, and the effects of desulfurization, denitrogenation and unsaturated hydrogenation are low, which is not preferable. On the other hand, if it exceeds 75 vol%, the equipment construction cost and the hydrogen cost in operation increase, which is not preferable because the economy is lowered.

LHSVは3.0〜8.0h-1が好ましく、より好ましくは3.5〜5.0h-1である。LHSVが3.0h-1未満であると、経済性を確保できず好ましくない。また、LHSVが8.0h-1を超えると、水素化反応が十分に進行せず、硫黄分、窒素分、不飽和分を多量に含有する熱分解油を含む混合油に対する脱硫、脱窒素、不飽和分の水素化の効果が低いため好ましくない。
第3工程の水素化処理のLHSVは、第1工程のLHSVの少なくとも1.5倍以上好ましく、特には2倍以上大きいことが好ましい。第3工程の水素化処理のLHSVが第1工程の水素化処理におけるより1.5倍以上大きくないと、第1工程で不飽和分が十分に水素化されず第3工程でファウリングやリコンビネーション反応が起こってしまうため好ましくない。
LHSV is preferably 3.0~8.0h -1, more preferably 3.5~5.0h -1. If the LHSV is less than 3.0 h −1 , the economical efficiency cannot be secured, which is not preferable. Further, when the LHSV exceeds 8.0 h −1 , the hydrogenation reaction does not proceed sufficiently, and desulfurization, denitrogenation to a mixed oil containing pyrolysis oil containing a large amount of sulfur, nitrogen and unsaturated components, Since the effect of hydrogenation of unsaturated components is low, it is not preferable.
The LHSV of the hydrogenation treatment in the third step is preferably at least 1.5 times or more , particularly preferably 2 or more times that of the LHSV in the first step. If the LHSV of the hydrogenation process in the third step is not more than 1.5 times greater than that in the hydrogenation process in the first step, the unsaturated component will not be sufficiently hydrogenated in the first step and fouling and rehydration will occur in the third step. This is not preferable because a combination reaction occurs.

水素/油比は10〜50NL/Lが好ましく、より好ましくは30〜45NL/Lである。水素/油比が10NL/L未満であると、水素化反応が十分に進行せず、硫黄分、窒素分、不飽和分を多量に含有する熱分解油を含む混合油に対する脱硫、脱窒素、不飽和分の水素化の効果が低いため好ましくない。また、水素/油比が50NL/Lを超えると、経済性が著しく低下するため好ましくない。
水素化処理の水素/油比を第1工程と第3工程で比較すると、第1工程の水素/油比は第3工程より少なくとも2倍以上、好ましくは3倍以上大きいことが好ましい。第1工程の水素化処理の水素/油比が第3工程より2倍以上大きくないと、第1工程で不飽和分が十分に水素化されず第3工程でファウリングやリコンビネーション反応が起こってしまい好ましくない。
水素化処理触媒は、第1工程で用いるものと同様のNiMo触媒を含む少なくとも1種類の触媒を使用できる。
The hydrogen / oil ratio is preferably 10 to 50 NL / L, more preferably 30 to 45 NL / L. When the hydrogen / oil ratio is less than 10 NL / L, the hydrogenation reaction does not proceed sufficiently, and desulfurization, denitrogenation to a mixed oil containing pyrolysis oil containing a large amount of sulfur, nitrogen and unsaturated components, Since the effect of hydrogenation of unsaturated components is low, it is not preferable. On the other hand, when the hydrogen / oil ratio exceeds 50 NL / L, the economy is remarkably lowered.
When the hydrogen / oil ratio of the hydrotreating is compared between the first step and the third step, the hydrogen / oil ratio of the first step is preferably at least twice as large as that of the third step, and preferably three times or more. If the hydrogen / oil ratio of the hydrotreating process in the first step is not more than twice as large as that in the third step, the unsaturated component is not sufficiently hydrogenated in the first step and fouling and recombination reactions occur in the third step. This is not preferable.
As the hydrotreating catalyst, at least one kind of catalyst containing the same NiMo catalyst as that used in the first step can be used.

[第4工程]
本発明の第4工程は、第3工程で得られた第2の水素化処理油から5%留出温度が80℃以上、95%留出温度が180℃以下である第3の炭化水素油を分留して得る工程である。分留は通常用いられる蒸留により行うことができ、5%留出温度が80℃以上、好ましくは85℃以上、より好ましくは90℃以上となるよう、また95%留出温度が180℃以下、好ましくは160℃以下、より好ましくは150℃以下となるよう行う。5%留出温度が80℃未満であると、炭素数5以下のナフサが多く含まれるようになり、接触改質装置において効率的に接触改質を行うことができなくなる。95%留出温度が180℃を超えると、硫黄分、窒素分ともに著しく増え、接触改質の原料として受容できるレベルに達しないため好ましくない。
[Fourth step]
The fourth step of the present invention is a third hydrocarbon oil having a 5% distillation temperature of 80 ° C. or higher and a 95% distillation temperature of 180 ° C. or lower from the second hydrotreated oil obtained in the third step. Is obtained by fractional distillation. The fractional distillation can be carried out by a commonly used distillation, and the 5% distillation temperature is 80 ° C. or higher, preferably 85 ° C. or higher, more preferably 90 ° C. or higher, and the 95% distillation temperature is 180 ° C. or lower. Preferably, the temperature is 160 ° C. or lower, more preferably 150 ° C. or lower. When the 5% distillation temperature is less than 80 ° C., a large amount of naphtha having 5 or less carbon atoms is contained, and the catalytic reforming cannot be efficiently performed in the catalytic reforming apparatus. If the 95% distillation temperature exceeds 180 ° C., both the sulfur content and the nitrogen content are remarkably increased, so that it does not reach a level acceptable as a raw material for catalytic reforming.

[接触改質原料]
前記各工程により製造された第3の炭化水素油は接触改質原料として好適に使用するには、硫黄分は2質量ppm以下が好ましく、より好ましくは1質量ppm以下であり、特に好ましくは0.5質量ppm以下である。硫黄分が2質量ppmを超えると、接触改質触媒中に含まれる貴金属の硫黄による被毒の割合が著しく増加し、活性を損なうため好ましくない。
また、窒素分は2質量ppm以下が好ましく、より好ましくは1質量ppm以下、特に好ましくは0.5質量ppm以下である。窒素分が2質量ppmを超えると、接触改質触媒中に含まれるアルミナの酸性が中和され、活性を損なうため好ましくない。
臭素価は5gBr/100g以下が好ましく、より好ましくは3gBr/100g以下、特に好ましくは1gBr/100g以下である。臭素価が5gBr/100gを超えると、接触改質触媒上に炭素質が著しく堆積し、活性が大きく損なわれるので好ましくない。
[Contact reforming raw material]
In order to use the third hydrocarbon oil produced by the above-mentioned steps suitably as a catalytic reforming raw material, the sulfur content is preferably 2 ppm by mass or less, more preferably 1 ppm by mass or less, particularly preferably 0. .5 mass ppm or less. If the sulfur content exceeds 2 mass ppm, the rate of poisoning of the precious metal contained in the catalytic reforming catalyst due to sulfur increases remarkably, and the activity is impaired.
The nitrogen content is preferably 2 mass ppm or less, more preferably 1 mass ppm or less, and particularly preferably 0.5 mass ppm or less. If the nitrogen content exceeds 2 ppm by mass, the acidity of alumina contained in the catalytic reforming catalyst is neutralized and the activity is impaired, which is not preferable.
Bromine number is preferably at most 5gBr 2 / 100g, more preferably 3gBr 2 / 100g or less, particularly preferably not more than 1gBr 2 / 100g. When bromine number exceeds 5gBr 2 / 100g, significantly accumulated carbonaceous on catalytic reforming catalyst, because activity is greatly impaired undesirably.

[接触改質]
接触改質を行う接触改質装置や、その運転条件は特に限定されるものではなく、公知の任意の製造装置、運転条件を採用できる。接触改質装置は、白金アルミナ触媒や白金にレニウム、ゲルマニウム、すず、イリジウムなどの第二の金属を添加したバイメタリックアルミナ触媒などを使用して、沸点範囲80〜180℃程度の脱硫された脱硫直留重質ナフサを処理して高オクタン価ガソリン基材であるリフォーメートやベンゼン、トルエン、キシレンなどの芳香族炭化水素を得るために広く用いられている装置である。例えば石油学会編「石油精製プロセス」(講談社サイエンティフィック、1998年)に記載のあるUOPプラットフォーミングプロセス、レニフォーミングプロセス、EREパワーフォーミングプロセス、マグナフォーミングプロセスなどがある。
[Catalytic modification]
The catalytic reforming apparatus for performing catalytic reforming and its operating conditions are not particularly limited, and any known manufacturing apparatus and operating conditions can be adopted. The catalytic reformer uses a platinum-alumina catalyst or a bimetallic alumina catalyst in which a second metal such as rhenium, germanium, tin, or iridium is added to platinum, and is desulfurized and desulfurized in a boiling range of about 80 to 180 ° C. It is an apparatus widely used to process straight-run heavy naphtha to obtain reformate, which is a high octane gasoline base material, and aromatic hydrocarbons such as benzene, toluene and xylene. For example, there are UOP platforming process, reniforming process, ERE power forming process, Magna forming process and the like described in “Oil Refinery Process” edited by Petroleum Society (Kodansha Scientific, 1998).

反応温度は、好ましくは400〜600℃であり、より好ましくは450〜550℃である。液空間速度は、好ましくは0.5〜5h−1、より好ましくは1〜2h−1である。反応圧力は好ましくは0.1〜2MPaGであり、より好ましくは0.2〜1.5MPaGである。反応に使用する水素の純度は好ましくは70〜90vol%であり、より好ましくは75〜85vol%である。水素/油比は好ましくは250〜500NL/Lであり、より好ましくは350〜400NL/Lである。 The reaction temperature is preferably 400 to 600 ° C, more preferably 450 to 550 ° C. The liquid space velocity is preferably 0.5 to 5 h −1 , more preferably 1 to 2 h −1 . The reaction pressure is preferably 0.1 to 2 MPaG, more preferably 0.2 to 1.5 MPaG. The purity of hydrogen used in the reaction is preferably 70 to 90 vol%, more preferably 75 to 85 vol%. The hydrogen / oil ratio is preferably 250 to 500 NL / L, more preferably 350 to 400 NL / L.

以下に、実施例により本発明をより具体的に説明するが、本発明はこれらの例により何ら制限されるものではない。   Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.

(実施例1)
ディレードコーキング法により重質油を熱分解した熱分解油9容量%と直留軽油、減圧軽油、熱分解軽油を混合した重質留分91容量%とを混合し、第1工程の水素化処理の原料油として第1の炭化水素油を調製した。この第1の炭化水素油を反応温度361℃、反応圧力9.3MPaG、水素純度76vol%、水素/油比232NL/L、LHSV1.7h−1の条件下、市販のNiMo触媒を充填した固定床流通式反応装置を用いて第1工程の水素化処理を実施した。
Example 1
Hydrogenation treatment in the first step by mixing 9% by volume of pyrolysis oil obtained by pyrolyzing heavy oil by the delayed coking method and 91% by volume of heavy fraction obtained by mixing straight-run gas oil, vacuum gas oil, and pyrolysis gas oil A first hydrocarbon oil was prepared as a raw material oil. A fixed bed filled with a commercially available NiMo catalyst using this first hydrocarbon oil under conditions of a reaction temperature of 361 ° C., a reaction pressure of 9.3 MPaG, a hydrogen purity of 76 vol%, a hydrogen / oil ratio of 232 NL / L, and LHSV of 1.7 h −1. The hydrogenation process of the 1st process was implemented using the flow-type reaction apparatus.

第1工程で得られた水素化処理油を第2工程により分留処理して第2の炭化水素油を得た。第2工程で得られた第2の炭化水素油12容量%と直留ナフサ88容量%とを混合して第3工程の水素化処理用の原料油を調製した。該原料油を用いて第3工程の水素化処理を行った。
第3工程の水素化処理は、市販のNiMo触媒を使用して、反応温度305℃、反応圧力2.5MPaG、水素純度60vol%、水素/油比37NL/L、LHSV4.5h−1の条件下、固定床流通式反応装置を用いて実施した。
The hydrotreated oil obtained in the first step was subjected to fractional distillation treatment in the second step to obtain a second hydrocarbon oil. 12 volume% of the second hydrocarbon oil obtained in the second step and 88 volume% of straight-run naphtha were mixed to prepare a feed oil for hydroprocessing in the third step. A hydrogenation treatment in the third step was performed using the raw material oil.
The hydrogenation treatment in the third step is performed using a commercially available NiMo catalyst under the conditions of a reaction temperature of 305 ° C., a reaction pressure of 2.5 MPaG, a hydrogen purity of 60 vol%, a hydrogen / oil ratio of 37 NL / L, and LHSV 4.5 h −1 . This was carried out using a fixed bed flow reactor.

第3工程の水素化処理により得られた第2の水素化処理油を第4工程により分留処理して接触改質用の原料油である第3の炭化水素油を得た。
得られた接触改質用の原料油を反応温度522℃、反応圧力0.35MPaG、水素純度81vol%、水素/油比331NL/L、LHSV1.2h−1の条件下、市販の白金アルミナ触媒により接触改質処理を実施した。接触改質反応生成物の気液分離後、液成分をスタビライザーにかけて蒸気圧を調整し、接触改質油を得た。
The second hydrotreated oil obtained by the hydrotreating process in the third step was subjected to fractional distillation treatment in the fourth step to obtain a third hydrocarbon oil that is a feedstock oil for catalytic reforming.
The obtained raw material oil for catalytic reforming was subjected to a reaction with a commercially available platinum-alumina catalyst under the conditions of a reaction temperature of 522 ° C., a reaction pressure of 0.35 MPaG, a hydrogen purity of 81 vol%, a hydrogen / oil ratio of 331 NL / L, and LHSV of 1.2 h −1. A catalytic reforming treatment was performed. After the gas-liquid separation of the catalytic reforming reaction product, the liquid component was subjected to a stabilizer to adjust the vapor pressure to obtain a catalytic reforming oil.

第1工程から第4工程の各工程において、原料油として用いた或いは製品として得られた熱分解油、重質留分、第1の炭化水素油、第2の炭化水素油、直留ナフサ、第3工程(第2の水素化処理)原料油、接触改質原料油及び接触改質油の性状を表1に示す。   In each step from the first step to the fourth step, a pyrolysis oil, a heavy fraction, a first hydrocarbon oil, a second hydrocarbon oil, a straight-run naphtha, used as a raw material oil or obtained as a product, Table 1 shows the properties of the third step (second hydrotreating) feedstock, catalytic reforming feedstock, and catalytic reforming oil.


Claims (2)

5%留出温度が200〜350℃、95%留出温度が500〜600℃の重質留分に、5%留出温度が40〜90℃、95%留出温度が120〜190℃の熱分解油を、第1の炭化水素油中の含有量として、1〜25容量%混合し、5%留出温度が130〜180℃、95%留出温度が450〜600℃、臭素価が40gBr2/100g以下、硫黄分が5.0質量%以下の第1の炭化水素油を、反応温度300〜500℃、反応圧力5.6〜25MPaG、水素純度60vol%以上、液空間速度(LHSV)0.5〜4.0h -1 、水素/油比100〜1000NL/Lの条件下に、ニッケルおよびモリブデンを含有する水素化処理触媒で水素化処理して第1の水素化処理油を得る第1工程、第1工程で得られた第1の水素化処理油から5%留出温度が30℃以上、95%留出温度が180℃以下である第2の炭化水素油を得る第2工程、第2工程で得られた第2の炭化水素油をさらに、反応温度250〜350℃、反応圧力0.5〜10MPaG、水素純度50vol%以上、液空間速度(LHSV)3.0〜8.0h -1 、水素/油比10〜50NL/Lの条件下に、ニッケルおよびモリブデンを含有する水素化処理触媒で水素化処理して第2の水素化処理油を得る第3工程、第3工程で得られた第2の水素化処理油から5%留出温度が80℃以上、95%留出温度が180℃以下、硫黄分が2質量ppm以下、窒素分が2質量ppm以下、臭素価が5gBr 2 /100g以下である第3の炭化水素油を得る第4工程を含むことを特徴とする接触改質原料用炭化水素油の製造方法。 A heavy fraction having a 5% distillation temperature of 200 to 350 ° C and a 95% distillation temperature of 500 to 600 ° C has a 5% distillation temperature of 40 to 90 ° C and a 95% distillation temperature of 120 to 190 ° C. As a content in the first hydrocarbon oil, 1 to 25% by volume of pyrolysis oil is mixed , 5% distillation temperature is 130 to 180 ° C, 95% distillation temperature is 450 to 600 ° C, bromine number is 40gBr 2 / 100g or less, the first hydrocarbon oil sulfur content of 5.0 mass% or less, the reaction temperature 300 to 500 ° C., a reaction pressure 5.6~25MPaG, hydrogen purity 60 vol% or more, liquid hourly space velocity (LHSV ) Hydrotreating with a hydrotreating catalyst containing nickel and molybdenum under conditions of 0.5 to 4.0 h −1 and a hydrogen / oil ratio of 100 to 1000 NL / L to obtain a first hydrotreated oil 1st step, 5% cut from the first hydrotreated oil obtained in the 1st step Temperature 30 ° C. or more, a second step of 95% distillation temperature to obtain a second hydrocarbon oil is 180 ° C. or less, the second hydrocarbon oil further obtained in the second step, the reaction temperature 250-350 Nickel and molybdenum under the conditions of ℃, reaction pressure of 0.5 to 10 MPaG, hydrogen purity of 50 vol% or more, liquid hourly space velocity (LHSV) of 3.0 to 8.0 h −1 , and hydrogen / oil ratio of 10 to 50 NL / L. A third step of obtaining a second hydrotreated oil by hydrotreating with the hydrotreating catalyst contained, a 5% distillation temperature of 80 ° C. or higher from the second hydrotreated oil obtained in the third step; 95% distillation temperature of 180 ° C. or less, a sulfur content of 2 ppm by mass or less, a nitrogen content of 2 ppm by mass or less, include a fourth step of bromine number to obtain a third hydrocarbon oil is less 5gBr 2 / 100g A method for producing a hydrocarbon oil for a catalytic reforming raw material. 第1工程の水素化処理における反応温度が第3工程の水素化処理における反応温度より40℃以上高い温度である請求項1に記載の炭化水素油の製造方法。 The method for producing a hydrocarbon oil according to claim 1, wherein the reaction temperature in the hydrotreating process in the first step is 40 ° C or higher than the reaction temperature in the hydrotreating process in the third step.
JP2008218928A 2008-08-28 2008-08-28 Method for producing hydrocarbon oil Active JP5371327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218928A JP5371327B2 (en) 2008-08-28 2008-08-28 Method for producing hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218928A JP5371327B2 (en) 2008-08-28 2008-08-28 Method for producing hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2010053235A JP2010053235A (en) 2010-03-11
JP5371327B2 true JP5371327B2 (en) 2013-12-18

Family

ID=42069481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218928A Active JP5371327B2 (en) 2008-08-28 2008-08-28 Method for producing hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP5371327B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557106B2 (en) * 2010-09-30 2013-10-15 Exxonmobil Research And Engineering Company Hydrocracking process selective for improved distillate and improved lube yield and properties
JP7093207B2 (en) * 2018-03-27 2022-06-29 コスモ石油株式会社 Method for Quantifying Silicon Element in Heavy Nafsa and Method for Producing Heavy Nafsa

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL161807C (en) * 1969-03-03 1980-08-15 Shell Int Research PROCESS FOR THE EXTRACTION OF AROMATIC HYDROCARBONS FROM PYROLYSIS PETROL.
CA1080974A (en) * 1975-09-18 1980-07-08 Burton E. Moody Gasification of hydrocarbon feedstocks

Also Published As

Publication number Publication date
JP2010053235A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
CN111836875B (en) Conversion of heavy fuel oil to chemical products
JPH0756035B2 (en) Hydrocracking method
CN110621762A (en) Process for converting heavy oil to petrochemicals
CN105713655A (en) Residue hydrocracking
US20160060549A1 (en) Process for partial upgrading of heavy and/or extra-heavy crude oils for transportation
JP5460224B2 (en) Method for producing highly aromatic hydrocarbon oil
JP5406629B2 (en) Method for producing highly aromatic hydrocarbon oil
JP5371327B2 (en) Method for producing hydrocarbon oil
US8828218B2 (en) Pretreatment of FCC naphthas and selective hydrotreating
JP5345298B2 (en) Method for refining hydrocarbon oil
JP5404505B2 (en) Method for producing isopentane fraction for gasoline base
JP6548223B2 (en) Method of producing fuel oil base material
JP5191865B2 (en) Manufacturing method of atmospheric distillation fraction
JP5676344B2 (en) Kerosene manufacturing method
JP5501048B2 (en) Method for producing catalytic reforming feedstock
JP6812265B2 (en) How to treat pyrolyzed heavy light oil
JP6258756B2 (en) Method for producing fuel oil base material
JP2008074998A (en) Manufacturing method of gasoline base material having high octane number
KR20200081419A (en) Method for supporting catalyst for dispersing heat in a hydrogenation conversion reactor
JP6283561B2 (en) Method for producing fuel oil base material
JP5082138B2 (en) Operation method of direct desulfurization equipment
JP5483861B2 (en) Production method of purified fraction
JP4766940B2 (en) Method for producing hydrocarbon oil
JP4931052B2 (en) Method for producing gasoline base material
JP2003238970A (en) Method for producing low-sulfur gasoline base material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250