JPS63258985A - Hydrogenation treatment of heavy oil - Google Patents

Hydrogenation treatment of heavy oil

Info

Publication number
JPS63258985A
JPS63258985A JP9420087A JP9420087A JPS63258985A JP S63258985 A JPS63258985 A JP S63258985A JP 9420087 A JP9420087 A JP 9420087A JP 9420087 A JP9420087 A JP 9420087A JP S63258985 A JPS63258985 A JP S63258985A
Authority
JP
Japan
Prior art keywords
oil
catalyst
heavy oil
deasphalted
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9420087A
Other languages
Japanese (ja)
Inventor
Katsuto Asahara
浅原 克仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP9420087A priority Critical patent/JPS63258985A/en
Publication of JPS63258985A publication Critical patent/JPS63258985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To economically and effectively hydrogenate a heavy oil, by deasphalting a heavy oil with a solvent, mixing the treated heavy oil with a light oil at a specific ratio and hydrogenating the mixture under a specific condition. CONSTITUTION:A heavy oil is deasphalted with a solvent and the deasphalted oil is mixed with a light oil in such a manner as to keep a Conradson carbon residue to <=5wt.%. The obtain mixture is subjected to hydrogenation treatment under hydrogen partial pressure of 30-60kg/cm<2> at a reaction temperature of 350-450 deg.C and an LHSV of 0.1-3.0/hr using a heavy oil-treatment catalyst. The heavy oil can be hydrogenated by this process. The catalyst is preferably produced by supporting a group VIA metal (e.g. Mo) and/or a group VIII metal (e.g. Co) on a carrier such as alumina and silica alumina.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、既存あるいは新設の減圧軽油水素化脱硫反応
装置(間接脱硫装置)およびその反応条件を使用して、
常圧蒸留残油および減圧蒸留残油などの重質油を水素分
圧の低い反応条件下で効果的に水素化処理する方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses an existing or newly installed reduced pressure gas oil hydrodesulfurization reactor (indirect desulfurization reactor) and its reaction conditions.
The present invention relates to a method for effectively hydrotreating heavy oils such as atmospheric distillation residues and vacuum distillation residues under reaction conditions of low hydrogen partial pressure.

〔従来の技術〕[Conventional technology]

日本の製油所においては、近年、ガソリン、灯軽油など
の軽質油分の得率が上昇する一方、C重油得率は減少す
る傾向を示しており、重質油の水素化分解など重質油処
理へのニーズが高まっている。直接脱硫装置を持つ製油
所では、直接、常圧残油を水素分圧の高い反応条件下で
水素化処理することにより、軽質化を図ることができ、
その脱硫残油をFCC原料(流動接触分解装置原料)と
するなど軽質化への対応が可能になってきている。
At Japanese oil refineries, in recent years, the yield of light oil such as gasoline and kerosene has been increasing, while the yield of C heavy oil has been decreasing, and heavy oil processing such as hydrocracking of heavy oil has been increasing. There is a growing need for At refineries equipped with direct desulfurization equipment, it is possible to directly hydrotreat atmospheric residual oil under reaction conditions with high hydrogen partial pressure, thereby making it lighter.
It has become possible to use the desulfurized residual oil as an FCC feedstock (fluid catalytic cracker feedstock) to reduce the weight of the oil.

しかし間接脱硫装置しか持たない製油所は、主として間
接脱硫装置の水素分圧の低さが原因で対応できずにいる
However, refineries that only have indirect desulfurization equipment are unable to cope with this problem, mainly due to the low hydrogen partial pressure of the indirect desulfurization equipment.

すなわち間接脱硫装置において、重質油を水素化処理す
る際の問題点として、重質油中のNi、 Vなどの金属
被毒による触媒の失活およびCCR(コンラドソン残留
炭素分)、アスファルテンのコークス化によるカーボン
失活が挙げられる。このため触媒の寿命は極端に短くな
り、触媒費用がかさみ経済的でなかった。また固定床型
の実装置においては顛繁に触媒を交換することが困難で
実用にならない不都合点があった。
In other words, problems when hydrotreating heavy oil in indirect desulfurization equipment include deactivation of the catalyst due to metal poisoning such as Ni and V in the heavy oil, CCR (Conradson residual carbon content), and asphaltene coke. An example of this is carbon deactivation due to oxidation. As a result, the life of the catalyst becomes extremely short, and the cost of the catalyst increases, making it uneconomical. In addition, in fixed bed type actual equipment, it is difficult to frequently replace the catalyst, making it impractical.

この解決策として重質油処理型触媒による重質油の水素
化処理が提案されている。
As a solution to this problem, hydrogenation treatment of heavy oil using a heavy oil treatment type catalyst has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この重質油処理型触媒による重質油の水素化処理方法は
、常圧残油を一部減圧軽油に混合し、水素化処理する試
みであるが、水素分圧が低い場合に適用できない問題点
がある。後述の実施例にも示すようにアラビアンライト
常圧残油25vo 1%を減圧軽油に混合し、水素化処
理した時、水素分圧が60kg/−を越えれば実用的な
1年の触媒寿命は確保されるが、60kg/cffl以
下の水素分圧では急速にカーボン失活を起こし触媒寿命
は極端に短くなる。水素分圧40kg/cdでは触媒寿
命は約2月に短縮され実用的でなくなる。
This method of hydrotreating heavy oil using a heavy oil processing catalyst is an attempt to mix some atmospheric residual oil with vacuum gas oil and perform the hydrotreating process, but there is a problem that it cannot be applied when the hydrogen partial pressure is low. There is a point. As shown in the examples below, when 1% Arabian Light atmospheric residual oil 25vo is mixed with vacuum gas oil and hydrotreated, if the hydrogen partial pressure exceeds 60 kg/-, the practical life of the catalyst is 1 year. However, if the hydrogen partial pressure is less than 60 kg/cffl, carbon will rapidly deactivate and the catalyst life will be extremely shortened. At a hydrogen partial pressure of 40 kg/cd, the catalyst life is shortened to about two months, making it impractical.

また減圧軽油に混ぜ得る常圧残油の比率も低く、本発明
で示す脱れき油処理の場合と比較して軽質化の効果が十
分でない問題点もあった。
Furthermore, the ratio of atmospheric residual oil that can be mixed with vacuum gas oil is low, and there is also the problem that the lightening effect is not sufficient compared to the deasphalted oil treatment shown in the present invention.

本発明は上記の不都合点を解消し、水素分圧の低い反応
条件下で処理せざるを得ない間接脱硫装置において、常
圧蒸留残油や減圧蒸留残油などの重質油を経済的かつ効
果的に処理する方法の捉供を目的とするものである。
The present invention solves the above-mentioned disadvantages, and economically and efficiently processes heavy oils such as atmospheric distillation residual oil and vacuum distillation residual oil in indirect desulfurization equipment that must be treated under reaction conditions with low hydrogen partial pressure. The purpose is to provide information on how to effectively process the process.

本発明者らは、かかる目的を達成すべく鋭意研究を行っ
た結果、重質油を一旦脱れき処理し、この脱れき油を一
定条件下で水素化処理すれば、触媒寿命を確保しつつ、
低水素分圧の反応条件下においても効果的に重質油が処
理可能になることを見出し本発明を完成するに至ったも
のである。
As a result of intensive research aimed at achieving this objective, the present inventors found that if heavy oil is once deasphalted and then this deasphalted oil is hydrotreated under certain conditions, catalyst life can be maintained while ,
The present invention was completed based on the discovery that heavy oil can be effectively treated even under reaction conditions of low hydrogen partial pressure.

すなわち重質油中の特にアスファルテンが触媒寿命に大
きな悪影響を及ぼすことを見出し、脱れき処理により、
これを取り除いた後、脱れき油と軽油の混合後のCCR
分が5wt%以下になるように混合調整した後、重質油
処理型触媒により水素化処理すれば、LIISV (液
基準空間速度)によっても異なるが、水素分圧の低い反
応条件下においても実用的な1年の触媒寿命が期待でき
ることを見出したものである。
In other words, we discovered that asphaltene in heavy oil has a significant negative effect on catalyst life, and through deasphalting treatment,
After removing this, CCR after mixing deasphalted oil and light oil
If the mixture is adjusted so that the hydrogen content is 5 wt% or less, and then hydrogenated using a heavy oil treatment type catalyst, it can be used even under reaction conditions with low hydrogen partial pressure, depending on LIISV (liquid standard hourly space velocity). It was discovered that a typical one-year catalyst life can be expected.

c問題点を解決するための手段および作用〕本発明は上
記の知見に基づきなされたもので、重質油を溶剤脱れき
し、脱れき油と軽油とを残留炭素分が5wt%以下にな
るように混合調製した後、重質油処理型触媒を使用して
、水素分圧30〜60kg/cm2、反応温度350〜
450℃ LIISV O,1〜3.0h−1の反応条
件下で水素化処理することを特徴としている。
Means and operation for solving the problems [c] The present invention has been made based on the above knowledge, and it deasphalts heavy oil with a solvent and mixes the deasphalted oil and light oil so that the residual carbon content is 5 wt% or less. After mixing and preparing, using a heavy oil treatment type catalyst, the hydrogen partial pressure is 30 to 60 kg/cm2, and the reaction temperature is 350 to 350.
It is characterized in that the hydrogenation treatment is carried out under reaction conditions of 450° C. LIISV O, 1 to 3.0 h −1 .

以下、本発明の構成を図面に基づいて説明する。Hereinafter, the configuration of the present invention will be explained based on the drawings.

第1図は本発明を実施するための装置構成を示すフロー
シートである0図中1は溶剤脱れき装置、また2は内部
の少なくとも一部に重質油処理型触媒が充填された間接
脱硫装置である。原料となる重質油は溶剤脱れき装置1
において脱れきされ、脱れき油を得る。触媒毒となるア
スファルテンは脱れきピッチとして除去されるため、脱
れき油中にはほとんど存在しないが、コーク失活の原因
となるCCR分がまだ含まれており、触媒に負荷がかか
り過ぎるのを防ぐため、混合油中のCCR分が5wt%
以下になるように軽油と混合する。混合油は間接脱硫装
置2にて低水素分圧の反応条件下で水素化処理され、生
成油を得る。生成油は十分に脱硫および精製されFCC
原料などに利用される。
Figure 1 is a flow sheet showing the equipment configuration for carrying out the present invention. In the figure, 1 is a solvent deasphalting equipment, and 2 is an indirect desulfurization equipment in which at least a part of the interior is filled with a heavy oil processing type catalyst. It is a device. Heavy oil, which is the raw material, is sent to solvent deasphalting equipment 1.
Descaled oil is obtained. Asphaltenes, which act as catalyst poisons, are removed as deasphalted pitch, so they are hardly present in deasphalted oil, but they still contain CCR content, which causes coke deactivation, and prevents the catalyst from being overloaded. To prevent this, the CCR content in the mixed oil is 5wt%.
Mix with light oil as follows. The mixed oil is hydrotreated in the indirect desulfurization device 2 under reaction conditions of low hydrogen partial pressure to obtain a product oil. The produced oil is fully desulfurized and refined and passed through the FCC
Used as raw materials, etc.

特に本発明においては触媒が重要であり、分子量の大き
い脱れき油処理に適する組成および構造を持つ重質油処
理型触媒を使用することにより可能となったものである
In particular, the catalyst is important in the present invention, which is made possible by using a heavy oil treatment type catalyst having a composition and structure suitable for treating deasphalted oil with a large molecular weight.

本発明の方法において用いるのに適した重質油処理型触
媒の一例として、アルミナ、シリカ−アルミナ、および
アルミナ−ボリア等の担体にモリブデン等の周期律表第
V[A族の金属およびもしくはコバルト等の周期律表第
■族の金属を担持した触媒であって、かつ下記の細孔特
性を有する触媒を挙げることができる。すなわち触媒の
細孔特性が、水銀圧入法で担体の細孔径を測定した場合
、直径が62〜600人の範囲にある細孔の平均直径が
91〜300人であり、平均直径±20人の細孔が占め
る容、積が直径62〜600人の細孔が占める容積の少
なくとも60%、好ましくは80%を占め、62〜60
0人の範囲の細孔容積が少なくとも0.45+d/gで
あること。
An example of a heavy oil processing type catalyst suitable for use in the process of the present invention includes metals from group V [A] of the periodic table, such as molybdenum, on supports such as alumina, silica-alumina, and alumina-boria. Catalysts that support metals from group 1 of the periodic table and have the following pore characteristics can be mentioned. In other words, when the pore diameter of the catalyst is measured by the mercury intrusion method, the average diameter of the pores in the range of 62 to 600 pores is 91 to 300 pores, and the average diameter is ±20 pores. The volume occupied by the pores is at least 60%, preferably 80%, of the volume occupied by the pores with a diameter of 62 to 600
The pore volume in the 0-person range is at least 0.45+d/g.

従来、水素化処理触媒の細孔特性は処理対象とする油分
の分子量の大きさに対応して選定されており、油分の分
子が水素化処理触媒細孔内に入って水素化反応を受けら
れる範囲の大きさで、かつ、できるだけ細孔径を小さく
し、触媒の活性表面積を拡大することによって高い脱硫
活性を維持しようとしてきた。たとえば間接脱硫装置用
水素化処理触媒の細孔径は処理対象とする減圧軽油の分
子量400〜500に対応して、60〜80人程度の大
きさが選定されており、また平均分子量が4 、000
〜6,000とされているアスファルテン処理を目的と
する場合には、100〜400人の細孔径が必要である
といわれている。減圧軽油とアスファルテンの中間の8
00程度の分子量を持つ脱れき油では、減圧軽油での細
孔径に近い70〜90人程度の細孔径が適しているもの
と推定された。しかしながら低水素分圧の反応条件下に
おいては水素化反応が不十分となり、通常選定される細
孔径では不適当となることがわかった。低水素分圧下で
は油分の水素化反応が進まず、炭素分が特に細孔入口に
おいてコークとなって析出し、これによって急速に触媒
細孔を閉塞する。アスファルテン処理の場合には特にコ
ークの析出が著しく、細孔径を多少大きくしても実用的
な触媒寿命は期待することはできず、さらに大きくする
ことは触媒の物理耐圧強度の低下と触媒活性表面積の減
少の問題があり、実用化が困難である。これに対し重質
油からアスファルテン分を除去した脱れき油であればコ
ーク析出の程度がかなり和らぐことがわかり、通常選定
される70〜90人では不十分であるが、より大きめの
細孔径である91〜300人、望ましくは100〜15
0人の触媒を選定することにより実用的な触媒寿命を確
保できることがわかった。上記の細孔特性を有する重質
油処理型触媒はコマーシャル触媒として入手することが
できる。
Conventionally, the pore characteristics of a hydrotreating catalyst have been selected according to the molecular weight of the oil to be treated, allowing the oil molecules to enter the pores of the hydrotreating catalyst and undergo the hydrogenation reaction. Attempts have been made to maintain high desulfurization activity by reducing the pore size within a range of size and reducing the pore diameter as much as possible and expanding the active surface area of the catalyst. For example, the pore diameter of the hydrotreating catalyst for indirect desulfurization equipment is selected to be about 60 to 80, corresponding to the molecular weight of vacuum gas oil to be treated, which is 400 to 500, and the average molecular weight is 4,000.
It is said that a pore size of 100 to 400 is required for the purpose of asphaltene treatment, which is said to be 6,000 to 6,000. 8 between vacuum gas oil and asphaltene
For deasphalted oil having a molecular weight of about 0.00, it was estimated that a pore diameter of about 70 to 90, which is close to the pore diameter of vacuum gas oil, is suitable. However, it was found that the hydrogenation reaction was insufficient under the reaction conditions of low hydrogen partial pressure, and the normally selected pore diameter was inappropriate. Under low hydrogen partial pressure, the hydrogenation reaction of oil does not proceed, and carbon components precipitate as coke, particularly at the entrances of the pores, thereby rapidly blocking the catalyst pores. In the case of asphaltene treatment, coke precipitation is particularly significant, and even if the pore size is slightly increased, a practical catalyst life cannot be expected; increasing the pore size even further may lead to a decrease in the physical pressure resistance of the catalyst and the active surface area of the catalyst. There is a problem of decrease in the amount of water, making it difficult to put it into practical use. On the other hand, it has been found that the degree of coke precipitation is considerably reduced with deasphalted oil obtained by removing asphaltenes from heavy oil, and although the normally selected 70 to 90 people is insufficient, it is possible to use deasphalted oil with a larger pore diameter. 91 to 300 people, preferably 100 to 15 people
It was found that a practical catalyst life can be ensured by selecting a catalyst with zero people. Heavy oil processing type catalysts having the above pore characteristics are available as commercial catalysts.

本発明において、重質油としては常圧蒸留残油や減圧蒸
留残油に限らず、触媒に悪影響を与えるアスファルテン
を含む油であればよく、たとえば重質原油、常圧蒸留残
油、減圧蒸留残油、直接脱硫残油、直接脱硫減圧残油、
熱分解タール、けつ岩油、タールサンド油、石炭液化油
などが原料油となり得る。ここでいう水素化処理とは脱
硫を目的とする水素化脱硫処理、分解を目的とする水素
化分解処理、脱メタル、脱CCRを目的とする水素化処
理をいい、また溶剤脱れきとは3〜7個の炭素原子を持
つ脂肪族炭化水素から成る溶剤またはこれらの混合溶剤
を用いて原料油中からアスファルテン分を除き、レジン
分およびもしくは油分を回収する操作をいう、脱れき油
に混合する軽油としては減圧蒸留により得られる減圧軽
油分、常圧蒸留により得られる軽油分およびこれらを水
素化処理した油分などが使用できる。
In the present invention, the heavy oil is not limited to atmospheric distillation residual oil or vacuum distillation residual oil, but may be any oil containing asphaltene that has an adverse effect on the catalyst, such as heavy crude oil, atmospheric distillation residual oil, vacuum distillation residual oil, etc. Residual oil, direct desulfurized residual oil, direct desulfurized vacuum residual oil,
Pyrolysis tar, rock oil, tar sand oil, coal liquefied oil, etc. can be used as feedstock oils. Hydrotreating here refers to hydrodesulfurization treatment for the purpose of desulfurization, hydrocracking treatment for the purpose of decomposition, hydrogenation treatment for the purpose of demetalization, and de-CCR, and solvent deasphalting refers to 3. This refers to the operation of removing the asphaltene content from raw oil using a solvent consisting of an aliphatic hydrocarbon having ~7 carbon atoms or a mixed solvent thereof, and recovering the resin content and/or oil content, which is mixed with deasphalted oil. As the light oil, vacuum light oil components obtained by vacuum distillation, light oil components obtained by normal pressure distillation, oil components obtained by hydrogenating these, etc. can be used.

本発明でいうCCR分とはJISに2270の分析方法
によるコンラドソン残留炭素分であり、また溶剤脱れき
によりアスファルテンを除いた脱れき油についての値で
あり、脱れき処理する前の重質油のCC11分に対して
は適用できない、このCC11分の値を5wt%以下、
望ましくは2.5〜3.5wt%と限定するのは、これ
より高すぎればコーク失活を招き、触媒寿命を短くする
ため実用的でな(なるためである。触媒寿命とLHSV
との関係で許容できるCCR分は変化するが、標準的な
間接脱硫装置のLHSVを0.4〜0.8、触媒寿命を
約1年とすれば、このCCR分は2.5〜3.5wt%
となる。
The CCR content in the present invention is the Conradson residual carbon content according to the JIS 2270 analysis method, and is the value for deasphalted oil from which asphaltenes have been removed by solvent deasphalting, and is the value for heavy oil before deasphalting. This CC11 minute value cannot be applied to CC11 minutes below 5wt%,
The reason why it is preferably limited to 2.5 to 3.5 wt% is that if it is too high, it will lead to coke deactivation and shorten the catalyst life, making it impractical.Catalyst life and LHSV
Although the allowable CCR will vary depending on the relationship, if the LHSV of a standard indirect desulfurization equipment is 0.4 to 0.8 and the catalyst life is about 1 year, this CCR will be 2.5 to 3. 5wt%
becomes.

従来から、脱れき油を水素化処理する提案はあるが、主
として水素分圧の高いケースに限られており、また実施
例の水素化処理条件の中に水素分圧の低い反応条件を含
めることはあっても、その触媒寿命に関する記述はない
、たとえば特開昭56−166291号公報では、脱れ
き油を水素とともに40〜140バールの圧力条件下に
1秒〜IO時間、440〜530℃の温度に保った後、
40〜140バールの圧力条件、320〜430℃で触
媒により水素化処理することを提案しているが、40バ
ールの圧力条件下での実施例はなく、また触媒の組成に
関する記述はあってもその構造および寿命に関する記述
はない、また特開昭60−31594号公報では脱れき
油を30〜200瞳/−の圧力条件下、350〜450
℃、LHSV0.5〜5h−1で市販触媒により水素化
処理することを提案しているが、同様に触媒寿命に関す
る記述は認められない。これらの方法と本発明とは実用
的な触媒寿命を確保するために必要な反応条件を特定し
た点が異なる。
Conventionally, there have been proposals to hydrotreat deasphalted oil, but these are mainly limited to cases where hydrogen partial pressure is high, and the hydrotreating conditions in the examples include reaction conditions with low hydrogen partial pressure. However, there is no description regarding the catalyst life. For example, in JP-A-56-166291, deasphalted oil is treated with hydrogen under a pressure of 40 to 140 bar for 1 second to IO time at 440 to 530°C. After keeping at temperature,
Although it is proposed that hydrogenation be carried out using a catalyst at a pressure of 40 to 140 bar and a temperature of 320 to 430°C, there is no practical example under a pressure of 40 bar, and although there is a description of the composition of the catalyst, There is no description regarding its structure and lifespan, and in Japanese Patent Application Laid-Open No. 60-31594, deasphalted oil is exposed to 350 to 450 pu/- under pressure conditions of 30 to 200 pu/-.
Although it is proposed to carry out hydrogenation treatment using a commercially available catalyst at LHSV of 0.5 to 5 h-1, no description regarding the catalyst life is found. The difference between these methods and the present invention is that the reaction conditions necessary to ensure a practical catalyst life are specified.

水素分圧が30に+r/cJ未満の場合は、脱硫率が低
下し、水素化処理の効果が不十分となり、また水素分圧
が60kir/c+4を越える場合は重質油処理の効果
が低下する0反応点度が350℃未満の場合は脱硫率が
低下し、水素化処理の効果が不十分となり、反応温度が
450℃を越える場合は、既設の間接脱硫装置に対して
は設計温度を越え、適用できないし、また新設の間接脱
硫装置に対しては、装置費が高くなり、経済的でない。
If the hydrogen partial pressure is less than 30 + r/cJ, the desulfurization rate will decrease and the effect of hydrogenation treatment will be insufficient, and if the hydrogen partial pressure exceeds 60 kir/c + 4, the effect of heavy oil treatment will decrease. If the zero reaction point temperature is less than 350°C, the desulfurization rate will decrease and the effect of the hydrogenation treatment will be insufficient. If the reaction temperature exceeds 450°C, the design temperature should be changed for the existing indirect desulfurization equipment. Moreover, it is not economical to install a new indirect desulfurization equipment because the equipment cost will be high.

LH3VがO,lh−’未満の場合は、重質油処理の効
果が低下し、LIISνが3h−1を越える場合は十分
な脱硫率が得られない。
When LH3V is less than O, lh-', the effect of heavy oil treatment is reduced, and when LIISv exceeds 3h-1, a sufficient desulfurization rate cannot be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されているので、つぎのよう
な効果が奏せられる。
Since the present invention is configured as described above, the following effects can be achieved.

(l)  本発明により、30〜60kg/c+Jの低
水素分圧下において従来不可能であった重質油の水素化
処理が可能になる0日本の製油所においては水素分圧の
低い間接脱硫装置が多く、本発明を容易に既設の間接脱
硫装置へ適用することが可能であり有用である。
(l) The present invention makes it possible to hydrogenate heavy oil under a low hydrogen partial pressure of 30 to 60 kg/c+J, which was previously impossible.In Japanese refineries, indirect desulfurization equipment with low hydrogen partial pressure is used. Therefore, the present invention can be easily applied to existing indirect desulfurization equipment and is useful.

(2)  常圧残油を処理しようとする場合と比較して
軽質化の効果がより大きい、すなわち油種をアラビアン
ライト常圧残油として65に+r/−の水素分圧で常圧
残油を処理しようする場合と比較すると第2図および第
3図のようになる。第2図は、アラビアンライト常圧残
油を減圧蒸留装置3で減圧蒸留して減圧軽油を得、この
減圧軽油とともに常圧残油を間接脱硫装置2で処理した
従来法のフローシートである。また第3図は、アラビア
ンライト常圧残油を減圧蒸留装置3で減圧蒸留し、減圧
残油を溶剤脱れき装置1で脱れきして脱れきピッチを分
離し、脱れき油を減圧軽油とともに間接脱硫装置2で処
理した本発明のフローシートである。第2図および第3
図において、()内の数値はvo1%を表している。第
3図に示す本発明の方法では7%の脱れきピッチを除く
常圧残油の93%を間接脱硫装置へ通油することができ
、常圧残油をそのまま混入させる第2図の場合と比較す
ると、間接脱硫装置への通油量を20%以上増加するこ
とができる。
(2) Compared to the case where atmospheric residual oil is processed, the effect of lightening is greater, that is, when the oil type is Arabian light atmospheric residual oil and the hydrogen partial pressure is +r/- to 65, atmospheric residual oil is processed. When compared with the case where processing is attempted, the results are as shown in FIGS. 2 and 3. FIG. 2 is a flow sheet of a conventional method in which Arabian Light atmospheric residual oil is distilled under reduced pressure in a vacuum distillation device 3 to obtain a vacuum gas oil, and this vacuum gas oil and atmospheric residual oil are treated in an indirect desulfurization device 2. In addition, Figure 3 shows that Arabian Light atmospheric residual oil is distilled under reduced pressure in a vacuum distillation device 3, the vacuum residual oil is deasphalted in a solvent deasphalting device 1, the deasphalted pitch is separated, and the deasphalted oil is indirectly distilled together with vacuum gas oil. 1 is a flow sheet of the present invention processed by desulfurization device 2. Figures 2 and 3
In the figure, the numbers in parentheses represent vo1%. In the method of the present invention shown in Fig. 3, 93% of the atmospheric residual oil, excluding 7% of the deasphalted pitch, can be passed to the indirect desulfurization equipment, and in the case of Fig. 2, in which the atmospheric residual oil is mixed in as is. Compared to this, the amount of oil passed to the indirect desulfurization equipment can be increased by 20% or more.

近年、原油処理量の低下に伴い間接脱硫装置能力に余裕
を生じていることを考えあわせると本発明を好適に適用
し得る。
The present invention can be suitably applied in consideration of the fact that, in recent years, there has been a surplus in the capacity of indirect desulfurization equipment due to a decrease in the throughput of crude oil.

(3)近年、南方系低硫黄原油などの常圧残油がFCC
原料として幅広く利用され、FCC原料に占めるこれら
の油種の構成比率が高まってきている。しかしこれらの
油種は産油量も多くなく、産地が限定されており、将来
的な安定供給の面で問題が残っている0本発明によれば
硫黄分の多い中東系原油からでもFCC原料を容易に、
かつ多量に確保することができ、この問題解決の一助と
なる。
(3) In recent years, atmospheric residual oil such as southern low-sulfur crude oil has been
These oil types are widely used as raw materials, and the composition ratio of these oil types in FCC raw materials is increasing. However, the production volumes of these oil types are not large, the production areas are limited, and problems remain in terms of stable supply in the future.According to the present invention, it is possible to use FCC feedstock even from Middle Eastern crude oil with a high sulfur content. easily,
And it can be secured in large quantities, helping to solve this problem.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例 アラビアンヘビー系減圧残油を原料とし、ペンタンおよ
びブタン溶剤を使用して溶剤脱れきを行い、それぞれ脱
れき油(八)および脱れき油(B)を得た。それぞれの
脱れき油の性状および脱れき油収率を第1表に示す。
Example Using Arabian heavy vacuum residual oil as a raw material, solvent deasphalting was performed using pentane and butane solvents to obtain deasphalted oil (8) and deasphalted oil (B), respectively. Table 1 shows the properties of each deasphalted oil and the yield of deasphalted oil.

脱れき油(A)および脱れき油(B)をそれぞれ減圧軽
油に混合し、混合油中のCCR分がそれぞれ3.0wt
%および2.8wt%である混合油(MA)および(M
B)を得た。脱れき油の混合率および混合油の性状を第
2表に示す。
Deasphalted oil (A) and deasphalted oil (B) are mixed with vacuum light oil, and the CCR content in the mixed oil is 3.0wt each.
% and 2.8 wt% of mixed oil (MA) and (M
B) was obtained. The mixing ratio of the deasphalted oil and the properties of the mixed oil are shown in Table 2.

次′に水素化処理反応器に、Co−Mo−Altos系
の触媒であって、細孔径が水銀圧入法で測定した場合、
直径が62〜600人の範囲にある細孔の平均直径が1
25人であり、平均直径±20人の細孔が占める容積が
直径62〜600人の細孔が占める容積の72%を占め
、62〜600人の範囲の細孔容積が0.47+af/
gである重質油処理型触媒70vo1%とCo−M。
Next, a Co-Mo-Altos-based catalyst was added to the hydrogenation reactor, and when the pore size was measured by mercury porosimetry,
The average diameter of pores with a diameter ranging from 62 to 600 is 1
25 people, the volume occupied by pores with an average diameter of ±20 people accounts for 72% of the volume occupied by pores with a diameter of 62 to 600 people, and the pore volume in the range of 62 to 600 people is 0.47+af/
heavy oil processing type catalyst 70vol.g and Co-M.

−3i01−A1102系触媒であって、細孔径が水銀
圧入法で測定した場合、直径が62〜600人の範囲に
ある細孔の平均直径が90人であり、平均直径上20人
の細孔が占める容積が直径62〜600人の細孔が占め
る容積の68%を占め、62〜600人の範囲の細孔容
積が0.45m/gである触媒30vo1%を充填し、
第3表の水素化処理条件で混合油(MA)および混合油
(MB)を水素化処理した。
-3i01-A1102 series catalyst, when the pore diameter is measured by mercury intrusion method, the average diameter of pores with a diameter in the range of 62 to 600 is 90, and the pores with a diameter of 20 are occupies 68% of the volume occupied by pores with a diameter of 62 to 600 pores, and the pore volume in the range of 62 to 600 pores is 0.45 m/g.
The mixed oil (MA) and mixed oil (MB) were hydrotreated under the hydrotreating conditions shown in Table 3.

処理に際して343℃以上の留分中の硫黄濃度が。During processing, the sulfur concentration in the fraction above 343°C.

0.3wt%以下、すなわち生成油中の硫黄濃度で0.
2wt%程度以下となるように反応温度を変化させた。
0.3 wt% or less, that is, the sulfur concentration in the produced oil is 0.3 wt% or less.
The reaction temperature was changed so that the concentration was about 2 wt% or less.

それぞれの生成油の性状を第3表に、また時間と反応温
度およびその時の生成油の硫黄濃度との関係を第4図〜
第7図に示す。
The properties of each produced oil are shown in Table 3, and the relationship between time, reaction temperature, and sulfur concentration of the produced oil at that time is shown in Figures 4 to 4.
It is shown in FIG.

第   1   表 第    2    表 低下余白) 第    3    表 重質油を水素化処理する際、重質油中のNi、■などの
金属やCC11分、アスファルテンが触媒毒となり、時
間の経過とともに触媒の活性が低下する。
Table 1 Table 2 Decreased margin) Table 3 When heavy oil is hydrotreated, metals such as Ni, ■, CC11, and asphaltene in the heavy oil become catalyst poisons, and the activity of the catalyst decreases over time. decreases.

したがって生成油中の硫黄濃度を保持しようとすれば、
反応温度を上げることが必要である。第4図および第5
図中の混合油(MA)についてみれば、700時間経過
後も反応温度を変化させる必要はなく、触媒活性の低下
はほとんどみられない、1年以上の触媒寿命を十分に見
込むことができる。また触媒負荷を高めるべく LII
SVを2倍にした混合油(MB)の場合には、多少の触
媒活性の低下が認められ、3.000時間後において9
℃の昇温が必要になったが、触媒活性の変化は安定して
おり、今後とも同程度の昇温傾向を示すものと考えられ
る。1年後の反応温度は410℃程度と考えられ、通常
の間接脱硫装置で十分に対応可能な温度範囲にある。
Therefore, if you want to maintain the sulfur concentration in the produced oil,
It is necessary to increase the reaction temperature. Figures 4 and 5
Regarding the mixed oil (MA) in the figure, there is no need to change the reaction temperature even after 700 hours have elapsed, and the catalyst activity can be expected to last for more than one year with almost no decrease in catalyst activity. Also, in order to increase the catalyst load, LII
In the case of the mixed oil (MB) with twice the SV, a slight decrease in catalyst activity was observed, and after 3,000 hours, the catalytic activity decreased to 9.
Although it became necessary to raise the temperature by ℃, the change in catalyst activity was stable, and it is thought that the temperature will continue to rise to the same extent in the future. The reaction temperature after one year is thought to be about 410°C, which is within a temperature range that can be adequately handled by a normal indirect desulfurization equipment.

生成油は脱硫とともに脱メタル゛および脱CCRされF
CC原料に通した性状となる。すなわち本発明により、
重質油である減圧残油から十分に精製されたFCC原料
を製造することができる。
The produced oil is desulfurized, demetalized, and de-CCR treated with F.
It has properties similar to those of CC raw materials. That is, according to the present invention,
A sufficiently purified FCC feedstock can be produced from vacuum residue, which is heavy oil.

従来、第2表に示すような性状の油については、その金
属含有量およびCCR含有量からみて触媒の被毒が激し
く間接脱硫条件下での処理は不可能と考えられてきた。
Conventionally, it has been thought that oils having the properties shown in Table 2 cannot be treated under indirect desulfurization conditions because of their metal content and CCR content, which causes severe catalyst poisoning.

しかし重質油処理型触媒と脱れき油独特の特徴を組み合
わせることにより、この処理が可能となり、本発明に至
ったものである。
However, by combining a heavy oil processing type catalyst and the unique features of deasphalted oil, this treatment becomes possible, leading to the present invention.

本発明で使用した同一の触媒を使用し、常圧残油と減圧
軽油の混合油を水素化処理した結果を例にとり、脱れき
油処理の特徴を説明する0重質油としてアラビアンライ
ト常圧残油を使用し、減圧軽油との混合油(MC)を調
製した。常圧残油の混合率および混合油(MC)の性状
を第4表に示す、また混合油<nc>の水素化処理条件
を第5表に示す。
Using the same catalyst used in the present invention to explain the characteristics of deasphalted oil treatment, we will take as an example the results of hydrotreating a mixed oil of atmospheric residual oil and vacuum gas oil. Using the residual oil, a mixed oil (MC) with vacuum gas oil was prepared. The mixing ratio of the atmospheric residual oil and the properties of the mixed oil (MC) are shown in Table 4, and the hydrotreating conditions of the mixed oil <nc> are shown in Table 5.

第    4    表 第  5  表 混合油(MC)は(門^)および(MB)に比して比重
も軽くまたCCR分、金属分も少ない、より処理の容易
な油と考えられるが、脱れき油処理の時と比して触媒の
失活の度合いが大きく、特に低水素分圧下では触媒の寿
命が大幅に短縮する。触媒ソf命は水素分圧の影響を受
けることが実験の結果わかっており、この触媒寿命と水
素分圧の関係を第8図に示す、常圧残油を水素化処理す
る場合には水素分圧65kr/−程度は必要であり、こ
の時には約!年程度の寿命が期待でき、実用的と考えら
れる。
Table 4 Table 5 Mixed oil (MC) has a lighter specific gravity and lower CCR content and metal content than (MB) and is considered to be easier to process, but deasphalted oil The degree of deactivation of the catalyst is greater than that during treatment, and the life of the catalyst is significantly shortened, especially under low hydrogen partial pressure. Experiments have shown that the catalyst life is affected by hydrogen partial pressure, and the relationship between catalyst life and hydrogen partial pressure is shown in Figure 8. A partial pressure of about 65kr/- is required, and at this time approximately! It can be expected to have a lifespan of about 20 years, and is considered practical.

しかし通常の間接脱硫装置での条件である40kg/−
ではその寿命は約2月にまで短縮し、触媒の交換頻度お
よび経済性の点から実用的でなくなる。
However, the condition of 40kg/- in a normal indirect desulfurization equipment
In this case, its lifespan is shortened to about two months, making it impractical in terms of catalyst replacement frequency and economy.

一般に触媒の被毒物質として金属、アスファルテンおよ
びCCR分があるが、特に間接脱硫装置においてはアス
ファルテンやCCR分がコークス化し触媒表面に付着す
ることによるカーボン失活が失活の主な原因と考えられ
る。?rL合油(MA)および(MB)と(MC)を比
較すると金属、  CCR分については混合油(MC)
の方が少なく、ただアスファルテンのみについて(MC
)が微小量多(なっており、この場合微小量のアスファ
ルテンが寿命に決定的な影響を与えたと考えられる。第
8図に示すように、このアスファルテンは水素分圧の低
い時にその影響がより大きくなり、それゆえ重質油を脱
れき処理し、アスファルテンを予め除去する本性は低水
素分圧下での重質油の水素化処理に際して、より効果的
ということができる。
In general, metals, asphaltene, and CCR components are poisonous substances for catalysts, but especially in indirect desulfurization equipment, the main cause of deactivation is thought to be carbon deactivation due to asphaltene and CCR components turning into coke and adhering to the catalyst surface. . ? Comparing rL synthetic oil (MA), (MB) and (MC), it is metal, and the CCR content is mixed oil (MC).
There are fewer cases, only for asphaltenes (MC
), and in this case it is thought that the minute amount of asphaltene had a decisive effect on the life.As shown in Figure 8, the effect of this asphaltene becomes more pronounced when the hydrogen partial pressure is low. Therefore, the nature of deasphalting heavy oil and removing asphaltenes in advance can be said to be more effective in hydrotreating heavy oil under low hydrogen partial pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の重質油の水素化処理方法を実施する装
置の構成を示すフローシート、第2図は従来の常圧残油
処理方法の一例を示すフローシート、第3図は本発明の
方法による常圧残油処理方法の一例を示すフローシート
、第4図は混合油(MA)について水素化処理した時の
通油時間と反応温度との関係を示すグラフ、第5図は混
合油(MA)について水素化処理した時の通油時間と生
成油の硫黄濃度との関係を示すグラフ、第6図は混合油
(MB)について水素化処理した時の通油時間と反応温
度との関係を示すグラフ、第7図は混合油(MB)につ
いて水素化処理した時の通油時間と生成油の硫黄濃度と
の関係を示すグラフ、第8図は混合油(MC)について
、触媒寿命、通油可能量と水素分圧との関係を示すグラ
フである。 1・・・溶剤脱れき装置、2・・・間接脱硫装置、3・
・・減圧蒸留装置
Fig. 1 is a flow sheet showing the configuration of an apparatus for carrying out the heavy oil hydrotreating method of the present invention, Fig. 2 is a flow sheet showing an example of the conventional atmospheric residual oil processing method, and Fig. 3 is the present invention. A flow sheet showing an example of the atmospheric residual oil treatment method according to the method of the invention, FIG. 4 is a graph showing the relationship between oil passage time and reaction temperature when mixed oil (MA) is hydrotreated, and FIG. A graph showing the relationship between the oil passing time and the sulfur concentration of the produced oil when mixed oil (MA) is hydrotreated. Figure 6 shows the oil passing time and reaction temperature when mixed oil (MB) is hydrotreated. Figure 7 is a graph showing the relationship between oil passage time and sulfur concentration of the produced oil when mixed oil (MB) is hydrotreated, Figure 8 is a graph showing the relationship between mixed oil (MC), It is a graph showing the relationship between the catalyst life, the amount of oil that can pass, and the hydrogen partial pressure. 1...Solvent deasphalt equipment, 2...Indirect desulfurization equipment, 3.
...Vacuum distillation equipment

Claims (1)

【特許請求の範囲】[Claims] 1 重質油を溶剤脱れきし、脱れき油と軽油とをコンラ
ドソン残留炭素分が5wt%以下になるように混合調整
した後、重質油処理型の触媒を使用して、水素分圧30
〜60kg/cm^2、反応温度350〜450℃、L
HSV0.1〜3.0h^−^1の反応条件下で水素化
処理することを特徴とする重質油の水素化処理方法。
1. After deasphalting heavy oil with a solvent, mixing and adjusting the deasphalted oil and light oil so that the Conradson residual carbon content is 5 wt% or less, using a heavy oil processing type catalyst, hydrogen partial pressure is reduced to 30%.
~60kg/cm^2, reaction temperature 350~450℃, L
A method for hydrotreating heavy oil, which is characterized by hydrotreating under reaction conditions of HSV 0.1 to 3.0h^-^1.
JP9420087A 1987-04-16 1987-04-16 Hydrogenation treatment of heavy oil Pending JPS63258985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9420087A JPS63258985A (en) 1987-04-16 1987-04-16 Hydrogenation treatment of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9420087A JPS63258985A (en) 1987-04-16 1987-04-16 Hydrogenation treatment of heavy oil

Publications (1)

Publication Number Publication Date
JPS63258985A true JPS63258985A (en) 1988-10-26

Family

ID=14103655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9420087A Pending JPS63258985A (en) 1987-04-16 1987-04-16 Hydrogenation treatment of heavy oil

Country Status (1)

Country Link
JP (1) JPS63258985A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382349A (en) * 1991-10-09 1995-01-17 Idemitsu Kosan Co., Ltd. Method of treatment of heavy hydrocarbon oil
WO2002081594A1 (en) * 2001-04-05 2002-10-17 Jgc Corporation Heavy oil refining method
JP2012149104A (en) * 2011-01-14 2012-08-09 Idemitsu Kosan Co Ltd Process of hydrotreatment heavy hydrocarbon oil
JP2012197350A (en) * 2011-03-22 2012-10-18 Jx Nippon Oil & Energy Corp Hydrorefining method of heavy oil
JP2021063191A (en) * 2019-10-16 2021-04-22 コスモ石油株式会社 Hydrodesulfurization method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155607A (en) * 1961-03-25 1964-11-03 Gelsenberg Benyin Ag Process for the production of heavy heating oils having low sulfur contents
US3464915A (en) * 1967-03-10 1969-09-02 Chevron Res Desulfurization and blending of heavy fuel oil
US3948756A (en) * 1971-08-19 1976-04-06 Hydrocarbon Research, Inc. Pentane insoluble asphaltene removal
JPS5565295A (en) * 1978-11-11 1980-05-16 Idemitsu Kosan Co Ltd Preparation of base oil for light lubricant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155607A (en) * 1961-03-25 1964-11-03 Gelsenberg Benyin Ag Process for the production of heavy heating oils having low sulfur contents
US3464915A (en) * 1967-03-10 1969-09-02 Chevron Res Desulfurization and blending of heavy fuel oil
US3948756A (en) * 1971-08-19 1976-04-06 Hydrocarbon Research, Inc. Pentane insoluble asphaltene removal
JPS5565295A (en) * 1978-11-11 1980-05-16 Idemitsu Kosan Co Ltd Preparation of base oil for light lubricant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382349A (en) * 1991-10-09 1995-01-17 Idemitsu Kosan Co., Ltd. Method of treatment of heavy hydrocarbon oil
WO2002081594A1 (en) * 2001-04-05 2002-10-17 Jgc Corporation Heavy oil refining method
JP2012149104A (en) * 2011-01-14 2012-08-09 Idemitsu Kosan Co Ltd Process of hydrotreatment heavy hydrocarbon oil
JP2012197350A (en) * 2011-03-22 2012-10-18 Jx Nippon Oil & Energy Corp Hydrorefining method of heavy oil
JP2021063191A (en) * 2019-10-16 2021-04-22 コスモ石油株式会社 Hydrodesulfurization method

Similar Documents

Publication Publication Date Title
US4048060A (en) Two-stage hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst
RU2393203C2 (en) Hydrogen treatment methods and systems and methods of improving existing fixed layer systems
CA2896247C (en) Intergration of residue hydrocracking and solvent deasphalting
US4306964A (en) Multi-stage process for demetalation and desulfurization of petroleum oils
US7279090B2 (en) Integrated SDA and ebullated-bed process
CA1288375C (en) Process for the conversion of heavy hydrocarbon feedstocks characterized by high molecular weight, low reactivity and high metal contents
US4176048A (en) Process for conversion of heavy hydrocarbons
EP3559171A1 (en) Multistage resid hydrocracking
EP1600491A1 (en) Catalytic hydrorefining process for crude oil
TWI486435B (en) Residue hydrocracking processing
US3859199A (en) Hydrodesulfurization of asphaltene-containing black oil
EP1794265A2 (en) Process for recycling an active slurry catalyst composition in heavy oil upgrading
US4340466A (en) Process for hydrotreating heavy oils containing metals
US4992163A (en) Cat cracking feed preparation
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
EP0026508A1 (en) Process and apparatus for the demetallization of a hydrocarbon oil
JPS63258985A (en) Hydrogenation treatment of heavy oil
CA1195277A (en) Multiple catalyst system for hydrodenitrogenation of high nitrogen feeds
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
JP2000005609A (en) Method for regeneration of hydrotreating catalyst
JPS6119301B2 (en)
JP2000256678A (en) Method for hydro-refining of heavy oil
Trambouze Engineering of hydrotreating processes
JPH05230473A (en) Treatment of heavy hydrocarbon oil
US5043056A (en) Suppressing sediment formation in an ebullated bed process