JP3464047B2 - Hydroprocessing of heavy oil - Google Patents

Hydroprocessing of heavy oil

Info

Publication number
JP3464047B2
JP3464047B2 JP17019294A JP17019294A JP3464047B2 JP 3464047 B2 JP3464047 B2 JP 3464047B2 JP 17019294 A JP17019294 A JP 17019294A JP 17019294 A JP17019294 A JP 17019294A JP 3464047 B2 JP3464047 B2 JP 3464047B2
Authority
JP
Japan
Prior art keywords
oil
catalyst
hydrotreating
dry sludge
stage reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17019294A
Other languages
Japanese (ja)
Other versions
JPH0812978A (en
Inventor
循 渕上
広幸 清藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP17019294A priority Critical patent/JP3464047B2/en
Publication of JPH0812978A publication Critical patent/JPH0812978A/en
Application granted granted Critical
Publication of JP3464047B2 publication Critical patent/JP3464047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、重質油の水素化処理方
法に関し、さらに詳しくは、硫黄分、ドライスラッジ分
の少ない生成油を得る重質油の水素化処理方法に関す
る。 【0002】 【従来技術およびその問題点】従来、重質油の水素化処
理においては、高脱金属率、高脱窒素率、高脱硫率又は
高分解率で重質油を水素化処理することが望まれてお
り、そのような水素化処理は、比較的高い反応温度で行
うのが効果的である。しかし、高い反応温度で水素化処
理した場合には、ドライスラッジ(炭素質の不溶性の固
体)が生成するため、この生成したドライスラッジによ
る熱交換器などの装置各部の詰りが起こり、そのため精
製装置の長期安定運転ができなくなり、生産性が阻害さ
れるなどの問題があった。そこで、重質油の水素化処理
において、ドライスラッジ分の生成を抑制する方法が従
来より種々提案されている。例えば、重質油の水素化処
理を水素供与性溶剤の存在下で行う方法(例えば、特開
昭63−156890号公報、特開昭63−15479
5号公報など)、あるいは、重質残渣油を触媒の存在下
で、水素化脱金属処理、水素化分解処理、水素化脱硫及
び水素化脱窒素処理の順に、水素化処理するにあたり、
水素化分解処理後、水素化脱硫及び水素化脱窒素処理の
段階で、水素とアンモニアを導入する処理方法(特開平
5−263084号公報)、スラッジ前駆体を除去した
重質炭化水素油を水素化脱金属処理し、次いで、水素化
分解処理した後、水素化分解処理油の一部を前記重質炭
化水素油に還流してリサイクルすると共に水素化分解処
理油の残部を水素化脱硫及び脱窒素処理する方法(特開
平5−117666号公報)などが提案されている。し
かし、従来の水素供与性溶剤の存在下で水素化処理する
方法は、多量の水素供与性溶剤を用いることを必要と
し、そのため重質油の処理量が低下する。あるいは、水
素供与性溶剤を分離・回収する工程を必要とするなどの
問題があった。また、水素化脱硫及び水素化脱窒素処理
の段階でアンモニアを導入する方法では十分な脱硫活性
が得られない、水素化分解処理油の一部をリサイクルす
る方法では処理量が上がらず、さらにスラッジ前駆体の
除去のために処理費用が増大するなどの問題があり、必
ずしも満足のいくものではなかった。 【0003】 【発明の目的】本発明の目的は、重質油の水素化処理方
法において、高脱金属率、高脱窒素率、高脱硫率又は高
分解率で重質残渣油を水素化処理しても、該水素化処理
で得られる生成油のドライスラッジ分を低減させること
によりドライスラッジに起因する熱交換器などの詰りの
問題を解決し、長期間安定して運転を行うことができる
水素化処理方法を提供することにある。また、本発明の
他の目的は、流動接触分解(FCC)用原料油として好
適な高品位の脱硫重質残渣油(生成油)を製造すること
である。 【0004】 【発明の構成】従来の重質油の水素化処理方法では、一
般に反応温度300℃〜500℃の範囲で所望の脱金属
率、脱硫率あるいは分解率を達成するために反応温度を
徐々に高くする方法が採られている。しかし、反応温度
が高い温度、例えば385℃を越える温度、特に390
℃を越えると流出油中のドライスラッジ分の生成が急激
に増大するため、水素化処理触媒は残存活性を十分に有
するにもかかわらず運転を中止しなければならなかっ
た。本発明の水素化処理方法では、反応温度385℃以
上で十分に水素化処理触媒の活性を活用して水素化処理
し、ドライスラッジ分の生成量が多くても金属分、窒素
分および硫黄分等の少ない油を製造し、しかる後、該油
を反応温度385℃未満、好ましくは380℃以下の温
度で水素化処理し、生成したドライスラッジ分を水素化
して低減するとともに、さらに、該工程において、必要
に応じて脱金属、脱硫黄あるいは分解を行って高品位の
生成油を製造することを特徴とする。 【0005】すなわち、本発明は、重質油の水素化処理
方法において、 (a)アスファルテン分を1.0wt%以上含有する重
質油を水素化処理触媒の存在下、反応温度385℃〜5
00℃、好ましくは390℃〜450℃、水素分圧50
kg/cmG〜250kg/cmG、好ましくは1
00kg/cmG〜200kg/cmGの条件で水
素化処理して、ドライスラッジ分が0.1wt%以上、
硫黄分が1.0wt%以下の流出油を得る工程、 (b)(a)工程の流出油を水素化処理触媒の存在下、
反応温度385℃未満、好ましくは380℃以下、水素
分圧50kg/cmG〜250kg/cmG、好ま
しくは100kg/cmG〜200kg/cmGの
条件で処理して、生成油のドライスラッジ分を0.1w
t%未満とする工程、 を有する重質油の水素化処理方法において、(1)
(a)工程における反応温度と(b)工程における反応
温度の差が10℃以上であること、(2)(b)工程の
水素化処理触媒が、水素化活性金属成分と無機酸化物担
体から成る触媒であって、触媒の細孔容積が0.40m
l/g以上、平均細孔直径が90Å以上、比表面積が1
20m/g以上の範囲にあり、かつ、その平均細孔直
径が、(a)工程における最後段で使用される水素化処
理触媒の平均細孔直径より大きい触媒であることを特徴
とする重質油の水素化処理方法に関する。前記(a)工
程では、従来の重質油の水素化処理方法の場合と同様
に、水素化脱金属処理、水素化脱硫処理、水素化脱窒素
処理や水素化分解等の処理を単独または組合せで行う。
また、反応温度および水素分圧以外の水素化処理条件
は、従来の水素化処理条件を採用することができる。す
なわち、水素/油比300〜2,000Nm/kl、
液時空間速度(LHSV)0.1〜5hr−1などであ
る。 (a)工程で使用される水素化処理触媒としては、通
常、水素化脱金属、水素化脱硫、水素化脱窒素や水素化
分解に使用されているものでよい。例えば、Mo、Wな
どの周期律表第VIA族金属およびNi、Coなどの周期
律表第VIII族金属の1種以上の金属成分をアルミナ、シ
リカ、ゼオライト、チタニア、ボリアあるいはこれらの
混合物、複合物等の担体に担持させた触媒を用いること
ができる。本発明は(a)工程で高温度による水素化脱
硫等を行い、(b)工程で低温度によるドライスラッジ
分の水素化反応を行う工程で構成されることから、
(a)工程においては、十分に水素化脱硫することが望
ましく、(a)工程の流出油の硫黄分を1.0wt%以
下、好ましくは0.7wt%以下、さらに好ましくは
0.5wt%以下にすることが望ましい。 【0006】前記(b)工程での水素化処理は、前記反
応温度および水素分圧の条件の外は、従来の水素化処理
条件が採用される。(b)工程での反応温度は、(a)
工程で生成したドライスラッジ分を十分に水素化し、か
つ、熱分解して新たなドライスラッジ分を生成しないよ
うな温度でなければならないが、このような臨界的温度
が前記の385℃未満、好ましくは380℃以下の温度
に相当する。さらに本発明の方法では、(a)工程の反
応温度と(b)工程の反応温度は、生成油の硫黄分をで
きるだけ低減し、しかもドライスラッジ分をできるだけ
少なくするためにその差が10℃以上、好ましくは20
℃以上、さらに好ましくは30℃以上とすることが望ま
しい。ただし、(b)工程でドライスラッジ分と共に硫
黄分の減少を行う場合には、(b)工程の反応温度とし
ては、前記臨界的温度内で高温側の温度を採用すること
が好ましいので、前記(a)工程と(b)工程の温度差
は小さくなり、また(b)工程で硫黄分の減少を行わな
い場合には、(b)工程の反応温度は、200℃程度で
良いので、前記(a)工程と(b)工程の温度差は大き
くなる。なお、本発明での反応温度とは、触媒層の重量
平均温度(Weight Average Tempe
rature, 以下、WATと略す)を意味する。な
お、重量平均温度tは、触媒が充填された触媒層をn分
割したとき、i番目の分割された触媒層の温度をti
し、i番目の分割された触媒層の触媒が充填された触媒
層に対する重量割合をxiとすると、次式により表わさ
れる。 【数1】 また、(b)工程で使用される水素化処理触媒として
は、水素化活性金属成分と無機酸化物担体から成る触媒
であって、ドライスラッジ分などの巨大分子が触媒の細
孔内で水素化されるためには、細孔直径の大きい細孔を
有する触媒が望ましいので、平均細孔直径が90Å以
上、好ましくは100〜200Åの範囲にあるものが好
ましい。また、触媒の細孔容積は0.40ml/g以
上、好ましくは0.50〜1.00ml/gの範囲、比
表面積は120m2/g以上、好ましくは130〜35
0m2/gの範囲にあるものが好ましい。なお、触媒の
平均細孔直径、細孔容積は水銀圧入法で、比表面積はB
ET法で測定される。従来の重質油の水素化処理方法に
おいては、反応塔の前段に細孔直径の大きい細孔を有す
る触媒を充填し、後段には細孔直径の小さい細孔を有す
る触媒を充填して処理するのが通例であるが、本発明の
方法では、巨大分子であるドライスラッジ分を細孔内で
水素化する理由から、(b)工程において使用する水素
化処理触媒は、(a)工程において最後段で使用される
水素化処理触媒よりも平均細孔直径が大きい触媒である
ことが好ましい。水素化活性金属成分としては、周期律
表第VIA族、第VIII族金属などの通常の水素化処理触媒
に使用される金属成分が通常の使用範囲の量、例えば3
〜30wt%の範囲で使用可能である。具体的には、M
o、W、Ni、Coなどが挙げられる。また、無機酸化
物担体としては、アルミナ、シリカ、シリカ−アルミ
ナ、アルミナ−ボリア、リン−アルミナ、アルミナ−チ
タニア、アルミナ−ジルコニア、アルミナ−シリカ−ボ
リア、アルミナ−シリカ−チタニアなどの通常の水素化
処理触媒の担体に使用される無機酸化物担体が使用可能
である。本発明の方法では、(b)工程で得られる生成
油のドライスラッジ分を0.1wt%未満、好ましくは
0.05wt%以下とすることが望ましい。生成油のド
ライスラッジ分が0.1wt%以上の場合には、下流装
置での熱交換器などの詰まりの問題が起こりやすいので
好ましくない。 【0007】本発明で使用される重質油は、アスファル
テン分(nーペンタン不溶分)を1.0wt%以上およ
び硫黄分を、例えば少なくとも2.0wt%含有する重
質油である。このような重質油としては、常圧残渣油、
減圧残渣油などの重質残渣油、ビスブレーキング油、タ
ールサンド油、シェルオイル等の重質炭化水素油を挙げ
ることができる。前述の重質油には、通常アスファルテ
ン分は1.0wt%以上含有されており、このアスファ
ルテン分は、水素化処理において反応温度が385℃以
上になると熱的な影響を受けて、脱アルキル、脱水素環
化反応などを起こしてドライスラッジ分に転化する。ア
スファルテン分の含有量の少ない重質油では、385℃
以上の温度で水素化処理してもドライスラッジ分の生成
が少ないため、前記のような問題は生じない。本発明に
おいて、ドライスラッジ分とは、以下に記載するSHF
T法(Shel Hot Filtration Te
st法)で測定される炭素質の不溶性の固形分を云う。
すなわち、ドライスラッジ分は、試料の油を5〜10g
秤量し、該試料を温度100℃に保持した状態で、定量
濾紙(ワットマンNo.50)を用いて濾紙の上側を5
Kg/cm2Gに加圧し、さらに濾紙の下側を−100
mmHgに減圧して濾過する。なお、濾過時間が25分
間を越えないように試料の油の量は5〜10gの範囲で
調節される。次いで、10mlのn−ヘプタンで洗浄
後、110℃で20分間乾燥して残渣の重量を測定して
定量される。通常、前述のドライスラッジ分は、温度の
高い反応器内では溶媒和したスラッジ前駆体の状態で存
在するが、油の温度が低下すると、該前駆体は凝集し、
ドライスラッジとなる。 【0008】本発明の方法は、単一の反応塔又は複数の
反応塔を用いて実施することができる。単一の反応塔の
場合には、出口側の反応塔内部に、また複数の反応塔の
場合には反応塔間のパイプラインに水素ガスを供給する
ことにより冷却する方法等の任意の方法で(b)工程の
反応温度を385℃未満、好ましくは380℃以下とす
ることができる。また、本発明の方法では、(a)工程
と(b)工程における水素化処理触媒のそれぞれの工程
での使用量は、特に限定されるものではない。例えば
(a)工程と(b)工程における水素化処理触媒の全使
用量の50〜90%の範囲を(a)工程で使用し、50
〜10%の範囲を(b)工程で使用することができる。 【0009】 【実施例】以下、本発明を実施例に基づいて具体的に説
明する。また、該実施例および比較例の結果を表1〜表
4に示す。 【0010】比較例1 密度0.987g/cm、硫黄分3.36wt%、残
留炭素分(コンラドソン残炭)12.3wt%、アスフ
ァルテン分5.1wt%の常圧残油を通油量46ml/
Hr、反応圧力145kg/cm、水素対油比100
0ml水素/l油で触媒の存在下に水素化処理を行っ
た。反応装置は2段式リアクターを用いて反応を行っ
た。第1段目リアクターにはリアクター上部20vol
%に平均細孔径130Åのニッケルモリブデン担持アル
ミナ触媒を、下部80vol%に平均細孔径105Åの
コバルトモリブデン担持アルミナ触媒を充填した。第2
段目リアクターには平均細孔径105Åのコバルトモリ
ブデン担持アルミナ触媒を充填した。第1段目リアクタ
ーの触媒充填量は全部で200ml、第2段目リアクタ
ーの触媒充填量は220mlであった。したがって、第
1段目リアクターのLHSVは0.23Hr−1、第1
段目と第2段目を通したLHSVは0.11Hr−1
ある。第1段目リアクターの重量平均温度を410℃、
第2段目リアクターの重量平均温度を200℃に設定
し、第1段目リアクター出口油を分析したところ、シェ
ル法(SHFT法)ドライスラッジ分0.21wt%、
硫黄分0.025wt%であった。第2段目リアクター
出口油を分析したところ、シェル法ドライスラッジ分
0.05wt%、硫黄分0.025wt%であり、明ら
かなドライスラッジ分の減少を確認した。 【0011】比較例2 第2段目リアクターの重量平均温度を370℃にする以
外は比較例1と全く同様の方法で反応を行った。第1段
目リアクター出口油はシェル法ドライスラッジ分0.2
1wt%、硫黄分0.025wt%であり、第2段目リ
アクター出口油はシェル法ドライスラッジ分0.07w
t%、硫黄分0.020wt%で、比較例1と同様のド
ライスラッジ分の減少を確認した。 【0012】比較例3 第2段目リアクターの重量平均温度を380℃にする以
外は比較例1と全く同様の方法で反応を行った。第1段
目リアクター出口油はシェル法ドライスラッジ分0.2
1wt%、硫黄分0.025wt%であり、第2段目リ
アクター出口油はシェル法ドライスラッジ分0.09w
t%、硫黄分0.018wt%であった。 【0013】比較例4 第2段目リアクターの重量平均温度を390℃にする以
外は比較例1と全く同様の方法で反応を行った。第1段
目リアクター出口油はシェル法ドライスラッジ分0.2
1wt%、硫黄分0.025wt%であり、第2段目リ
アクター出口油はシェル法ドライスラッジ分0.50w
t%、硫黄分0.016wt%であった。第2段目リア
クターの重量平均温度を390℃にすることによって、
比較例2に較べて硫黄分を低減できたもののシェル法ド
ライスラッジ分は大巾に増加した。 【0014】比較例5 第2段目リアクターの重量平均温度を410℃にする以
外は比較例1と全く同様の方法で反応を行った。第1段
目リアクター出口油はシェル法ドライスラッジ分0.2
1wt%、硫黄分0.025wt%であり、第2段目リ
アクター出口油はシェル法ドライスラッジ分1.1wt
%、硫黄分0.011wt%であった。第2段目リアク
ターの重量平均温度を410℃にすることによって、硫
黄分の減少が著しかったもののシェル法ドライスラッジ
分は大巾に増加した。 【0015】実施例1 第1段目リアクター下部触媒よりも30Å大きい平均細
孔径を有する平均細孔径135Åのコバルトモリブデン
担持アルミナ触媒を第2段目リアクターに充填した以外
は比較例1と全く同様の方法で反応を行った。第1段目
リアクター出口油のシェル法ドライスラッジ分は0.2
1wt%、硫黄分は0.025wt%、第2段目リアク
ター出口油のシェル法ドライスラッジ分は0.04wt
%、硫黄分は0.025wt%であった。 【0016】実施例2 第2段目リアクターに平均細孔径135Åのコバルトモ
リブデン担持アルミナ触媒を充填し、第2段目リアクタ
ーの重量平均温度を370℃にする以外は比較例1と全
く同様の方法で反応を行った。第1段目リアクター出口
油のシェル法ドライスラッジ分は0.21wt%、硫黄
分は0.025wt%、第2段目リアクター出口油のシ
ェル法ドライスラッジ分は0.06wt%、硫黄分は
0.018wt%であった。 【0017】比較例6 第1段目リアクター上部25vol%に平均細孔径13
0Åのニッケルモリブデン担持アルミナ触媒、第1段目
リアクター下部75vol%に平均細孔径105Åのコ
バルトモリブデン担持アルミナ触媒、第2段目リアクタ
ーに平均細孔径105Åのコバルトモリブデン担持アル
ミナ触媒を充填し、第1段目リアクターの触媒充填量を
336ml、第2段目リアクターの触媒充填量を84m
lとした。第1段目リアクターの重量平均温度を400
℃、第2段目リアクターの重量平均温度を340℃と
し、通油量を84ml/Hrとする以外は比較例1と同
様の原料油および反応条件で反応を行った。第1段目リ
アクターのLHSVは0.25Hr−1、第1段目と第
2段目を通したLHSVは0.20Hr−1で、重量平
均温度は388℃である。第1段目リアクター出口油の
シェル法ドライスラッジ分は0.12wt%、硫黄分は
0.036wt%、第2段目リアクター出口油のシェル
法ドライスラッジ分は0.06wt%、硫黄分は0.0
35wt%であった。 【0018】比較例7 第1段目リアクターの重量平均温度を380℃、第2段
目リアクターの重量平均温度を420℃にする以外は比
較例6と同様の方法で反応を行った。第1段目と第2段
目を通じての重量平均温度は388℃で比較例6と同一
である。第1段目リアクター出口油のシェル法ドライス
ラッジ分は0.05wt%、硫黄分は0.058wt%
であり、第2段目リアクター出口油のシェル法ドライス
ラッジ分は0.18wt%、硫黄分は0.036wt%
であった。 【0019】参考例1 比較例6と比較例7で得られた生成油を蒸留して、それ
ぞれ沸点343℃以上の留分の油を得た。この油をWH
SV=40Hr−1、Cat/Oil比=3.0、反応
温度530℃で市販のFCC触媒を用いて接触分解反応
を行った。反応に用いた装置はマイクロアクティビティ
ーテスト装置(MAT)である。反応結果を表5に示す
が、比較例6の生成油は比較例7の生成油に較べて、高
い転化率、ガソリン得率を示した。 【0020】 【表1】【0021】 【表2】【0022】 【表3】【0023】 【表4】 注. * 第1段目リアクター充填触媒 上部 20vol% ニッケルモリブデン担持アルミナ
触媒 下部 80vol% コバルトモリブデン担持アルミナ
触媒 第2段目リアクター充填触媒 コバルトモリブデン担持アルミナ触媒 **第1段目リアクター充填触媒 上部 25vol% ニッケルモリブデン担持アルミナ
触媒 下部 75vol% コバルトモリブデン担持アルミナ
触媒 第2段目リアクター充填触媒 コバルトモリブデン担持アルミナ触媒 【0024】 【表5】 【0025】 【効果】本発明によると、(a)工程において水素化処
理触媒の活性を十分に利用して高脱金属率、高脱窒素
率、高脱硫率又は高分解率で重質油を水素化処理するこ
とができ、かつ(b)工程で前記(a)工程の水素化処
理して得られた油のドライスラッジ分を低減することの
できるので、長期間安定して運転することのできる重質
油の水素化処理法が提供される。また、本発明の重質油
の水素化処理法で得られる生成油は、金属分や硫黄分が
少なく、ドライスラッジ分も少ないので、FCC用原料
油として好適である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating heavy oil, and more particularly to a heavy oil for obtaining a product oil having a low sulfur content and dry sludge content. And a method for hydrotreating. [0002] Conventionally, in heavy oil hydrotreating, heavy oil is hydrotreated at a high demetallization rate, high denitrification rate, high desulfurization rate or high cracking rate. It is effective to carry out such a hydrotreatment at a relatively high reaction temperature. However, when hydrogenation is performed at a high reaction temperature, dry sludge (carbonaceous insoluble solid) is generated, and the generated dry sludge causes clogging of heat exchangers and other parts of the device, and as a result, purification equipment Has a problem in that long-term stable operation cannot be performed and productivity is impaired. Therefore, various methods have been proposed for suppressing the production of dry sludge in the hydrotreating of heavy oil. For example, a method of performing hydrogenation treatment of heavy oil in the presence of a hydrogen-donating solvent (for example, JP-A-63-156890, JP-A-63-15479)
No. 5, Japanese Patent No. 5), or, in the order of hydrodemetallization treatment, hydrocracking treatment, hydrodesulfurization and hydrodenitrogenation treatment of heavy residue oil in the presence of a catalyst,
After the hydrocracking treatment, a treatment method of introducing hydrogen and ammonia at the stage of hydrodesulfurization and hydrodenitrogenation treatment (Japanese Patent Laid-Open No. 5-263804), a method of converting heavy hydrocarbon oil from which sludge precursor has been removed to hydrogen After hydrotreating and then hydrocracking, part of the hydrocracked oil is recycled to the heavy hydrocarbon oil and recycled, and the remainder of the hydrocracked oil is hydrodesulfurized and desulfurized. A method of performing a nitrogen treatment (Japanese Patent Application Laid-Open No. 5-117666) has been proposed. However, the conventional method of hydrotreating in the presence of a hydrogen-donating solvent requires the use of a large amount of a hydrogen-donating solvent, and thus reduces the throughput of heavy oil. Alternatively, there is a problem that a step of separating and recovering the hydrogen-donating solvent is required. In addition, the method of introducing ammonia at the stage of hydrodesulfurization and hydrodenitrogenation does not provide sufficient desulfurization activity, and the method of recycling part of the hydrocracked oil does not increase the throughput and further increases the sludge. There were problems such as an increase in processing costs due to the removal of the precursor, and this was not always satisfactory. [0003] It is an object of the present invention to provide a method for hydrotreating heavy oil, in which heavy residual oil is hydrotreated at a high demetallization rate, high denitrification rate, high desulfurization rate or high cracking rate. Even so, the problem of clogging of a heat exchanger or the like caused by dry sludge can be solved by reducing the dry sludge content of the product oil obtained in the hydrotreating, and stable operation can be performed for a long period of time. An object of the present invention is to provide a hydrotreating method. Another object of the present invention is to produce a high-grade desulfurized heavy residue (product oil) suitable as a feedstock for fluid catalytic cracking (FCC). [0004] In the conventional method for hydrotreating heavy oil, the reaction temperature is generally adjusted to achieve a desired demetallization rate, desulfurization rate or decomposition rate within a reaction temperature range of 300 ° C to 500 ° C. The method of increasing gradually is adopted. However, the reaction temperature is high, for example above 385 ° C., in particular 390
When the temperature exceeds ℃, the production of dry sludge in the spilled oil rapidly increases, so that the operation of the hydrotreating catalyst has to be stopped despite having sufficient residual activity. In the hydrotreating method of the present invention, the hydrotreating is carried out at a reaction temperature of 385 ° C. or higher by making full use of the activity of the hydrotreating catalyst. And then hydrotreating the oil at a reaction temperature of less than 385 ° C., preferably at a temperature of 380 ° C. or less to hydrogenate and reduce the amount of dry sludge produced. Wherein demetallization, desulfurization or decomposition is performed as required to produce a high-quality product oil. That is, the present invention relates to a method for hydrotreating heavy oil, comprising: (a) reacting a heavy oil containing at least 1.0 wt% of asphaltenes in the presence of a hydrotreating catalyst at a reaction temperature of 385 ° C. to 5 ° C.
00 ° C, preferably 390 ° C to 450 ° C, hydrogen partial pressure 50
kg / cm 2 G~250kg / cm 2 G, preferably 1
Hydrotreating under the condition of 00 kg / cm 2 G to 200 kg / cm 2 G, the dry sludge content is 0.1 wt% or more,
(B) obtaining an spilled oil having a sulfur content of 1.0 wt% or less, (b) converting the spilled oil in the step (a) in the presence of a hydrotreating catalyst,
Reaction temperature 385 below ° C., preferably 380 ° C. or less, a hydrogen partial pressure of 50kg / cm 2 G~250kg / cm 2 G, preferably by treatment with conditions of 100kg / cm 2 G~200kg / cm 2 G, the product oil 0.1w of dry sludge
(b) a step of reducing the weight of the heavy oil to less than 1%.
The difference between the reaction temperature in the step (a) and the reaction temperature in the step (b) is 10 ° C. or more, and (2) the hydrotreating catalyst in the step (b) comprises a hydrogenation active metal component and an inorganic oxide carrier. A catalyst having a pore volume of 0.40 m
1 / g or more, average pore diameter is 90 ° or more, specific surface area is 1
A catalyst having an average pore diameter of not less than 20 m 2 / g and an average pore diameter larger than the average pore diameter of the hydrotreating catalyst used in the last stage of the step (a). The present invention relates to a method for hydrotreating high quality oil. In the step (a), a treatment such as hydrodemetallization treatment, hydrodesulfurization treatment, hydrodenitrification treatment, or hydrocracking may be used alone or in combination, as in the case of the conventional heavy oil hydrotreating method. Do with.
In addition, conventional hydrotreating conditions other than the reaction temperature and the hydrogen partial pressure can be adopted. That is, a hydrogen / oil ratio of 300 to 2,000 Nm 3 / kl,
The liquid hourly space velocity (LHSV) is 0.1 to 5 hr -1 or the like. As the hydrotreating catalyst used in the step (a), those usually used for hydrodemetallation, hydrodesulfurization, hydrodenitrogenation and hydrocracking may be used. For example, alumina, silica, zeolite, titania, boria, a mixture thereof, or a mixture of at least one metal component of a group VIA metal of the periodic table such as Mo and W and a group VIII metal of the periodic table such as Ni and Co is used. A catalyst supported on a carrier such as a substance can be used. The present invention comprises a step of performing hydrodesulfurization or the like at a high temperature in the step (a) and a step of performing a hydrogenation reaction of dry sludge at a low temperature in the step (b).
In the step (a), it is desirable to sufficiently hydrodesulfurize, and the sulfur content of the spilled oil in the step (a) is 1.0 wt% or less, preferably 0.7 wt% or less, more preferably 0.5 wt% or less. Is desirable. In the hydrogenation treatment in the step (b), conventional hydrogenation treatment conditions are adopted, except for the conditions of the reaction temperature and the hydrogen partial pressure. The reaction temperature in the step (b) is (a)
The temperature must be such that the dry sludge fraction produced in the process is sufficiently hydrogenated and does not thermally decompose to form new dry sludge fraction, but such a critical temperature is below 385 ° C, preferably Corresponds to a temperature of 380 ° C. or less. Further, in the method of the present invention, the difference between the reaction temperature in the step (a) and the reaction temperature in the step (b) is 10 ° C. or more in order to reduce the sulfur content of the produced oil as much as possible and to reduce the dry sludge content as much as possible. , Preferably 20
C. or higher, more preferably 30 ° C. or higher. However, when the sulfur content is reduced together with the dry sludge component in the step (b), the reaction temperature in the step (b) is preferably a high temperature side within the critical temperature. When the temperature difference between the steps (a) and (b) is small, and when the sulfur content is not reduced in the step (b), the reaction temperature in the step (b) may be about 200 ° C. The temperature difference between the steps (a) and (b) increases. The reaction temperature in the present invention refers to the weight average temperature (weight average temperature) of the catalyst layer.
(hereinafter abbreviated as WAT). In addition, when the catalyst layer filled with the catalyst is divided into n, the weight average temperature t is defined as t i where the temperature of the i-th divided catalyst layer is filled with the catalyst of the i-th divided catalyst layer. When the weight ratio to the catalyst layer and x i, represented by the following equation. (Equation 1) The hydrotreating catalyst used in the step (b) is a catalyst comprising a hydrogenation-active metal component and an inorganic oxide carrier, and macromolecules such as dry sludge are hydrogenated in the pores of the catalyst. In order to achieve this, a catalyst having pores having a large pore diameter is desirable, and therefore, those having an average pore diameter of 90 ° or more, preferably in the range of 100 to 200 ° are preferred. The pore volume of the catalyst is 0.40 ml / g or more, preferably 0.50 to 1.00 ml / g, and the specific surface area is 120 m 2 / g or more, preferably 130 to 35 / g.
Those having a range of 0 m 2 / g are preferred. The average pore diameter and pore volume of the catalyst were determined by mercury porosimetry, and the specific surface area was B
It is measured by the ET method. In the conventional heavy oil hydrotreating method, a catalyst having a large pore diameter is packed in the front stage of a reaction tower, and a catalyst having a small pore diameter is packed in a rear stage. Usually, in the method of the present invention, the hydrotreating catalyst used in the step (b) is used in the step (a) because the dry sludge component, which is a macromolecule, is hydrogenated in the pores. It is preferable that the catalyst has a larger average pore diameter than the hydrotreating catalyst used in the last stage. As the hydrogenation-active metal component, a metal component used in a normal hydrotreating catalyst such as a Group VIA or Group VIII metal of the periodic table may be used in an amount within a normal usage range, for example, 3%.
It can be used in the range of 3030 wt%. Specifically, M
o, W, Ni, Co and the like. Examples of the inorganic oxide carrier include ordinary hydrogenation such as alumina, silica, silica-alumina, alumina-boria, phosphorus-alumina, alumina-titania, alumina-zirconia, alumina-silica-boria, and alumina-silica-titania. An inorganic oxide carrier used as a carrier for the treatment catalyst can be used. In the method of the present invention, the dry sludge content of the product oil obtained in the step (b) is desirably less than 0.1 wt%, preferably 0.05 wt% or less. When the dry sludge content of the generated oil is 0.1 wt% or more, it is not preferable because a problem of clogging of a heat exchanger or the like in a downstream device is likely to occur. The heavy oil used in the present invention is a heavy oil containing at least 1.0% by weight of asphaltene (n-pentane-insoluble) and at least 2.0% by weight of sulfur. Such heavy oils include normal pressure residue oils,
Heavy hydrocarbon oils such as heavy residual oils such as vacuum residue oils, visbreaking oils, tar sand oils and shell oils can be mentioned. The above-mentioned heavy oil usually contains at least 1.0 wt% of asphaltenes, and this asphaltenes are thermally affected when the reaction temperature becomes 385 ° C or more in the hydrogenation treatment, so that dealkylation, A dehydrocyclization reaction occurs to convert to dry sludge. 385 ° C for heavy oil with low asphaltene content
Even if the hydrogenation treatment is performed at the above temperature, the above problem does not occur because the amount of dry sludge is small. In the present invention, the dry sludge content is defined as SHF described below.
T method (Shel Hot Filtration Te
(st method).
That is, the dry sludge content is 5 to 10 g of sample oil.
After weighing the sample and maintaining the sample at a temperature of 100 ° C., the upper side of the filter paper was weighed 5 times using a quantitative filter paper (Whatman No. 50).
Kg / cm 2 G, and the lower side of the filter paper is −100.
Filter under reduced pressure to mmHg. The amount of oil in the sample is adjusted in the range of 5 to 10 g so that the filtration time does not exceed 25 minutes. Next, after washing with 10 ml of n-heptane, the residue is dried at 110 ° C. for 20 minutes, and the residue is weighed and quantified. Usually, the aforementioned dry sludge component exists in a state of a solvated sludge precursor in a high-temperature reactor, but when the temperature of the oil decreases, the precursor agglomerates,
It becomes dry sludge. [0008] The process of the present invention can be carried out using a single reaction column or a plurality of reaction columns. In the case of a single reaction tower, by an optional method such as a method of cooling by supplying hydrogen gas to the inside of the reaction tower on the outlet side, or in the case of a plurality of reaction towers, by supplying hydrogen gas to a pipeline between the reaction towers. The reaction temperature in the step (b) can be lower than 385 ° C, preferably 380 ° C or lower. In the method of the present invention, the amount of the hydrotreating catalyst used in each of the steps (a) and (b) in each step is not particularly limited. For example, 50 to 90% of the total amount of the hydrotreating catalyst used in the steps (a) and (b) is used in the step (a),
A range of 10% to 10% can be used in step (b). Hereinafter, the present invention will be specifically described based on examples. Tables 1 to 4 show the results of the examples and comparative examples. COMPARATIVE EXAMPLE 1 Atmospheric pressure residual oil having a density of 0.987 g / cm 3 , a sulfur content of 3.36 wt%, a residual carbon content (Conradson residual coal) of 12.3 wt%, and an asphaltene content of 5.1 wt%, and an oil passing amount of 46 ml /
Hr, reaction pressure 145 kg / cm 2 , hydrogen to oil ratio 100
Hydrotreatment was carried out with 0 ml hydrogen / l oil in the presence of a catalyst. The reaction was carried out using a two-stage reactor. The first stage reactor has a reactor upper 20vol
% Was filled with a nickel-molybdenum-supported alumina catalyst having an average pore diameter of 130 °, and the lower 80 vol% was filled with a cobalt-molybdenum-supported alumina catalyst having an average pore diameter of 105 °. Second
The stage reactor was filled with an alumina catalyst supporting cobalt molybdenum having an average pore diameter of 105 °. The catalyst loading in the first-stage reactor was 200 ml in total, and the catalyst loading in the second-stage reactor was 220 ml. Therefore, the LHSV of the first-stage reactor is 0.23 Hr −1 ,
The LHSV through the first and second stages is 0.11 Hr- 1 . The first stage reactor has a weight average temperature of 410 ° C.,
The weight average temperature of the second-stage reactor was set to 200 ° C., and the oil at the outlet of the first-stage reactor was analyzed. As a result, the dry sludge content in the shell method (SHFT method) was 0.21 wt%,
The sulfur content was 0.025 wt%. When the second stage reactor outlet oil was analyzed, the dry sludge content of the shell method was 0.05 wt% and the sulfur content was 0.025 wt%, and a clear decrease in the dry sludge content was confirmed. Comparative Example 2 A reaction was carried out in exactly the same manner as in Comparative Example 1 except that the weight average temperature of the second stage reactor was 370 ° C. First stage reactor outlet oil is 0.2% of shell method dry sludge
1 wt%, sulfur content 0.025 wt%, the second stage reactor outlet oil was 0.07 watts of shell method dry sludge
At t% and a sulfur content of 0.020 wt%, the same decrease in dry sludge content as in Comparative Example 1 was confirmed. Comparative Example 3 A reaction was carried out in exactly the same manner as in Comparative Example 1 except that the weight average temperature of the second stage reactor was 380 ° C. First stage reactor outlet oil is 0.2% of shell method dry sludge
1 wt%, sulfur content 0.025 wt%, and the second stage reactor outlet oil was 0.09 w / dry weight of shell method dry sludge
t%, sulfur content 0.018 wt%. Comparative Example 4 A reaction was carried out in exactly the same manner as in Comparative Example 1, except that the weight average temperature of the second stage reactor was 390 ° C. First stage reactor outlet oil is 0.2% of shell method dry sludge
1 wt%, sulfur content 0.025 wt%, and the second stage reactor outlet oil was 0.50 watts of shell method dry sludge
t%, sulfur content 0.016 wt%. By setting the weight average temperature of the second stage reactor to 390 ° C,
Although the sulfur content could be reduced as compared with Comparative Example 2, the dry sludge content in the shell method greatly increased. Comparative Example 5 A reaction was carried out in exactly the same manner as in Comparative Example 1, except that the weight average temperature of the second stage reactor was 410 ° C. First stage reactor outlet oil is 0.2% of shell method dry sludge
1 wt%, sulfur content 0.025 wt%, and the second stage reactor outlet oil was 1.1 wt.
% And a sulfur content of 0.011 wt%. By setting the weight average temperature of the second-stage reactor to 410 ° C., although the sulfur content was significantly reduced, the dry sludge content in the shell method was greatly increased. Example 1 The same procedure as in Comparative Example 1 was carried out except that a cobalt molybdenum-supported alumina catalyst having an average pore diameter of 135 ° and having an average pore diameter of 30 ° larger than that of the lower catalyst in the first stage was filled in the second stage reactor. The reaction was performed in the manner described. Shell method dry sludge content of the first stage reactor outlet oil is 0.2
1 wt%, sulfur content 0.025 wt%, shell method dry sludge content of second stage reactor outlet oil 0.04 wt%
% And the sulfur content were 0.025 wt%. Example 2 A method completely the same as that of Comparative Example 1 except that the second stage reactor was filled with an alumina catalyst supporting cobalt molybdenum having an average pore diameter of 135 ° and the weight average temperature of the second stage reactor was set at 370 ° C. The reaction was carried out. The first stage reactor outlet oil has a shell method dry sludge content of 0.21 wt% and a sulfur content of 0.025 wt%, and the second stage reactor outlet oil has a shell method dry sludge content of 0.06 wt% and a sulfur content of 0%. It was 0.018 wt%. Comparative Example 6 An average pore diameter of 13 was added to 25 vol% of the upper part of the first stage reactor.
0% nickel-molybdenum-supported alumina catalyst, 75% by volume of the lower part of the first-stage reactor were filled with a cobalt-molybdenum-supported alumina catalyst having an average pore diameter of 105 °, and the second-stage reactor was filled with a cobalt-molybdenum-supported alumina catalyst having an average pore diameter of 105 °. The catalyst loading in the second stage reactor was 336 ml, and the catalyst loading in the second stage reactor was 84 m.
l. The weight average temperature of the first stage reactor is 400
The reaction was carried out under the same feedstock oil and reaction conditions as in Comparative Example 1 except that the temperature was 340 ° C, the weight average temperature of the second stage reactor was 340 ° C, and the oil flow rate was 84 ml / Hr. The LHSV of the first stage reactor is 0.25 Hr -1 , the LHSV through the first stage and the second stage is 0.20 Hr -1 , and the weight average temperature is 388 ° C. The first stage reactor outlet oil has a shell method dry sludge content of 0.12 wt% and a sulfur content of 0.036 wt%, and the second stage reactor outlet oil has a shell method dry sludge content of 0.06 wt% and a sulfur content of 0. .0
It was 35 wt%. Comparative Example 7 A reaction was carried out in the same manner as in Comparative Example 6, except that the weight average temperature of the first stage reactor was 380 ° C. and the weight average temperature of the second stage reactor was 420 ° C. The weight average temperature through the first and second stages is 388 ° C., which is the same as Comparative Example 6. Shell method dry sludge content of first stage reactor outlet oil is 0.05wt%, sulfur content is 0.058wt%
The shell-stage dry sludge content of the second stage reactor outlet oil is 0.18 wt%, and the sulfur content is 0.036 wt%.
Met. Reference Example 1 The product oils obtained in Comparative Examples 6 and 7 were distilled to obtain fraction oils having a boiling point of 343 ° C. or higher. This oil is
The catalytic cracking reaction was carried out at a SV of 40 Hr -1 , a Cat / Oil ratio of 3.0 and a reaction temperature of 530 ° C. using a commercially available FCC catalyst. The device used for the reaction is a micro-activity test device (MAT). The reaction results are shown in Table 5. The product oil of Comparative Example 6 showed higher conversion and gasoline yield than the product oil of Comparative Example 7. [Table 1] [Table 2] [Table 3] [Table 4] note. * First stage reactor packed catalyst upper part 20vol% Nickel molybdenum supported alumina catalyst lower part 80vol% Cobalt molybdenum supported alumina catalyst Second stage reactor packed catalyst cobalt molybdenum supported alumina catalyst ** First stage reactor packed catalyst upper part 25vol% nickel molybdenum Supported alumina catalyst Lower part 75 vol% Cobalt molybdenum supported alumina catalyst Second stage reactor filling catalyst Cobalt molybdenum supported alumina catalyst According to the present invention, in the step (a), the activity of the hydrotreating catalyst is sufficiently utilized to convert heavy oil with a high demetallation rate, a high denitrification rate, a high desulfurization rate or a high cracking rate. It is possible to carry out the hydrotreating and to reduce the dry sludge content of the oil obtained by the hydrotreating in the step (a) in the step (b), so that the oil can be stably operated for a long period of time. A method for hydrotreating heavy oils is provided. Further, the product oil obtained by the method for hydrotreating heavy oil of the present invention is suitable as a raw material oil for FCC because it has a low content of metals and sulfur and a low content of dry sludge.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−243196(JP,A) 特開 昭61−130394(JP,A) 特開 平5−93190(JP,A) 特開 平1−224049(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10G 65/04 - 65/12 C10G 45/04 - 45/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-243196 (JP, A) JP-A-61-130394 (JP, A) JP-A-5-93190 (JP, A) JP-A-1- 224049 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C10G 65/04-65/12 C10G 45/04-45/08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 重質油の水素化処理方法において、 (a)アスファルテン分を1.0wt%以上含有する重
質油を水素化処理触媒の存在下、反応温度385℃〜5
00℃、水素分圧50kg/cmG〜250kg/c
Gの条件で水素化処理して、ドライスラッジ分が
0.1wt%以上、硫黄分が1.0wt%以下の流出油
を得る工程、 (b)(a)工程の流出油を水素化処理触媒の存在下、
反応温度385℃未満、水素分圧50kg/cmG〜
250kg/cmGの条件で処理して、生成油のドラ
イスラッジ分を0.1wt%未満とする工程、 を有する重質油の水素化処理方法において、(1)
(a)工程における反応温度と(b)工程における反応
温度の差が10℃以上であること、(2)(b)工程の
水素化処理触媒が、水素化活性金属成分と無機酸化物担
体から成る触媒であって、触媒の細孔容積が0.40m
l/g以上、平均細孔直径が90Å以上、比表面積が1
20m/g以上の範囲にあり、かつ、その平均細孔直
径が、(a)工程における最後段で使用される水素化処
理触媒の平均細孔直径より大きい触媒であることを特徴
とする重質油の水素化処理方法。
(57) [Claim 1] A method for hydrotreating heavy oil, comprising: (a) reacting a heavy oil containing asphaltene content of 1.0 wt% or more in the presence of a hydrotreating catalyst; Temperature 385 ℃ ~ 5
00 ° C, hydrogen partial pressure 50 kg / cm 2 G-250 kg / c
a step of obtaining a spilled oil having a dry sludge content of 0.1 wt% or more and a sulfur content of 1.0 wt% or less by hydrotreating under the condition of m 2 G, (b) hydrogenating the spilled oil in the step (a) In the presence of the treatment catalyst,
Reaction temperature less than 385 ° C., hydrogen partial pressure 50 kg / cm 2 G ~
A step of treating under a condition of 250 kg / cm 2 G to reduce the dry sludge content of the produced oil to less than 0.1 wt%.
The difference between the reaction temperature in the step (a) and the reaction temperature in the step (b) is 10 ° C. or more, and (2) the hydrotreating catalyst in the step (b) comprises a hydrogenation active metal component and an inorganic oxide carrier. A catalyst having a pore volume of 0.40 m
1 / g or more, average pore diameter is 90 ° or more, specific surface area is 1
A catalyst having an average pore diameter of not less than 20 m 2 / g and an average pore diameter larger than the average pore diameter of the hydrotreating catalyst used in the last stage of the step (a). Hydroprocessing of high quality oil.
JP17019294A 1994-06-29 1994-06-29 Hydroprocessing of heavy oil Expired - Fee Related JP3464047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17019294A JP3464047B2 (en) 1994-06-29 1994-06-29 Hydroprocessing of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17019294A JP3464047B2 (en) 1994-06-29 1994-06-29 Hydroprocessing of heavy oil

Publications (2)

Publication Number Publication Date
JPH0812978A JPH0812978A (en) 1996-01-16
JP3464047B2 true JP3464047B2 (en) 2003-11-05

Family

ID=15900388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17019294A Expired - Fee Related JP3464047B2 (en) 1994-06-29 1994-06-29 Hydroprocessing of heavy oil

Country Status (1)

Country Link
JP (1) JP3464047B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940313B1 (en) * 2008-12-18 2011-10-28 Inst Francais Du Petrole HYDROCRACKING PROCESS INCLUDING PERMUTABLE REACTORS WITH LOADS CONTAINING 200PPM WEIGHT-2% WEIGHT OF ASPHALTENES
CN108342219B (en) * 2018-03-02 2020-07-07 北京中科诚毅科技发展有限公司 Heavy oil and oil coal hydrogenation process and method for processing self-produced heavy distillate oil thereof

Also Published As

Publication number Publication date
JPH0812978A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
JP2966985B2 (en) Catalytic hydrotreating method for heavy hydrocarbon oil
JP4874977B2 (en) Recycling method of active slurry catalyst composition in heavy oil upgrade
JP2004518012A (en) Slurry-hydrotreatment using supported slurry catalyst to upgrade heavy oil
JPH0753967A (en) Hydrotreatment of heavy oil
JP2001525858A (en) Method for hydroconversion of heavy hydrocarbons at low pressure
JPH10310782A (en) High-degree hydrodesulfurization of hydrocarbon feedstock
US5124024A (en) Method for extending hydroconversion catalyst life
EP0590894B2 (en) Hydroconversion process
US6387248B2 (en) Method of preparing a catalyst for use in the hydrotreating of high boiling hydrocarbon feedstocks
JP4271585B2 (en) Oil refining method and refiner
EP2169031A1 (en) Hydrorefining method for hydrocarbon oil
JP3464047B2 (en) Hydroprocessing of heavy oil
WO1993017082A1 (en) Process for hydrotreating heavy hydrocarbon oil
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
JP5259047B2 (en) Countercurrent gas / liquid contact treatment method
JP2002322484A (en) Hydrogenating process
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
JP3527635B2 (en) Hydrodesulfurization method for heavy oil
JP3516383B2 (en) Hydroprocessing of heavy oil
JPH05230473A (en) Treatment of heavy hydrocarbon oil
JP2000256678A (en) Method for hydro-refining of heavy oil
JPH05263084A (en) Hydrotreatment of heavy residual oil
JPS63258985A (en) Hydrogenation treatment of heavy oil
JP4245218B2 (en) Method for hydrodesulfurization of heavy oil
JP2000265177A (en) Hydrogenation treatment of heavy oil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees