JPH10182871A - Production of polyurethane foam having antibacterial, deodorant, antimold and insect-repellent properties as well as far-infrared emitting property - Google Patents

Production of polyurethane foam having antibacterial, deodorant, antimold and insect-repellent properties as well as far-infrared emitting property

Info

Publication number
JPH10182871A
JPH10182871A JP35557996A JP35557996A JPH10182871A JP H10182871 A JPH10182871 A JP H10182871A JP 35557996 A JP35557996 A JP 35557996A JP 35557996 A JP35557996 A JP 35557996A JP H10182871 A JPH10182871 A JP H10182871A
Authority
JP
Japan
Prior art keywords
weight
mixing
properties
foamed polyurethane
far
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35557996A
Other languages
Japanese (ja)
Other versions
JP2873215B2 (en
Inventor
Nobuhide Maeda
信秀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OHARA SANWA KK
Original Assignee
OHARA SANWA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OHARA SANWA KK filed Critical OHARA SANWA KK
Priority to JP35557996A priority Critical patent/JP2873215B2/en
Publication of JPH10182871A publication Critical patent/JPH10182871A/en
Application granted granted Critical
Publication of JP2873215B2 publication Critical patent/JP2873215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polyurethane foam having antibacterial, deodorant, antimold and insect-repellent properties as well as far-infrared-emitting properties. SOLUTION: The production process comprises adding a compound ceramic obtained by mixing a base comprising 20-30wt.% amphibole having a particle diameter of 74μm, 20-30wt.% magnesia, 20-30wt.% silica with 20-30wt.% titanium as an aid to a stock material while it is being mixed in a mixer in the production of a polyurethane foam and supplying the mixture into the expanding machine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遠赤外線放射特性
を有すると共に、抗菌性、脱臭性、防カビ性および防虫
性を有する発泡ポリウレタンの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a foamed polyurethane having far-infrared radiation properties and having antibacterial properties, deodorizing properties, fungicidal properties and insect repellency.

【0002】[0002]

【従来の技術】従来、遠赤外線放射特性を有すると共
に、抗菌性、脱臭性、防カビ性および防虫性を有する発
泡ポリウレタンは全く存在せず、実用に供されていな
い。
2. Description of the Related Art Conventionally, there is no foamed polyurethane having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and has not been put to practical use.

【0003】[0003]

【発明が解決しようとする課題】本発明は、単一成分の
セラミックスを複数種混合して製造された複合セラミッ
クスを発泡ポリウレタンの製造工程中の原材料を混合機
で混合攪拌する混合工程において添加混入し、然る後発
泡機に投入して発泡させることにより、遠赤外線放射特
性を有すると共に、抗菌性、脱臭性、防カビ性および防
虫性を有する発泡ポリウレタンを製造することを課題と
する。
SUMMARY OF THE INVENTION The present invention relates to a composite ceramic produced by mixing a plurality of single component ceramics in a mixing step of mixing and stirring raw materials in a production process of a foamed polyurethane with a mixer. It is another object of the present invention to produce a foamed polyurethane having a far-infrared radiation property and an antibacterial property, a deodorant property, a mold-proof property and an insect-proof property by being charged into a foaming machine and then foamed.

【0004】[0004]

【課題を解決するための手段】本発明は、粒径74μm
以下の角閃石20〜30重量%、マグネシア20〜30
重量%、シリカ20〜30重量%を主材とし、これに助
材としてチタン20〜30重量%を添加混合して得られ
た複合セラミックスを、発泡ポリウレタンの製造工程中
の原材料を混合機で混合攪拌する混合工程において添加
混入し、然る後発泡機に投入して発泡させるという方
法、粒径74μm以下のチタン20〜30重量%、クリ
ストバル石20〜30重量%、蛇紋石20〜30重量%
を主材とし、これに助材として亜鉛20〜30重量%を
添加混合して得られた複合セラミックスを、発泡ポリウ
レタンの製造工程中の原材料を混合機で混合攪拌する混
合工程において添加混入し、然る後発泡機に投入して発
泡させるという方法、粒径74μm以下の角閃石20〜
30重量%、マグネシア40〜60重量%、チタン10
〜15重量%を主材とし、これに助材として亜鉛10〜
15重量%を添加混合して得られた複合セラミックス
を、発泡ポリウレタンの製造工程中の原材料を混合機で
混合攪拌する混合工程において添加混入し、然る後発泡
機に投入して発泡させるという方法、粒径74μm以下
のマグネシア20〜30重量%、シリカ20〜30重量
%、チタン20〜30重量%を主材とし、これに助材と
して亜鉛20〜30重量%を添加混合して得られた複合
セラミックスを、発泡ポリウレタンの製造工程中の原材
料を混合機で混合攪拌する混合工程において添加混入
し、然る後発泡機に投入して発泡させるという方法、粒
径74μm以下のシリカ10〜15重量%、クリストバ
ル石20〜30重量%、蛇紋石40〜60重量%を主材
とし、これに助材としてチタン10〜15重量%を添加
混合して得られた複合セラミックスを、発泡ポリウレタ
ンの製造工程中の原材料を混合機で混合攪拌する混合工
程において添加混入し、然る後発泡機に投入して発泡さ
せるという方法、粒径74μm以下の角閃石20〜30
重量%、クリストバル石20〜30重量%、蛇紋石20
〜30重量%を主材とし、これに助材としてチタン20
〜30重量%を添加混合して得られた複合セラミックス
を、発泡ポリウレタンの製造工程中の原材料を混合機で
混合攪拌する混合工程において添加混入し、然る後発泡
機に投入して発泡させるという方法、粒径74μm以下
の角閃石20〜30重量%、マグネシア20〜30重量
%、シリカ20〜30重量%を主材とし、これに助材と
して亜鉛20〜30重量%を添加混合して得られた複合
セラミックスを、発泡ポリウレタンの製造工程中の原材
料を混合機で混合攪拌する混合工程において添加混入
し、然る後発泡機に投入して発泡させるという方法、の
いずれかを採用することにより、上記課題を解決した。
According to the present invention, a particle size of 74 μm is provided.
The following amphibole 20-30% by weight, magnesia 20-30
A composite ceramic obtained by adding and mixing 20 to 30% by weight of titanium as an auxiliary material with 20 to 30% by weight of silica and 20 to 30% by weight of silica as a main material is mixed with a raw material in the process of producing polyurethane foam by a mixer. A method of adding and mixing in a mixing step of stirring, and then introducing the mixture into a foaming machine to foam, 20-30% by weight of titanium having a particle size of 74 μm or less, 20-30% by weight of cristobalite, 20-30% by weight of serpentine
A main ceramic, and a composite ceramic obtained by adding and mixing zinc as an auxiliary material in an amount of 20 to 30% by weight is added and mixed in a mixing step of mixing and stirring a raw material in a production process of a foamed polyurethane with a mixer, Then, a method of throwing into a foaming machine and foaming, amphibole 20 having a particle size of 74 μm or less.
30% by weight, magnesia 40-60% by weight, titanium 10
~ 15% by weight as the main material and zinc as an auxiliary material
A method in which a composite ceramic obtained by adding and mixing 15% by weight is added and mixed in a mixing step of mixing and stirring raw materials in a manufacturing process of a foamed polyurethane with a mixer, and then charged into a foaming machine to foam. 20 to 30% by weight of magnesia having a particle size of 74 μm or less, 20 to 30% by weight of silica, and 20 to 30% by weight of titanium, and 20 to 30% by weight of zinc as an auxiliary material. A method in which the composite ceramics are added and mixed in a mixing step of mixing and stirring the raw materials in the production process of the foamed polyurethane with a mixer, and then charged into a foaming machine to foam, 10 to 15 weight% of silica having a particle size of 74 μm or less. %, 20 to 30% by weight of cristobalite, 40 to 60% by weight of serpentine, and 10 to 15% by weight of titanium as an auxiliary material. A method in which Lamix is added and mixed in a mixing step of mixing and stirring the raw materials in the production process of the foamed polyurethane with a mixer, and then charged into a foaming machine and foamed. Amphibolite 20 to 30 having a particle size of 74 μm or less.
Weight%, cristobalite 20-30 weight%, serpentine 20
-30% by weight as a main material, and titanium 20
The composite ceramics obtained by adding and mixing 30% by weight is added and mixed in a mixing step of mixing and stirring the raw materials in the production process of the foamed polyurethane with a mixer, and then charged into a foaming machine to foam. Method: 20 to 30% by weight of amphibole having a particle diameter of 74 μm or less, 20 to 30% by weight of magnesia, 20 to 30% by weight of silica as a main material, and adding and mixing 20 to 30% by weight of zinc as an auxiliary material. In the mixing step of mixing and stirring the raw materials in the manufacturing process of foamed polyurethane with a mixer, the obtained composite ceramics are added and mixed, and then charged into a foaming machine and foamed. Has solved the above-mentioned problem.

【0005】[0005]

【発明の実施の形態】単一成分のセラミックスのうち、
マグネシアは95%の遠赤外線放射率を有すると共に、
大腸菌やブドウ状球菌に対して100%に近い抗菌率を
有するが、アンモニアや硫化水素に対する脱臭率は余り
高くなく、蛇紋石は94%の遠赤外線放射率を有すると
共に、ブドウ状球菌に対して100%に近い抗菌率を有
するが、大腸菌に対しては65%と中程度の抗菌率しか
なく、また硫化水素に対して100%の脱臭率を有する
が、アンモニアに対しては50%と中程度の脱臭率しか
有しておらず、更にシリカは、97%の遠赤外線放射率
を有すると共に、硫化水素に対して100%、アンモニ
アに対して94%の脱臭率を有するが、大腸菌およびブ
ドウ状球菌に対する抗菌率は余りないことが知られてい
る。しかしながら、単一成分のセラミックスにつき、防
カビ性を示す防カビ抵抗およびノミやダニ等の衛生害虫
に対する防虫性を示す忌避率を測定したものは存在して
いない。
BEST MODE FOR CARRYING OUT THE INVENTION Among single component ceramics,
Magnesia has a far-infrared emissivity of 95%,
It has an antibacterial rate close to 100% against Escherichia coli and staphylococci, but the deodorization rate against ammonia and hydrogen sulfide is not so high. Serpentine has a far-infrared emissivity of 94%, and against staphylococci. It has an antibacterial rate close to 100%, has only a moderate antibacterial rate against Escherichia coli at 65%, and has a deodorizing rate of 100% against hydrogen sulfide, but has a medium antibacterial rate against ammonia of 50%. It has a deodorization rate of only about 100%, and silica has a far-infrared emissivity of 97% and a deodorization rate of 100% for hydrogen sulfide and 94% for ammonia. It is known that the antibacterial rate against streptococci is not so high. However, there is no single-component ceramic which has been measured for its fungicidal resistance and its repellency against insects such as fleas and ticks.

【0006】本発明者は前記観点から、単一成分のセラ
ミックスにつき、遠赤外線放射率、抗菌率、脱臭率、防
カビ抵抗および忌避率につき個々に測定し、前記各測定
項目のうちいずれかの項目において優れたセラミックス
と、他のセラミックスを混合して複合セラミックスとす
れば、各セラミックスの相乗効果により、遠赤外線放射
特性、抗菌性、脱臭性、防カビ性および防虫性を兼ね備
えた複合セラミックスが得られるのではないかと考え、
鋭意研究の結果本発明に使用する複合セラミックスを得
た。
In view of the above, the present inventor individually measured far-infrared emissivity, antibacterial rate, deodorizing rate, fungicide resistance and repellent rate of a single-component ceramic, and determined any one of the above measurement items. If ceramics excellent in the items and other ceramics are mixed to form a composite ceramic, the synergistic effect of each ceramic will result in a composite ceramic that has far-infrared radiation properties, antibacterial properties, deodorization properties, mold resistance and insect repellency. I think that I can get it,
As a result of intensive studies, a composite ceramic used in the present invention was obtained.

【0007】本発明に使用する複合セラミックスの素材
となる単一成分のセラミックスにつき、遠赤外線放射
率、抗菌率、脱臭率、水素イオン濃度、防カビ抵抗およ
び忌避率についてそれぞれ測定したところ、表1に示す
測定値を得た。なお、前記防カビ抵抗はJIS Z 2
911による測定法により測定した。
The far-infrared emissivity, antibacterial rate, deodorizing rate, hydrogen ion concentration, fungicide resistance and repellent rate of a single component ceramic as a material of the composite ceramics used in the present invention are shown in Table 1. Were obtained. The anti-mold resistance is JIS Z 2
911.

【0008】[0008]

【表1】 [Table 1]

【0009】表1の測定結果から、亜鉛を除く各セラミ
ックスとも遠赤外線放射率が92〜97%、また忌避率
も90〜97%でそれぞれ極めて高く、また亜鉛を含む
すべてのセラミックスの水素イオン濃度は7.9〜9.
3でいずれもアルカリ域に属すると共に、防カビ抵抗は
2〜3で中程度から高率の範囲内にあることが判った。
From the measurement results in Table 1, the far-infrared emissivity and the repellency of the ceramics except for zinc are 92-97% and 90-97%, respectively, and the hydrogen ion concentration of all ceramics containing zinc is high. Is 7.9-9.
It was found that all of the samples in No. 3 belonged to the alkaline region, and that the antifungal resistance was in the range of moderate to high ratio of 2-3.

【0010】そして、角閃石はブドウ状球菌に対して8
2%の抗菌率を有するが、大腸菌に対しては50%と中
程度の抗菌率しかなく、またアンモニアに対して50
%、硫化水素に対して65%といずれも中程度の脱臭率
しかなく、マグネシアは大腸菌に対して100%、ブド
ウ状球菌に対して98%といずれも抗菌率が極めて高い
が、アンモニアに対して25%、硫化水素に対して45
%の低い脱臭率しかなく、更にシリカは大腸菌に対して
20%、ブドウ状球菌に対して35%の低い抗菌率しか
ないが、硫化水素に対して100%、アンモニアに対し
て94%の高い脱臭率を有することが判った。
And amphibole is 8 against Staphylococcus.
Although it has an antibacterial rate of 2%, it has only a moderate antibacterial rate of 50% against Escherichia coli and 50% against ammonia.
%, 65% against hydrogen sulfide, all of which have a moderate deodorization rate. Magnesia has an extremely high antibacterial rate of 100% against Escherichia coli and 98% against staphylococci, but has a very high antibacterial rate against ammonia. 25%, 45 against hydrogen sulfide
%, And silica has only a low antibacterial rate of 20% against E. coli and 35% against staphylococci, but as high as 100% against hydrogen sulfide and 94% against ammonia. It was found to have a deodorizing rate.

【0011】そして、チタンは大腸菌に対しては38
%、ブドウ状球菌に対して29%の抗菌率しかなく、ア
ンモニアに対して35%、硫化水素に対して40%の脱
臭率しかなく、抗菌率および脱臭率ともに低く、クリス
トバル石は大腸菌に対して35%、ブドウ状球菌に対し
て45%の低い抗菌率しかないが、アンモニアに対して
93%、硫化水素に対して98%の高い脱臭率を有し、
また蛇紋石はブドウ状球菌に対して98%の抗菌率を有
するが、大腸菌に対しては65%と中程度の抗菌率しか
なく、硫化水素に対して100%の脱臭率を有するが、
アンモニアに対しては50%の中程度の脱臭率しかない
ことが判った。更に、亜鉛は大腸菌に対して25%、ブ
ドウ状球菌に対して30%の抗菌率しかなく、またアン
モニアに対して35%、硫化水素に対して45%の脱臭
率しかなく、抗菌率および脱臭率ともに低いことが判っ
た。
And titanium is 38 against E. coli.
%, Only 29% antibacterial against staphylococci, only 35% against ammonia, 40% against hydrogen sulfide, both antibacterial and deodorizing rates are low. Low antibacterial rate of 35% against staphylococci, but high deodorization rate of 93% against ammonia and 98% against hydrogen sulfide,
Serpentine has an antibacterial rate of 98% against staphylococci, has only a moderate antibacterial rate against Escherichia coli and 65%, and has a deodorizing rate of 100% against hydrogen sulfide.
It was found that ammonia had only a moderate deodorization rate of 50%. In addition, zinc has an antibacterial rate of only 25% against Escherichia coli and 30% against staphylococci, a deodorizing rate of only 35% against ammonia, and 45% against hydrogen sulfide. Both rates were found to be low.

【0012】前記抗菌率および脱臭率ともに低いチタン
または亜鉛は、他のセラミックスと混合することにより
該他のセラミックスを活性化させる作用を有するため、
主材に添加混合する助材として採用できる。なお、チタ
ンが主材の一種となる場合は亜鉛が助材となる。
Titanium or zinc having low antibacterial and deodorizing rates have an effect of activating the other ceramics by mixing with the other ceramics.
It can be used as an auxiliary material to be added to and mixed with the main material. When titanium is one of the main materials, zinc is an auxiliary material.

【0013】上記測定結果より、遠赤外線放射率、抗菌
率および脱臭率のいずれかにおいて優れたセラミックス
を3種類選択して主材とし、これらに助材としてチタン
または亜鉛、あるいはチタンを主材の一種とする場合は
助材として亜鉛を添加混入することにより、遠赤外線放
射特性を有すると共に、抗菌性、脱臭性、防カビ性およ
び防虫性を有する複合セラミックスを得た。
From the above measurement results, three types of ceramics having excellent far-infrared emissivity, antibacterial rate and deodorization rate were selected as main materials, and titanium, zinc, or titanium was used as an auxiliary material. In the case of one kind, by adding and mixing zinc as an auxiliary material, a composite ceramic having far-infrared radiation properties, antibacterial properties, deodorization properties, fungicidal properties and insect repellency was obtained.

【0014】以下本発明方法に使用する複合セラミック
スの製造方法について詳細に説明する。前記複合セラミ
ックスを構成する各単一成分のセラミックスの粒径は7
4μm以下の微粉末を使用する必要があり、そしてこれ
ら各セラミックスを混合すると、各セラミックスの比
重、水分、湿度等の物理的特性が夫々異なると共に、主
材および混合材となる前記各セラミックスは粒径が74
μm以下の微粉末であるため、凝集化が安易に作用し
て、前記各セラミックスを均一に混合することは極めて
容易ではない。
Hereinafter, a method for producing a composite ceramic used in the method of the present invention will be described in detail. The particle size of each single component ceramic constituting the composite ceramic is 7
It is necessary to use a fine powder of 4 μm or less, and when these ceramics are mixed, the physical properties such as specific gravity, moisture, humidity, etc. of the ceramics are different from each other, and the ceramics used as the main material and the mixed material are granulated. Diameter 74
Since it is a fine powder of μm or less, agglomeration easily acts, and it is not very easy to uniformly mix the ceramics.

【0015】そこで本発明者は、前記主材および助材と
なる各セラミックスを所定混合率により混合機に投入し
て混合攪拌した後、その混合物を粉砕機に投入して粉砕
し、そして更に、前記粉砕したものを再び混合機に投入
して混合攪拌し、その後また粉砕機に投入して粉砕する
という工程を順次約30分間繰返すという手段を採用す
ることにより、主材および助材となる各セラミックスを
均一に混合した複合セラミックスを製造することができ
た。
Therefore, the present inventor puts each of the main and auxiliary ceramics into a mixer at a predetermined mixing ratio and mixes and stirs the mixture. Then, the mixture is charged into a pulverizer and pulverized. The above-mentioned pulverized material is again put into the mixer, mixed and stirred, and then, the step of again being charged into the pulverizer and pulverized is repeated for about 30 minutes. Composite ceramics in which ceramics were uniformly mixed could be manufactured.

【0016】そして、前記均一に混合された複合セラミ
ックスの化学特性の安定化を図るため、該複合セラミッ
クスを200〜500℃の仮焼温度で焼成機により焼成
して、本発明方法に使用する複合セラミックスとするの
である。
In order to stabilize the chemical properties of the uniformly mixed composite ceramics, the composite ceramics is fired by a firing machine at a calcining temperature of 200 to 500 ° C. Ceramics.

【0017】すなわち、粒径74μm以下の角閃石20
〜30重量%、マグネシア20〜30重量%、シリカ2
0〜30重量%を主材とし、これに助材としてチタン2
0〜30重量%を添加混合して得られた複合セラミック
ス、あるいは粒径74μm以下のチタン20〜30重量
%、クリストバル石20〜30重量%、蛇紋石20〜3
0重量%を主材とし、これに助材として亜鉛20〜30
重量%を添加混合して得られた複合セラミックス、また
は粒径74μm以下の角閃石20〜30重量%、マグネ
シア40〜60重量%、チタン10〜15重量%を主材
とし、これに助材として亜鉛10〜15重量%を添加混
合して得られた複合セラミックス、更に粒径74μm以
下のマグネシア20〜30重量%、シリカ20〜30重
量%、チタン20〜30重量%を主材とし、これに助材
として亜鉛20〜30重量%を混合して得られた複合セ
ラミックス、そして、粒径74μm以下のシリカ10〜
15重量%、クリストバル石20〜30重量%、蛇紋石
40〜60重量%を主材とし、これに助材としてチタン
10〜15重量%を添加混合して得られた複合セラミッ
クス、そしてまた粒径74μm以下の角閃石20〜30
重量%、クリストバル石20〜30重量%、蛇紋石20
〜30重量%を主材とし、これに助材としてチタン20
〜30重量%を添加混合して得られた複合セラミック
ス、そして更に、粒径74μm以下の角閃石20〜30
重量%、マグネシア20〜30重量%、シリカ20〜3
0重量%を主材とし、これに助材として亜鉛20〜30
重量%を添加混合して得られた複合セラミックスの遠赤
外線放射率、抗菌率、脱臭率、防カビ性を示す防カビ抵
抗およびノミやダニ等の衛生害虫に対する防虫性を示す
忌避率をそれぞれ測定したところ、それぞれよい測定結
果が得られた。
That is, amphibole 20 having a particle size of 74 μm or less.
-30% by weight, magnesia 20-30% by weight, silica 2
0 to 30% by weight as the main material and titanium 2
A composite ceramic obtained by adding and mixing 0 to 30% by weight, or titanium having a particle size of 74 μm or less 20 to 30% by weight, cristobalite 20 to 30% by weight, serpentine 20 to 3
0% by weight as the main material, and zinc as an auxiliary material
% By weight of a composite ceramic obtained by adding and mixing, or 20 to 30% by weight of amphibole having a particle size of 74 μm or less, 40 to 60% by weight of magnesia, and 10 to 15% by weight of titanium. A composite ceramic obtained by adding and mixing 10 to 15% by weight of zinc, and 20 to 30% by weight of magnesia having a particle size of 74 μm or less, 20 to 30% by weight of silica, and 20 to 30% by weight of titanium as main materials. A composite ceramic obtained by mixing 20 to 30% by weight of zinc as an auxiliary material, and a silica having a particle size of 74 μm or less.
A composite ceramic obtained by adding and mixing 15% by weight, 20-30% by weight of cristobalite, 40-60% by weight of serpentine and 10-15% by weight of titanium as an auxiliary material, and also having a particle size. Amphibole 20 to 30 of 74 μm or less
Weight%, cristobalite 20-30 weight%, serpentine 20
-30% by weight as a main material, and titanium 20
To 30% by weight of the composite ceramic, and further, amphibole having a particle size of 74 μm or less.
Wt%, magnesia 20-30 wt%, silica 20-3
0% by weight as the main material, and zinc as an auxiliary material
Measure the far-infrared emissivity, antibacterial rate, deodorization rate, fungicide resistance indicating fungicidal properties and repellent rate indicating insect repellent properties against sanitary pests such as fleas and mites, respectively, of the composite ceramics obtained by adding and mixing by weight%. As a result, good measurement results were obtained.

【0018】そして、表2に示す最も好ましい各セラミ
ックスの混合比率で混合した複合セラミックスにつき、
前記測定項目の測定をしたところ、表3に示すような測
定値が得られた。なお、表2の最も好ましい各混合比率
で得られた複合セラミックスを、それぞれ複合セラミッ
クスA〜Eとして、表3にもこれを適用した。
Then, with respect to the composite ceramics mixed at the most preferable mixing ratio of each ceramic shown in Table 2,
When the above measurement items were measured, measured values as shown in Table 3 were obtained. In addition, the composite ceramics obtained at the most preferable mixing ratios in Table 2 were referred to as Composite Ceramics A to E, respectively, and were also applied to Table 3.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】前記表3の測定結果から、複合セラミック
スA〜Gのいずれも、遠赤外線放射率は91〜94%と
極めて高く、そして抗菌率が92〜96%、脱臭率も9
1〜94%と極めて高く、また防カビ抵抗は2〜3で中
程度から高率の範囲内にあり、更にノミやダニ等の衛生
害虫に対する防虫性を示す忌避率も90〜93%と非常
に高いことが判った。
From the measurement results in Table 3 above, all of the composite ceramics A to G have an extremely high far-infrared emissivity of 91 to 94%, an antibacterial rate of 92 to 96%, and a deodorization rate of 9%.
The antifungal resistance is extremely high as 1 to 94%, and the fungicide resistance is in the range of medium to high rate of 2 to 3, and the repellent rate showing insect repellency to sanitary pests such as fleas and ticks is also extremely high as 90 to 93%. Was found to be high.

【0022】そして、前記各複合セラミックスA〜Gの
水素イオン濃度は、前記のように200℃〜500℃の
仮焼温度で焼成されているので、表3に示すようにpH
8.1〜8.9で非常に安定したアルカリ性状を呈し、
水素イオン濃度の経時変化がない。更に、これら複合セ
ラミックスはこれを構成する単一成分の各セラミックス
が保有する遠赤外線放射によって、前記各セラミックス
間の粒間(異なるセラミックスとの間)に電界エネルギ
ー(陽イオン)を発生する機能を有する複合セラミック
スになる。前記複合セラミックスがアルカリ性状を呈す
るのは、その焼成加工中に不純物がガス化されるので、
単一成分のセラミックスよりもアルカリ性に移行するか
らである。
The hydrogen ion concentration of each of the composite ceramics A to G is set at a temperature of 200 to 500 ° C. as described above.
In 8.1 to 8.9, it shows very stable alkaline properties,
There is no change with time of the hydrogen ion concentration. Further, these composite ceramics have a function of generating electric field energy (cations) between grains (between different ceramics) between the ceramics by far-infrared radiation possessed by the ceramics of a single component constituting the composite ceramics. It becomes a composite ceramic having. The reason that the composite ceramic exhibits an alkaline property is that impurities are gasified during the firing process,
This is because the transition to alkaline is more than that of a single component ceramic.

【0023】更に、前記表3から前記複合セラミックス
は、陽イオンを有する複合セラミックスであり、アルカ
リ域の水素イオンになり、1年以上という長時間に亘っ
て経時変化がなく安定しており、その結果該複合セラミ
ックスは遠赤外線放射特性を有する外に、抗菌性、脱臭
性、防カビ性および防虫性を兼ね備えていることが判っ
た。
Further, from Table 3 above, the composite ceramics are composite ceramics having cations, become hydrogen ions in an alkaline region, and are stable without a change over time for a long period of one year or more. As a result, in addition to having the far-infrared radiation characteristic, the composite ceramic was found to have antibacterial properties, deodorizing properties, fungicidal properties, and insect repellency.

【0024】すなわち、複合セラミックスの抗菌メカニ
ズムは、大腸菌、ブドウ状球菌等の一般生菌の表層
(壁)は陰イオンであって、そのため中性域(pH7.
0〜7.5)でしか生息が不可能であるが、前記複合セ
ラミックスの最大の特性として遠赤外線放射によって陽
イオンを発生するので、陰イオンである菌体の表層
(壁)が、前記複合セラミックスの陽イオンによって破
壊されると同時に、菌体蛋白質が変性して、呼吸困難と
なって死滅するのである。
That is, the antibacterial mechanism of the composite ceramics is that the surface layer (wall) of general living bacteria such as Escherichia coli and staphylococci is an anion, and is therefore in a neutral region (pH 7.0).
0 to 7.5), but the greatest characteristic of the composite ceramic is that cations are generated by far-infrared radiation. At the same time as being destroyed by the cations of the ceramics, the bacterial proteins are denatured and become dyspnea and die.

【0025】また、アンモニアおよび硫化水素等に対す
る複合セラミックスの脱臭メカニズムは、物理的吸着ま
たは化学的吸着等の一般的作用ではなく、遠赤外線放射
に基づく分解作用のため飽和状態にならないので、抗菌
力と同様に、脱臭力を半恒久的に有すると共に、毒性を
も有していない。
The deodorizing mechanism of the composite ceramics against ammonia, hydrogen sulfide and the like is not a general effect such as physical adsorption or chemical adsorption, but is not saturated because of a decomposition effect based on far-infrared radiation. As with, it has deodorizing power semi-permanently and has no toxicity.

【0026】更に、前記複合セラミックスは、遠赤外線
放射によって発生する陽イオンによってカビの発生また
は増殖を阻止し、防カビの機能を果たす。また、ノミや
ダニ等の衛生害虫も、前記一般生菌と同様、該複合セラ
ミックスの陽イオンによってその発生が阻止されると共
に、衛生害虫が寄り付かず防虫性を有する。
Furthermore, the composite ceramics has a function of preventing fungi by inhibiting the generation or growth of mold by cations generated by far-infrared radiation. In addition, as with the general living bacteria, the generation of hygiene pests such as fleas and ticks is prevented by the cations of the composite ceramics, and the insect pests do not come close to the sanitary pests.

【0027】次に、前記製造方法により製造された複合
セラミックスを、公知の発泡ポリウレタン製造工程中の
原材料を均一に混合するため、混合機に入れて混合攪拌
する混合工程において添加混入する。
Next, in order to uniformly mix the raw materials in the known foamed polyurethane production process, the composite ceramics produced by the above production method is added and mixed in a mixing step of mixing and stirring in a mixer.

【0028】すなわち、好ましくは発泡ポリウレタンの
主原料となるポリオール85〜88重量%に対して、助
剤となるフロン−11等の発泡剤1〜4重量%、メチレ
ンクロライト等の安定剤1〜2重量%、モノアミン等の
触媒剤1〜2重量%を添加混合し、更に前記複合セラミ
ックス5〜15重量%を添加混入することが好ましい
が、特に好ましくは前記主原料であるポリオール87重
量%に対して助剤となる発泡剤3重量%、安定剤1重量
%、触媒剤1重量%を添加混入し、更に前記複合セラミ
ックス8重量%を添加混入することが推奨される。
That is, based on 85 to 88% by weight of a polyol which is a main raw material of a foamed polyurethane, preferably 1 to 4% by weight of a blowing agent such as Freon-11 as an auxiliary agent and 1 to 4% by weight of a stabilizer such as methylene chloride. It is preferable to add and mix 2% by weight and 1 to 2% by weight of a catalyst agent such as a monoamine, and further add and mix 5 to 15% by weight of the composite ceramics, and particularly preferably to 87% by weight of the polyol as the main raw material. On the other hand, it is recommended to add and mix 3% by weight of a foaming agent, 1% by weight of a stabilizer, and 1% by weight of a catalyst, which are auxiliary agents, and 8% by weight of the composite ceramic.

【0029】そして、前記混合機において均一に混合攪
拌された前記複合セラミックスを添加混入した原材料を
公知の発泡ポリウレタンの製造に使用する発泡機に投入
して発泡させることにより、本発明発泡ポリウレタンを
製造する。そして、前記製造された発泡ポリウレタンは
用途に応じて切断される。
The foamed polyurethane of the present invention is produced by introducing the raw material into which the composite ceramics uniformly mixed and stirred in the mixer is added and mixed into a known foaming machine used for producing foamed polyurethane and foaming. I do. Then, the manufactured foamed polyurethane is cut according to the application.

【0030】前記本発明製造方法により製造された発泡
ポリウレタンと汎用発泡ポリウレタンの物性を比較した
表を表4に示す。なお、表4の本発明発泡ポリウレタン
の計測値は、前記各複合セラミックスA〜Gを、前記表
2に示す最も好ましい混合比率でそれぞれ前記原材料に
添加混入して製造した各発泡ポリウレタンの平均値を示
した。
Table 4 shows a comparison of the physical properties of the foamed polyurethane produced by the production method of the present invention and the general-purpose foamed polyurethane. The measured values of the foamed polyurethane of the present invention in Table 4 are the average values of the foamed polyurethanes produced by adding and mixing the composite ceramics A to G at the most preferable mixing ratios shown in Table 2 with the raw materials. Indicated.

【0031】[0031]

【表4】 [Table 4]

【0032】また、本発明製造方法により製造された発
泡ポリウレタンと汎用発泡ポリウレタンの遠赤外線放射
率、抗菌率、脱臭率、水素イオン濃度、防カビ抵抗、忌
避率及び熱伝導率の特性について測定した結果を表5に
示す。なお、表5の本発明発泡ポリウレタンの計測値
は、前記各複合セラミックスA〜Gを、前記表2に示す
特に好ましい混合比率でそれぞれ前記各材料に添加混入
して製造した各発泡ポリウレタンの平均値を示した。
Further, the properties of the far-infrared emissivity, antibacterial rate, deodorizing rate, hydrogen ion concentration, mold resistance, repellent rate and thermal conductivity of the foamed polyurethane produced by the production method of the present invention and the general-purpose foamed polyurethane were measured. Table 5 shows the results. The measured values of the foamed polyurethane of the present invention in Table 5 are the average values of the foamed polyurethanes produced by adding and mixing the composite ceramics A to G at the particularly preferable mixing ratios shown in Table 2 with the respective materials. showed that.

【0033】[0033]

【表5】 [Table 5]

【0034】前記表4の測定結果より、本発明製造方法
により製造された発泡ポリウレタンは、原材料に汎用発
泡ポリウレタンの材料にはない複合セラミックスが添加
されているため、汎用発泡ポリウレタンに比して物性的
にやや劣るが、その差は極めて僅かで、汎用発泡ポリウ
レタンと何等遜色ないことが判った。
From the measurement results in Table 4 above, it can be seen that the foamed polyurethane produced by the production method of the present invention has physical properties higher than that of the general-purpose foamed polyurethane, since the composite ceramics which is not present in the general-purpose foamed polyurethane is added to the raw material. Although slightly inferior, the difference was very small, and it was found that it was not inferior to general-purpose foamed polyurethane.

【0035】更に、前記表5の測定結果より、本発明製
造方法により製造された発泡ポリウレタンは、遠赤外線
放射率が93%で極めて高く、大腸菌に対して93%、
ブドウ状球菌に対して94%の高い抗菌率を有し、アン
モニアに対して89%、硫化水素に対して92%の高い
脱臭率を有し、更に水素イオン濃度も7.7でアルカリ
域に属し、防カビ抵抗も3で高率であり、然もノミやダ
ニ等の衛生害虫に対する防虫性を示す忌避率も93%で
高く、また熱伝導率も1.2Cal/sec・cm・℃
であった。すなわち、本発明製造方法によって得られた
発泡ポリウレタンは、遠赤外線放射特性を有すると共
に、抗菌性、脱臭性、防カビ性および防虫性を有するこ
とが判った。
Further, from the measurement results in Table 5 above, the foamed polyurethane produced by the production method of the present invention has an extremely high far-infrared emissivity of 93% and 93% against Escherichia coli.
It has a high antibacterial rate of 94% against staphylococci, has a high deodorization rate of 89% against ammonia and 92% against hydrogen sulfide, and has a hydrogen ion concentration of 7.7 in the alkaline region. It has a high rate of fungicide resistance of 3 and a high repellent rate of 93% against insect pests such as fleas and ticks, and a high thermal conductivity of 1.2 Cal / sec · cm · ° C.
Met. That is, it was found that the foamed polyurethane obtained by the production method of the present invention has far-infrared radiation properties, and also has antibacterial properties, deodorizing properties, fungicidal properties and insect repellency.

【0036】これに対して、汎用発泡ポリウレタンの遠
赤外線放射率は53%で前記本発明による発泡ポリウレ
タンよりもかなり放射率が低く、また水素イオン濃度は
8.7で前記本発明による発泡ポリウレタンよりもかな
りアルカリ域に属している。熱伝導率は1.5Cal/
sec・cm・℃で前記本発明による発泡ポリウレタン
に比べて熱伝導率がよい。しかしながら、その熱伝導率
の違いは極めて僅かである。而して、汎用発泡ポリウレ
タンには本発明製造方法により得られた発泡ポリウレタ
ンが有する遠赤外線放射特性はあまりなく、抗菌性、脱
臭性、防カビ性および防虫性は全く有していないことが
判った。
On the other hand, the far-infrared emissivity of the general-purpose foamed polyurethane is 53%, which is considerably lower than that of the foamed polyurethane of the present invention, and the hydrogen ion concentration is 8.7, which is lower than that of the foamed polyurethane of the present invention. Also belong to a considerably alkaline region. Thermal conductivity is 1.5 Cal /
It has better thermal conductivity at sec · cm · ° C. than the foamed polyurethane according to the present invention. However, the difference in the thermal conductivity is very small. Thus, it can be seen that general-purpose foamed polyurethane does not have much far-infrared radiation characteristics of the foamed polyurethane obtained by the production method of the present invention, and has no antibacterial property, deodorizing property, mold-proofing property and insect-proofing property at all. Was.

【0037】前記のような特性を有する本発明製造方法
によって得られた発泡ポリウレタンは、畳床材として使
用することにより、特に大腸菌やノミやダニ等の衛生害
虫の発生を阻止し、更にカビの発生も阻止することがで
きる。
By using the foamed polyurethane obtained by the production method of the present invention having the above-mentioned properties as a tatami flooring material, it particularly inhibits the occurrence of sanitary pests such as Escherichia coli, fleas and ticks, and furthermore, molds. Occurrence can also be prevented.

【0038】また、前記本発明製造方法によって得られ
た発泡ポリウレタンを断熱材あるいは壁下地材として使
用することにより、カビの発生を阻止すると共に、結露
の発生がほとんどない。
In addition, by using the foamed polyurethane obtained by the production method of the present invention as a heat insulating material or a wall base material, generation of mold is prevented and dew condensation hardly occurs.

【0039】更に、従来の汎用発泡ポリウレタンを用い
たマット、座布団や自動車の内装材が不衛生で衛生害虫
の発生やカビ発生の温床となっていたものが、前記本発
明製造方法によって得られた発泡ポリウレタンをマッ
ト、座布団の芯材あるいは自動車の内装材として用いる
ことにより、その抗菌性、脱臭性、防カビ性および防虫
性により、極めて衛生的で臭いもなく、衛生害虫やカビ
の発生も阻止され、然も遠赤外線の作用により人体の血
流の促進が図られる。
Furthermore, mats, cushions, and interior materials of automobiles using conventional general-purpose foamed polyurethane were unsanitary and had become a hotbed for the generation of hygiene pests and mold, and were obtained by the production method of the present invention. The use of foamed polyurethane as a mat, cushion core, or car interior material makes it extremely hygienic and odor-free due to its antibacterial, deodorant, mold-proof and insect-proof properties, and prevents the generation of sanitary insects and mold. In addition, the action of far infrared rays promotes the blood flow of the human body.

【0040】[0040]

【発明の効果】本発明は上述のようであるから、発泡ポ
リウレタンの製造工程中の原材料を混合機で混合攪拌す
る混合工程において、遠赤外線放射特性を有すると共
に、抗菌性、脱臭性、防カビ性および防虫性を有する複
合セラミックスの微粉末を添加混入して原材料と混合攪
拌し、然る後従来公知の発泡機に投入して発泡させるこ
とにより、遠赤外線放射特性を有すると共に、抗菌性、
脱臭性、防カビ性および防虫性を有する発泡ポリウレタ
ンが、極めて簡単に、且つ従来の発泡ポリウレタン製造
ラインをそのまま用いて製造できる。また、本発明製造
方法によって得られた発泡ポリウレタンは、遠赤外線放
射特性を有すると共に、抗菌性、脱臭性、防カビ性およ
び防虫性を有するので、畳床材として使用することによ
り、特に大腸菌やノミやダニ等の衛生害虫の発生を阻止
し、カビの発生も阻止することができ、また、断熱材あ
るいは壁下地材として使用することにより、カビの発生
を阻止すると共に、結露の発生がほとんどない。更に、
マットや座布団の芯材、あるいは自動車の内装材として
用いることにより、抗菌性、脱臭性を有するため衛生的
で臭いもなく、衛生害虫やカビの発生もなく、遠赤外線
の作用により人体の血流の促進が図られ、健康面におい
ても優れているという効果を有する。その他、本発明製
造方法によって得られた発泡ポリウレタンは、種々の用
途に使用することができ、遠赤外線放射特性、抗菌性、
脱臭性、防カビ性および防虫性を、発泡ポリウレタンの
用途に応じて夫々発揮することができる。
According to the present invention as described above, in the mixing step of mixing and stirring the raw materials in the production process of the foamed polyurethane with a mixer, the mixing material has far-infrared radiation properties, and is also antibacterial, deodorant, and mildew-proof. By adding and mixing the fine powder of composite ceramics having properties and insect repellency, mixing and stirring with the raw materials, and then throwing it into a conventionally known foaming machine and foaming, it has far-infrared radiation characteristics, and has antibacterial properties,
Foamed polyurethane having deodorizing properties, antifungal property and insect repellency can be produced very simply and using the conventional foamed polyurethane production line as it is. In addition, the foamed polyurethane obtained by the production method of the present invention has far-infrared radiation properties, and also has antibacterial properties, deodorization properties, fungicidal properties and insect repellency. It can prevent the generation of sanitary pests such as fleas and ticks, and can prevent the generation of mold. In addition, it can be used as a heat insulating material or wall base material to prevent the generation of mold and prevent the formation of dew. Absent. Furthermore,
When used as a core material for mats and cushions or as interior materials for automobiles, it has antibacterial properties and deodorizing properties, so it is hygienic and has no odor, does not generate sanitary pests and mold, and acts on human blood by the effect of far infrared rays. Is promoted, and has an effect of being excellent also in health. In addition, the polyurethane foam obtained by the production method of the present invention can be used for various applications, far-infrared radiation properties, antibacterial properties,
The deodorizing property, the antifungal property and the insect repelling property can be respectively exhibited depending on the use of the foamed polyurethane.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 75/04 C08L 75/04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 75/04 C08L 75/04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】粒径74μm以下の角閃石20〜30重量
%、マグネシア20〜30重量%、シリカ20〜30重
量%を主材とし、これに助材としてチタン20〜30重
量%を添加混合して得られた複合セラミックスを、発泡
ポリウレタンの製造工程中の原材料を混合機で混合攪拌
する混合工程において添加混入し、然る後発泡機に投入
して発泡させることを特徴とする遠赤外線放射特性を有
すると共に、抗菌性、脱臭性、防カビ性および防虫性を
有する発泡ポリウレタンの製造方法。
The main material is 20 to 30% by weight of amphibole having a particle size of 74 μm or less, 20 to 30% by weight of magnesia, 20 to 30% by weight of silica, and 20 to 30% by weight of titanium as an auxiliary material. Far-infrared radiation characterized in that the obtained composite ceramic is added and mixed in a mixing step of mixing and stirring the raw materials in the manufacturing process of the foamed polyurethane with a mixer, and then charged into a foaming machine and foamed. A method for producing a foamed polyurethane having properties and having antibacterial properties, deodorizing properties, fungicidal properties and insect repellency.
【請求項2】粒径74μm以下のチタン20〜30重量
%、クリストバル石20〜30重量%、蛇紋石20〜3
0重量%を主材とし、これに助材として亜鉛20〜30
重量%を添加混合して得られた複合セラミックスを、発
泡ポリウレタンの製造工程中の原材料を混合機で混合攪
拌する混合工程において添加混入し、然る後発泡機に投
入して発泡させることを特徴とする遠赤外線放射特性を
有すると共に、抗菌性、脱臭性、防カビ性および防虫性
を有する発泡ポリウレタンの製造方法。
2. 20 to 30% by weight of titanium having a particle size of 74 μm or less, 20 to 30% by weight of cristobalite, and 20 to 3 of serpentine.
0% by weight as the main material, and zinc as an auxiliary material
The composite ceramics obtained by adding and mixing by weight% is added and mixed in the mixing step of mixing and stirring the raw materials in the production process of the foamed polyurethane with the mixer, and then the mixture is put into the foaming machine to foam. A method for producing a foamed polyurethane having anti-bacterial properties, deodorizing properties, fungicidal properties and insect repellency, as well as having far-infrared radiation characteristics.
【請求項3】粒径74μm以下の角閃石20〜30重量
%、マグネシア40〜60重量%、チタン10〜15重
量%を主材とし、これに助材として亜鉛10〜15重量
%を添加混合して得られた複合セラミックスを、発泡ポ
リウレタンの製造工程中の原材料を混合機で混合攪拌す
る混合工程において添加混入し、然る後発泡機に投入し
て発泡させることを特徴とする遠赤外線放射特性を有す
ると共に、抗菌性、脱臭性、防カビ性および防虫性を有
する発泡ポリウレタンの製造方法。
3. An amphibole having a particle size of 74 .mu.m or less, comprising 20 to 30% by weight, magnesia 40 to 60% by weight, and titanium 10 to 15% by weight, and zinc 10 to 15% by weight as an auxiliary material. Far-infrared radiation characterized in that the obtained composite ceramic is added and mixed in a mixing step of mixing and stirring the raw materials in the manufacturing process of the foamed polyurethane with a mixer, and then charged into a foaming machine and foamed. A method for producing a foamed polyurethane having properties and having antibacterial properties, deodorizing properties, fungicidal properties and insect repellency.
【請求項4】粒径74μm以下のマグネシア20〜30
重量%、シリカ20〜30重量%、チタン20〜30重
量%を主材とし、これに助材として亜鉛20〜30重量
%を添加混合して得られた複合セラミックスを、発泡ポ
リウレタンの製造工程中の原材料を混合機で混合攪拌す
る混合工程において添加混入し、然る後発泡機に投入し
て発泡させることを特徴とする遠赤外線放射特性を有す
ると共に、抗菌性、脱臭性、防カビ性および防虫性を有
する発泡ポリウレタンの製造方法。
4. Magnesia 20 to 30 having a particle size of 74 μm or less.
% Of silica, 20 to 30% by weight of silica, and 20 to 30% by weight of titanium, and 20 to 30% by weight of zinc as an auxiliary material. In the mixing step of mixing and stirring the raw materials in a mixing machine, the mixture has a far-infrared radiation characteristic characterized by being added to a foaming machine and then foaming, and also has antibacterial properties, deodorizing properties, antifungal properties and A method for producing a foamed polyurethane having insect repellency.
【請求項5】粒径74μm以下のシリカ10〜15重量
%、クリストバル石20〜30重量%、蛇紋石40〜6
0重量%を主材とし、これに助材としてチタン10〜1
5重量%を添加混合して得られた複合セラミックスを、
発泡ポリウレタンの製造工程中の原材料を混合機で混合
攪拌する混合工程において添加混入し、然る後発泡機に
投入して発泡させることを特徴とする遠赤外線放射特性
を有すると共に、抗菌性、脱臭性、防カビ性および防虫
性を有する発泡ポリウレタンの製造方法。
5. A silica having a particle size of 74 μm or less, 10 to 15% by weight, cristobalite 20 to 30% by weight, serpentine 40 to 6%.
0% by weight as a main material, and titanium 10-1
A composite ceramic obtained by adding and mixing 5% by weight is
In the mixing step of mixing and stirring the raw materials in the manufacturing process of the foamed polyurethane with a mixing machine, the mixture is added and mixed, and then put into a foaming machine for foaming. A method for producing a foamed polyurethane having water resistance, mold resistance and insect repellency.
【請求項6】粒径74μm以下の角閃石20〜30重量
%、クリストバル石20〜30重量%、蛇紋石20〜3
0重量%を主材とし、これに助材としてチタン20〜3
0重量%を添加混合して得られた複合セラミックスを、
発泡ポリウレタンの製造工程中の原材料を混合機で混合
攪拌する混合工程において添加混入し、然る後発泡機に
投入して発泡させることを特徴とする遠赤外線放射特性
を有すると共に、抗菌性、脱臭性、防カビ性および防虫
性を有する発泡ポリウレタンの製造方法。
6. An amphibole having a particle size of 74 μm or less, 20 to 30% by weight, cristobalite 20 to 30% by weight, and serpentine 20 to 3%.
0% by weight as a main material, and titanium 20 to 3 as an auxiliary material.
The composite ceramic obtained by adding and mixing 0% by weight is
In the mixing step of mixing and stirring the raw materials in the manufacturing process of the foamed polyurethane with a mixing machine, the mixture is added and mixed, and then put into a foaming machine for foaming. A method for producing a foamed polyurethane having water resistance, mold resistance and insect repellency.
【請求項7】粒径74μm以下の角閃石20〜30重量
%、マグネシア20〜30重量%、シリカ20〜30重
量%を主材とし、これに助材として亜鉛20〜30重量
%を添加混合して得られた複合セラミックスを、発泡ポ
リウレタンの製造工程中の原材料を混合機で混合攪拌す
る混合工程において添加混入し、然る後発泡機に投入し
て発泡させることを特徴とする遠赤外線放射特性を有す
ると共に、抗菌性、脱臭性、防カビ性および防虫性を有
する発泡ポリウレタンの製造方法。
7. A mixture of 20 to 30% by weight of amphibole having a particle size of 74 μm or less, 20 to 30% by weight of magnesia, and 20 to 30% by weight of silica, and 20 to 30% by weight of zinc as an auxiliary material. Far-infrared radiation characterized in that the obtained composite ceramic is added and mixed in a mixing step of mixing and stirring the raw materials in the manufacturing process of the foamed polyurethane with a mixer, and then charged into a foaming machine and foamed. A method for producing a foamed polyurethane having properties and having antibacterial properties, deodorizing properties, fungicidal properties and insect repellency.
JP35557996A 1996-12-24 1996-12-24 Process for producing foamed polyurethane having far-infrared radiation properties and having antibacterial, deodorant, mold-proof and insect-proof properties Expired - Lifetime JP2873215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35557996A JP2873215B2 (en) 1996-12-24 1996-12-24 Process for producing foamed polyurethane having far-infrared radiation properties and having antibacterial, deodorant, mold-proof and insect-proof properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35557996A JP2873215B2 (en) 1996-12-24 1996-12-24 Process for producing foamed polyurethane having far-infrared radiation properties and having antibacterial, deodorant, mold-proof and insect-proof properties

Publications (2)

Publication Number Publication Date
JPH10182871A true JPH10182871A (en) 1998-07-07
JP2873215B2 JP2873215B2 (en) 1999-03-24

Family

ID=18444708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35557996A Expired - Lifetime JP2873215B2 (en) 1996-12-24 1996-12-24 Process for producing foamed polyurethane having far-infrared radiation properties and having antibacterial, deodorant, mold-proof and insect-proof properties

Country Status (1)

Country Link
JP (1) JP2873215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108314771A (en) * 2018-03-27 2018-07-24 叶陈瑶 A kind of high-elastic antibiotic property polyurathamc and its preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108314771A (en) * 2018-03-27 2018-07-24 叶陈瑶 A kind of high-elastic antibiotic property polyurathamc and its preparation method and application
CN108314771B (en) * 2018-03-27 2021-02-02 得创热塑性聚氨酯(东莞)有限公司 High-elasticity antibacterial foamed polyurethane and preparation method and application thereof

Also Published As

Publication number Publication date
JP2873215B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
BRPI0610153A2 (en) silver based inorganic antimicrobial agent, and antimicrobial product.
EP2208420A1 (en) Silver-containing inorganic antibacterial
KR20120028913A (en) Silver-based inorganic antibacterial agent and method for producing same, and antibacterial-treated product
JP5092327B2 (en) Silver inorganic antibacterial agent
JP4893184B2 (en) Silver inorganic antibacterial agent
JP2873215B2 (en) Process for producing foamed polyurethane having far-infrared radiation properties and having antibacterial, deodorant, mold-proof and insect-proof properties
KR100833453B1 (en) Moldings being beneficial to human bodies by comprising a silver nano-particles and the method for making them
JPH09209225A (en) Production of processed yarn spun by blending or twisting milk protein fiber with composite rayon fiber having antimicrobial, deodorizing and insecticidal properties and further having far infrared light radiation characteristic
JP2836020B2 (en) Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun.
JPH10167803A (en) Composite ceramics having antibacterial, deodorizing, antimold and mothproof properties as well as far infrared ray radiating characteristic and its production
KR20080066118A (en) Method for manufacturing plastic products based on ethylene vinyl acetate
JPH1136189A (en) Japanese paper having far infrared radiation characteristic, antimicrobial, deodorizing, mildewproof and insect repellent property and further antistatic property and its production
JP2822321B2 (en) Composite ceramics having anti-bacterial, deodorizing, mold-proofing and insect-proofing properties while having far-infrared radiation characteristics, and method for producing the same
KR102104627B1 (en) Manufacturing method of functional ceramic block and functional ceramic block produced by the same
JP2579600B2 (en) Method for producing rayon having antibacterial properties and deodorizing properties and having far-infrared radiation characteristics
JP2879024B2 (en) A method for producing rayon having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect
JPH1143896A (en) Wastern style paper having antistatic effect as well as far-infrared radiation, antimicrobial, deodorant, fungicidal and insecticidal properties and its production
JPH075354B2 (en) Deodorizing and antibacterial composite ceramics and method for producing the same
JPH0565188B2 (en)
JPH10249807A (en) Wood provided with far-infrared ray radiation characteristic, antibacterial property, deodorizing property, mildewproofing property and tick-proofing property and its processing method
JP2600546B2 (en) Toilet bowl
KR100679121B1 (en) PU Sponge contained Aluminium hydroxide-Manganese Nano Mixture and Process for Preparation of the Same
KR19980065136A (en) Molding composition for dipping rubber products
JP2847633B2 (en) Wood chips having far-infrared radiation properties and having antibacterial, deodorant, mold-proof and insect-proof properties, and a processing method therefor
JP2799985B2 (en) Pillow pat