JPH10182840A - Production of fine particles and apparatus - Google Patents

Production of fine particles and apparatus

Info

Publication number
JPH10182840A
JPH10182840A JP35686496A JP35686496A JPH10182840A JP H10182840 A JPH10182840 A JP H10182840A JP 35686496 A JP35686496 A JP 35686496A JP 35686496 A JP35686496 A JP 35686496A JP H10182840 A JPH10182840 A JP H10182840A
Authority
JP
Japan
Prior art keywords
liquid
fine particles
droplets
coagulating
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35686496A
Other languages
Japanese (ja)
Other versions
JP3677364B2 (en
Inventor
Yasuo Morimoto
恭生 森本
Noriaki Tsukuda
憲明 築田
Hidenao Saito
秀直 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rengo Co Ltd
Original Assignee
Rengo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rengo Co Ltd filed Critical Rengo Co Ltd
Priority to JP35686496A priority Critical patent/JP3677364B2/en
Publication of JPH10182840A publication Critical patent/JPH10182840A/en
Application granted granted Critical
Publication of JP3677364B2 publication Critical patent/JP3677364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process and apparatus for producing fine particles,. having a high sphericity and a narrow particle size distribution by solidifying fine liquid drops, formed by a centrifugal force, without deforming them. SOLUTION: In an apparatus A for producing fine particles, a liquid material (a) for forming particles is fed into a rotator 2 through a pump 1, and liquid drops are formed and scattered by the centrifugal force generated by rotating a rotating shaft 3. The rotator 2 is surrounded by a cylindrical wall 4, and a cyclic reservoir 5 for storing a solidifying liquid (b) is installed at the top of the outside of the wall 4. The top of the reservoir 5 is open to form an outlet 6, and the solidifying liquid (b) fed by circulation with a pump 7 is allowed to overflow and thereby to naturally fall inside the wall 4 by the gravity. The bottom of the wall 4 is made in a funnel shape, and a reticular filter 9 for recovering the fine particles 8 by separating them from the solidifying liquid (b) disposed below the bottom of the wall 4 and in a lower part of a recovering tank 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、回転体から遠心
力で飛散した液滴を凝固して微粒子を製造する方法およ
び微粒子の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine particles by coagulating droplets scattered from a rotating body by centrifugal force, and an apparatus for producing fine particles.

【0002】[0002]

【従来の技術】一般に、回転ディスクを用いて液体を微
粒子化することが知られており、この方法は金属や高分
子材料を微粒子化する場合に応用されている。
2. Description of the Related Art In general, it is known to use a rotating disk to atomize a liquid, and this method is applied to the case of atomizing a metal or a polymer material.

【0003】たとえば、熱可塑性樹脂などからなる微粒
子の製造方法として、溶融状態の樹脂材料を回転体の上
壁面に供給して、この回転体の縁端から液滴として分散
させ、分散した液滴を冷気体と接触させて冷却固化させ
る方法が特開昭59−172522号公報に記載されて
いる。
[0003] For example, as a method for producing fine particles made of a thermoplastic resin or the like, a molten resin material is supplied to the upper wall surface of a rotating body, and dispersed as droplets from the edge of the rotating body. JP-A-59-172522 describes a method of contacting with a cold gas to cool and solidify.

【0004】また、金属粉末の製造方法として、回転す
るドラムの内周面に冷却液を供給して、一定の遠心力で
旋回する所要層厚の液層を形成し、前記ドラム内に噴出
された液滴(溶融金属)を前記液層で捕捉して冷却凝固
させる方法が特開平4−337015号公報に記載され
ている。
[0004] As a method for producing metal powder, a cooling liquid is supplied to the inner peripheral surface of a rotating drum to form a liquid layer having a required layer thickness which is swirled by a constant centrifugal force, and is jetted into the drum. Japanese Patent Application Laid-Open No. 4-337015 describes a method in which a droplet (molten metal) captured by the liquid layer is cooled and solidified.

【0005】また、金属粉末の製造方法として、筒体の
内周面に沿って接線方向から冷却液を噴出供給して旋回
する冷却液層を形成し、前記筒体に噴出された液滴(溶
融金属)を前記液層で冷却凝固する方法が、特開平4−
329806号公報に記載されている。
In addition, as a method for producing metal powder, a cooling liquid layer is formed by spraying and supplying a cooling liquid from a tangential direction along an inner peripheral surface of a cylindrical body to form a swirling cooling liquid layer. A method of cooling and solidifying molten metal) in the liquid layer is disclosed in
No. 329806.

【0006】ところで、このようにして製造される微粒
子は、その用途によっては所要の形状、具体的には真球
状の微粒子に形成すると共に所要の粒度範囲で微粒子の
収率を高めることが要求されている。
[0006] By the way, the fine particles produced in this manner are required to be formed into a desired shape, specifically a true spherical fine particle, and to increase the yield of the fine particles in a required particle size range depending on the use. ing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の微粒子の製造方法のうち、空気などの冷気流中
で冷却凝固する方法では、形成された液滴が高速の冷気
流中で二次分裂を起こしやすく、そのときに粒子内に空
気が混入して強度が低下したり粒度分布が大きくなるな
どの問題がある。
However, among the above-mentioned conventional methods for producing fine particles, in the method of cooling and solidifying in a cold airflow such as air, the formed droplets are secondarily split in a high-speed cold airflow. At that time, there is a problem in that air is mixed into the particles and the strength is reduced or the particle size distribution is increased.

【0008】一方、回転するドラムの内周面に遠心力で
凝固液層を形成し、この凝固液層にドラム内に噴出され
た液滴を捕捉して凝固させる微粒子の製造方法、および
筒体の内面に沿って接線方向から凝固液を噴出し、前記
内面に沿って旋回する冷却液層を形成し、この冷却液層
に液滴を捕捉して凝固させる微粒子の製造方法は、いず
れも高速で旋回する液層中で液滴を微細に分断すること
によって微粒子を製造する方法であるから、本願の発明
とは目的が異なる技術であり、これにより形成される微
粒子は粒径も形状も非常にバラツキの大きいものにな
る。
On the other hand, a method for producing fine particles for forming a coagulation liquid layer on the inner peripheral surface of a rotating drum by centrifugal force, capturing droplets jetted into the drum in the coagulation liquid layer and coagulating the same, and a cylindrical body The method of producing fine particles, in which a coagulating liquid is ejected from the tangential direction along the inner surface of the liquid and forms a cooling liquid layer that swirls along the inner surface, and the liquid droplets are captured and coagulated by the cooling liquid layer, are all high-speed. This is a method for producing fine particles by finely dividing liquid droplets in a liquid layer swirling in the above, so the technology is different from the purpose of the invention of the present application. Will have large variations.

【0009】このような従来の微粒子の製造方法では、
粒子の真球度や粒度分布の要求に対して容易に対応する
ことができず、通常は粒度分布の小さいものを得るため
に篩を用いて分級する操作が必要になり、そのために製
造工程の増加や歩留りの低下などの問題が起こり、製造
コストを高騰させることになる。また、真球状の微粒子
だけを分取することは工業的にはほとんど不可能に近い
と考えられる。
In such a conventional method for producing fine particles,
It is not possible to easily respond to the requirements of particle sphericity and particle size distribution, and usually it is necessary to classify using a sieve in order to obtain a particle having a small particle size distribution. Problems such as an increase and a decrease in the yield occur, which increases the manufacturing cost. In addition, it is considered that it is almost impossible industrially to collect only spherical particles.

【0010】本願の発明者らは微粒子の真球度や粒度分
布を向上させる理想的な方法として、水平方向に飛散し
た液滴を自然落下させ、上面開口の凝固槽で捕捉する方
法を考えたが、凝固槽の液面の表面積が非常に大きくな
って微粒子の回収が困難であり、これでは実用的な製造
はできない。また、そのような製造方法や装置では、凝
固液の液質の安定化のための凝固液の循環も困難であ
る。
[0010] The inventors of the present application have considered a method of naturally falling droplets scattered in the horizontal direction and capturing the droplets in a coagulation tank having an upper surface opening as an ideal method for improving the sphericity and particle size distribution of the fine particles. However, the surface area of the liquid surface of the coagulation tank is extremely large, and it is difficult to collect the fine particles. In such a manufacturing method and apparatus, it is also difficult to circulate the coagulating liquid for stabilizing the liquid quality of the coagulating liquid.

【0011】そこで、この発明の課題は上記した問題点
を解決して、遠心力で形成された微小な液滴を、その形
状を損なうことなく凝固し、真球度が高く粒度分布の小
さい微粒子を製造できる方法を提供することであり、ま
た前記の製造方法に使用する装置を可及的に簡易な構造
で小型化することである。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to coagulate fine droplets formed by centrifugal force without impairing the shape thereof, and to provide fine particles having a high sphericity and a small particle size distribution. And to reduce the size of the apparatus used in the above-mentioned manufacturing method with a structure as simple as possible.

【0012】また、微粒子の製造装置に係る発明につい
ては、真球度が高く粒度分布の小さい微粒子を連続して
効率よく製造することを課題としている。
Another object of the invention relating to an apparatus for producing fine particles is to continuously and efficiently produce fine particles having a high sphericity and a small particle size distribution.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、液状の粒子形成材料を回転体
に供給し、この回転体から遠心力で飛散した液滴を凝固
させて微粒子を製造する方法において、前記回転体を囲
むように配置した筒体の上部に前記液滴の凝固液を貯留
する液溜槽を設け、この液溜槽から凝固液を筒体の内面
に沿わせて周方向にほぼ均等な流量で流出させ、前記内
面に沿って自然落下する凝固液流中に前記液滴を捕捉し
て凝固させる微粒子の製造方法としたのである。
In order to solve the above-mentioned problems, in the present invention, a liquid particle forming material is supplied to a rotating body, and droplets scattered from the rotating body by centrifugal force are solidified to form fine particles. In the method of manufacturing, a liquid storage tank for storing the coagulation liquid of the droplet is provided on an upper part of a cylinder arranged so as to surround the rotating body, and the coagulation liquid is supplied from the liquid storage tank along the inner surface of the cylinder. This is a method of producing fine particles which are caused to flow out at a substantially uniform flow rate in the direction, and to capture and coagulate the droplets in a coagulating liquid flow which naturally falls along the inner surface.

【0014】また、液滴を遠心力で飛散させる回転体の
周囲を囲むように筒体を設け、この筒体の上部に前記液
滴の凝固液を貯留し筒体内側に凝固液を流出させる液溜
槽を設け、この液溜槽の流出口は前記凝固液が筒体の内
面に沿って周方向にほぼ均等な流量で自然落下するよう
に配置形成し、微粒子回収工程を経た凝固液を前記液溜
槽へ戻す凝固液循環手段を備えた微粒子の製造装置とし
たのである。
Further, a cylinder is provided so as to surround a rotating body which scatters droplets by centrifugal force, and the coagulation liquid of the droplets is stored in the upper part of the cylinder, and the coagulation liquid flows out to the inside of the cylinder. A liquid storage tank is provided, and an outlet of the liquid storage tank is arranged and formed such that the coagulation liquid naturally falls at a substantially uniform flow rate in the circumferential direction along the inner surface of the cylindrical body. The apparatus for producing fine particles was provided with a coagulating liquid circulating means for returning to the storage tank.

【0015】微粒子の製造方法に係る発明では、凝固液
流は壁面の内側に沿って流下する穏やかな流れであり、
各水平横断面で均一な厚みを有し、例えば流れの性質を
示すパラメーターであるレイノルズ数で示すと、100
00以下の層流に近い流れが好ましい。
In the invention relating to the method for producing fine particles, the coagulating liquid flow is a gentle flow flowing down along the inside of the wall surface,
Each of the horizontal cross sections has a uniform thickness. For example, when expressed by a Reynolds number which is a parameter indicating the flow property, 100
A flow close to laminar flow of 00 or less is preferred.

【0016】また、凝固液は、液溜槽から流出した当初
は初速度が0か、または開口部の配置に応じた深さによ
り極めて小さい初速度で流出し、流出当初は重力加速度
によって筒体の内面に沿って流下する距離に応じて流速
を増していくが、筒体内面との抵抗、流体固有の粘性に
応じて定常状態に達するので、ほぼ定速で流下すること
が可能である。さらに速度を遅くしたい場合には、筒体
内面の設置角度を任意に変えることもできる。こうして
得られた凝固液流では、その任意の高さで液滴を捕捉で
き、捕捉された液滴は飛散時の表面張力で形成される球
形状が殆ど変化しない状態で凝固することになり、真球
度が高く粒度分布が小さい微粒子を製造できる。
The coagulation liquid flows out of the liquid reservoir at an initial velocity of 0 or at an extremely low initial velocity depending on the depth according to the arrangement of the openings. The flow velocity increases in accordance with the distance flowing down along the inner surface, but reaches a steady state in accordance with the resistance to the inner surface of the cylinder and the inherent viscosity of the fluid, so that it can flow down at a substantially constant speed. To further reduce the speed, the installation angle of the inner surface of the cylinder can be arbitrarily changed. In the solidified liquid flow thus obtained, droplets can be captured at any height, and the captured droplets solidify in a state where the spherical shape formed by the surface tension at the time of scattering hardly changes, Fine particles having a high sphericity and a small particle size distribution can be produced.

【0017】また、微粒子の製造装置に係る発明では、
回転体を囲む筒体上部に設けた液溜槽の流出口を前記凝
固液が筒体の内面に沿って周方向にほぼ均等な流量で自
然落下するように配置形成する。そのような流出口の具
体的な形態としては、筒体を取り囲む溝状の液溜槽と
し、その上面開口を流出口として凝固液を壁面の内側に
オーバーフローさせるものや、筒体を取り囲むリング状
の液溜槽の下部に筒体内面に開口する周溝状のスリット
を形成したものであってもよい。
In the invention according to the apparatus for producing fine particles,
The outlet of the liquid storage tank provided at the upper part of the cylinder surrounding the rotating body is arranged and formed such that the coagulation liquid naturally falls along the inner surface of the cylinder at a substantially uniform flow rate in the circumferential direction. As a specific form of such an outlet, a groove-shaped liquid storage tank surrounding the cylindrical body, an upper surface opening of which allows the coagulation liquid to overflow to the inside of the wall surface, or a ring-shaped liquid surrounding the cylindrical body is used. A peripheral groove-shaped slit that opens to the inner surface of the cylinder may be formed in the lower part of the liquid reservoir.

【0018】このような微粒子の製造装置についても、
前記した微粒子の製造方法に係る発明と同様に、凝固液
流は流出後に定常状態になり、その後は定速で流下する
ので、凝固液流の任意の高さで液滴を捕捉でき、捕捉さ
れた液滴は飛散時の表面張力で形成される球形状が殆ど
変化しない状態で凝固することになり、また凝固液は循
環手段により繰り返し使用できるので、真球度が高く粒
度分布が小さい微粒子を連続して効率よく製造できる。
[0018] Such an apparatus for producing fine particles,
As in the invention relating to the method for producing fine particles described above, the coagulating liquid flow becomes a steady state after flowing out, and thereafter flows down at a constant speed, so that the liquid droplets can be captured at any height of the coagulating liquid flow, and are captured. The droplets solidify in a state where the spherical shape formed by the surface tension at the time of scattering hardly changes, and since the coagulating liquid can be repeatedly used by the circulating means, fine particles having a high sphericity and a small particle size distribution are used. It can be manufactured continuously and efficiently.

【0019】[0019]

【発明の実施の形態】この発明に用いる液滴の材料は、
セルロース、キトサンなどの天然多糖類や合成樹脂その
他の高分子材料、または金属を含む周知の成形用材料を
適宜に採用したものであり、溶液または加熱による溶融
液の状態か、またはスラリー、エマルジョンなどの液状
であって、液を構成する成分が限定されたものではな
い。
DETAILED DESCRIPTION OF THE INVENTION The material of the droplet used in the present invention is as follows.
Well-known molding materials including cellulose, natural polysaccharides such as chitosan, synthetic resins and other high-molecular materials, or metals, are appropriately adopted, in the form of solutions or melts by heating, or slurries, emulsions, etc. And the constituents of the liquid are not limited.

【0020】また、この発明に用いる回転体は、液状の
粒子形成材料を球状の液滴にして遠心力で飛散する機能
があればよく、特定の構造からなるものに限定されず、
例えば周知の回転ディスクや回転吐出孔などを採用する
ことができる。上記の回転ディスクは、微粒子の原料の
液状の粒子形成材料が回転するディスクの中心に供給さ
れ、回転するディスクの表面に沿って前記液体が均一な
厚みでフィルム状に展開し、ディスクの周縁から遠心力
で滴状に分裂して微小液滴を飛散させるものである。
Further, the rotating body used in the present invention is not limited to the one having a specific structure, as long as it has a function of turning the liquid particle forming material into spherical liquid droplets and scattering by centrifugal force.
For example, a well-known rotating disk, a rotating discharge hole, or the like can be employed. In the above-mentioned rotating disk, a liquid particle forming material as a raw material of fine particles is supplied to the center of the rotating disk, and the liquid spreads in a film shape with a uniform thickness along the surface of the rotating disk, from the periphery of the disk. It breaks down into droplets by centrifugal force and scatters small droplets.

【0021】また、回転吐出孔は、中空円盤型の回転容
器の周壁に多数の貫通孔を形成するか、または前記周壁
に貫通させてノズルを取付け、回転容器内に微粒子原料
の液状の粒子形成材料を供給すると共に回転容器を回転
させ、その際に貫通孔またはノズルから遠心力により凝
固液を吐出させて液滴を形成するものである。
The rotary discharge hole is formed by forming a large number of through holes in the peripheral wall of a hollow disk-shaped rotary container, or by attaching a nozzle through the peripheral wall to form a liquid particle of a fine particle material in the rotary container. The material is supplied and the rotating container is rotated. At this time, the coagulating liquid is discharged from the through hole or the nozzle by centrifugal force to form droplets.

【0022】これらの液滴形成手段によると、形成され
た微小液滴が空中を飛散し、凝固液に接するまでの間に
微小液滴は表面張力によって球状になる。この場合、回
転体と凝固液流との距離を充分確保することにより、飛
散する液滴を表面張力により球形状とする。
According to these droplet forming means, the formed fine droplet scatters in the air and becomes spherical due to surface tension before coming into contact with the coagulating liquid. In this case, by ensuring a sufficient distance between the rotating body and the coagulating liquid flow, the scattered droplets are formed into a spherical shape by surface tension.

【0023】凝固液は、液滴の原料に対応して適宜に変
更されるものであり、特に成分を限定したものではな
い。例えば、セルロース粒子の形成材料であるビスコー
ス用の凝固液としては、塩酸などの酸性溶液を使用する
ことができ、キトサン溶液用の凝固液としては水酸化ナ
トリウム水溶液などのアルカリ性溶液を使用することが
できる。また、熱可塑性樹脂や金属粒子を冷却固化する
ためには、メタノールなどを用いることもできる。
The coagulation liquid is appropriately changed according to the raw material of the liquid droplets, and the components are not particularly limited. For example, as a coagulating liquid for viscose which is a material for forming cellulose particles, an acidic solution such as hydrochloric acid can be used, and as a coagulating liquid for a chitosan solution, an alkaline solution such as an aqueous sodium hydroxide solution is used. Can be. To cool and solidify the thermoplastic resin or metal particles, methanol or the like can be used.

【0024】凝固手段は、回転体を囲むように配置した
筒体の内面に沿って凝固液を重力により自然落下させる
ことにより、粒子を変形することなく凝固できるもので
あり、前記液滴が凝固液に接触した時に突き抜けること
のない厚さの穏やかな層流を形成するものである。たと
え極めて速やかに凝固する凝固液を採用した場合でも、
回転体の周囲で凝固液が高速で対流していたり、乱流に
なっているものでは、液滴が凝固するまでに変形したり
分裂することになるので好ましくない。
The coagulating means is capable of coagulating the particles without deformation by causing the coagulating liquid to fall naturally by gravity along the inner surface of the cylindrical body arranged so as to surround the rotating body. It forms a gentle laminar flow with a thickness that does not penetrate when it comes into contact with the liquid. Even when using a coagulating liquid that solidifies very quickly,
If the coagulating liquid is convective at high speed around the rotating body or is turbulent, the liquid droplets are undesirably deformed or broken before solidifying.

【0025】このように液滴が凝固するまでに変形や分
裂を起こさない凝固液の流速は、使用する粒子形成材料
の種類、粘度、密度(比重)、固形分濃度、組成などの
性状および凝固液との組み合わせによって異なる。いず
れの条件でも、重力を利用して充分な厚みをもった凝固
液の緩やかな液膜を形成してやれば、微小液滴の形状を
損なうことなく凝固させることができる。
As described above, the flow rate of the coagulating liquid that does not cause deformation or division until the liquid drops solidifies depends on the type, viscosity, density (specific gravity), solid content concentration, composition, etc. of the particle forming material to be used and solidification. Depends on the combination with the liquid. Under any conditions, if a gradual liquid film of the coagulation liquid having a sufficient thickness is formed by utilizing gravity, the microdroplets can be coagulated without impairing the shape.

【0026】図1に示す第1実施形態の微粒子の製造装
置は、液状の粒子形成材料aをポンプ1を介して回転体
2に供給し、回転軸3に入力される回転によって遠心力
を働かせて液滴を飛散させ、回転体2の周囲を囲むよう
に筒体の壁面4を設け、壁面4の上部外側には凝固液b
を貯留する環状の液溜槽5を設けると共に、液溜槽5の
上面を開放して流出口6とし、ポンプ7で供給される凝
固液bをオーバーフローさせて壁面4の内側に沿って自
然落下するようにし、壁面4の下部は漏斗状に形成して
その下方には微粒子8を凝固液bから分離し、回収する
網状の濾過部材9を回収槽10の下部に設けた微粒子の
製造装置Aである。
In the apparatus for producing fine particles according to the first embodiment shown in FIG. 1, a liquid particle forming material a is supplied to a rotating body 2 via a pump 1 and a centrifugal force is applied by rotation inputted to a rotating shaft 3. The wall surface 4 of the cylindrical body is provided so as to surround the periphery of the rotating body 2 with the coagulating liquid b
An annular liquid reservoir 5 for storing the liquid is provided, and the upper surface of the liquid reservoir 5 is opened to form an outlet 6, so that the coagulating liquid b supplied by the pump 7 overflows and falls naturally along the inside of the wall surface 4. The lower part of the wall surface 4 is formed in a funnel shape, and below it is a fine particle manufacturing apparatus A provided with a mesh filter member 9 provided below the collecting tank 10 for separating and collecting the fine particles 8 from the coagulating liquid b. .

【0027】この装置では、回収槽10の下部と液溜槽
5とはポンプ7を介した流路11で連結しており、凝固
液bを循環して使用する構成である。また、濾過部材9
の上に分離された微粒子8は、分離後に回収槽10から
回収できるものである。濾過部材9を形成する材料とし
ては、ポリ塩化ビニリデンなどが好ましいものとして挙
げられる。
In this apparatus, the lower part of the recovery tank 10 and the liquid storage tank 5 are connected by a flow path 11 via a pump 7, so that the coagulation liquid b is circulated and used. Also, the filtering member 9
The fine particles 8 separated on the substrate can be recovered from the recovery tank 10 after the separation. As a material for forming the filtering member 9, polyvinylidene chloride and the like are preferable.

【0028】図2に示す第2実施形態の微粒子の製造装
置Bは、上記した第1実施形態の装置における上面開放
の液溜槽5に代えて、内周縁部分に下向きに開口する周
溝状のスリット12を形成した環状の液溜槽13とし、
スリット12より凝固液bを壁面4の内側に沿って自然
落下するようにしたこと以外は第1実施形態と全く同様
に構成したものである。
The apparatus B for producing fine particles according to the second embodiment shown in FIG. 2 has a circumferential groove-like shape which opens downward at the inner peripheral portion instead of the liquid reservoir 5 having the upper surface open in the apparatus according to the first embodiment. An annular liquid reservoir 13 having a slit 12 formed therein,
The configuration is exactly the same as that of the first embodiment except that the coagulation liquid b naturally falls along the inside of the wall surface 4 from the slit 12.

【0029】上記したような実施形態の微粒子の製造装
置を用いて、遠心力で形成された球状の微小液滴を、そ
の形状を損なうことなく凝固させ、真球度が高く粒度分
布の小さい微粒子を連続的に製造できる。
Using the apparatus for producing fine particles of the above-described embodiment, spherical fine droplets formed by centrifugal force are coagulated without impairing the shape, and fine particles having a high sphericity and a small particle size distribution are obtained. Can be manufactured continuously.

【0030】[0030]

【実施例】【Example】

〔実施例1〕図1にて説明した第1実施形態の装置を用
いて微粒子を製造した。なお、回転体は、図3に示すよ
うに、回転軸3に取付けられた円筒状のステンレス鋼製
の回転容器14(直径100mm、高さ200mm)で
あって、その上面に液体が供給される直径50mmの穴
15を有し、周側面には直径0.3mmの孔16が等間
隔で1620個形成されているものを使用した。
Example 1 Fine particles were produced using the apparatus of the first embodiment described with reference to FIG. As shown in FIG. 3, the rotating body is a cylindrical stainless steel rotating container 14 (diameter 100 mm, height 200 mm) attached to the rotating shaft 3, and the liquid is supplied to the upper surface thereof. A hole having a hole 15 having a diameter of 50 mm and 1620 holes 16 having a diameter of 0.3 mm formed at equal intervals on a peripheral side surface was used.

【0031】そして、回転容器14にビスコース(セル
ロース濃度8.5重量%、アルカリ濃度5.3重量%)
を供給し、回転数800rpmで回転させた。また、回
収槽10には2Nの塩酸を収容し、ポンプ7で270リ
ットル/分の流量で液溜槽5に供給して循環させ、すな
わち同流量を筒体の壁面4の上縁から溢れさせ、流下す
る液面に飛散した液滴を当てて凝固液中に捕捉させ、流
下中に凝固させた後、濾過部材9上に分離されたものを
回収した。
Then, viscose (cellulose concentration: 8.5% by weight, alkali concentration: 5.3% by weight) is added to the rotary container.
And rotated at 800 rpm. The recovery tank 10 contains 2N hydrochloric acid and is supplied to the liquid storage tank 5 at a flow rate of 270 liters / minute by the pump 7 and circulated. That is, the same flow rate overflows from the upper edge of the wall surface 4 of the cylindrical body. The scattered liquid droplets were applied to the surface of the flowing liquid to be captured in the coagulating liquid, solidified in the flowing liquid, and collected on the filtering member 9.

【0032】回収されたセルロース微粒子に脱硫、漂
白、水洗処理を行なった。得られたセルロース微粒子の
粒度分布をレーザー光散乱方式の粒度分布測定装置で測
定した結果、平均粒径が793μmであり、粒度分布は
ロージン・ラムラーの分布関数の式R(DP)=100・ex
p(−bDP n ) におけるnの値が4.76(小数第3位
四捨五入)であった。なお、分布関数の式におけるR
(DP)は、積算篩上重量%、DP は粒子径、b、nは定数
であり、log DP に対し log{log(100/R (DP)) }をプ
ロットし直線の勾配からn値を求めた。
[0032] The recovered cellulose fine particles were subjected to desulfurization, bleaching, and washing with water. As a result of measuring the particle size distribution of the obtained cellulose fine particles with a laser light scattering type particle size distribution analyzer, the average particle size was 793 μm, and the particle size distribution was determined by the Rosin-Rammler distribution function formula R (DP) = 100 · ex
The value of n in p (−bD P n ) was 4.76 (rounded to the first decimal place). Note that R in the distribution function equation
(DP) is the weight% on the integrated sieve, D P is the particle diameter, b and n are constants, log {log (100 / R (DP) )} is plotted against log D P and n The value was determined.

【0033】そして、得られたセルロース微粒子を篩い
で分級したところ、全ての粒子は網目710μmと85
0μmの湿式ふるいの間におさまった。
When the obtained cellulose fine particles were classified by a sieve, all the particles were found to have a mesh of 710 μm and a size of 85 μm.
Settled between 0 μm wet sieve.

【0034】また、図5に示すように、光学顕微鏡で粒
子形状を観察すると、全ての粒子が真球状であり、粒子
内部に空孔は観察されなかった。
As shown in FIG. 5, when the shape of the particles was observed with an optical microscope, all the particles were spherical and no pores were observed inside the particles.

【0035】〔実施例2〕第1実施形態の装置を用いて
微粒子を製造した。なお、回転体は、図4に示すように
回転軸3に取り付けられた円筒体のアクリル製樹脂製の
回転容器19(直径100mm、高さ40mm)であっ
て、その上面に液体が供給される直径50mmの穴17
を有し、周側面には内径0.4mmのノズル18が等間
隔で32本取り付けられているものを使用した。
Example 2 Fine particles were produced using the apparatus of the first embodiment. The rotating body is a cylindrical acrylic resin rotating container 19 (diameter 100 mm, height 40 mm) attached to the rotating shaft 3 as shown in FIG. 4, and the liquid is supplied to the upper surface thereof. Hole 17 with a diameter of 50 mm
A nozzle having 0.4 nozzles with an inner diameter of 0.4 mm attached to the peripheral side surface at equal intervals was used.

【0036】そして、回転容器19に実施例1で用いた
ビスコースを供給し、回転数1000rpmで回転させ
た。その後は、実施例1と全く同様にしてセルロース微
粒子を製造した。得られたセルロース微粒子の粒度分布
をレーザー光散乱方式の粒度分布測定装置で測定した結
果、平均粒径が504μmであり、粒度分布はロージン
・ラムラーの分布関数の式におけるnの値が4.69
(小数第3位四捨五入)であった。
Then, the viscose used in Example 1 was supplied to the rotating container 19 and rotated at 1,000 rpm. Thereafter, cellulose fine particles were produced in exactly the same manner as in Example 1. As a result of measuring the particle size distribution of the obtained cellulose fine particles using a laser light scattering type particle size distribution analyzer, the average particle size was 504 μm, and the particle size distribution was 4.69 in the Rosin-Rammler distribution function equation.
(Rounded to two decimal places).

【0037】〔実施例3〕第1実施形態の装置を用いて
微粒子を製造した。なお、回転体は、図4に示す実施例
2で用いたものと同じ形状のものを使用した。
Example 3 Fine particles were produced using the apparatus of the first embodiment. Note that the rotating body used had the same shape as that used in Example 2 shown in FIG.

【0038】そして、回転容器19にキトサン溶液(キ
トサン濃度7.5重量%、酢酸濃度10重量%in aq 、
B型粘度計で測定した20℃における粘度5250cp
s)を供給し、回転数1000rpmで回転させた。回
収槽10には2%の水酸化ナトリウムを収容して270
リットル/分の流量でポンプ7により液溜槽5に供給し
循環させ、筒体の壁面4の上縁から凝固液bを溢れさ
せ、飛散した液滴を凝固液b中に捕捉させ、キトサンを
凝固(固化)させた後、濾過部材9上から回収した。
Then, a chitosan solution (chitosan concentration 7.5% by weight, acetic acid concentration 10% by weight in aq,
5250 cp viscosity at 20 ° C. measured with a B-type viscometer
s) was supplied and rotated at a rotation speed of 1000 rpm. The recovery tank 10 contains 2% sodium hydroxide and 270
The liquid is supplied to and circulated from the liquid reservoir 5 by the pump 7 at a flow rate of 1 liter / min. After having been (solidified), it was recovered from above the filtering member 9.

【0039】得られたキトサン微粒子の粒度分布をレー
ザー光散乱方式の粒度分布測定装置で測定した結果、平
均粒径が484μmであり、粒度分布はロージン・ラム
ラーの分布関数の式におけるnの値が4.88(小数第
3位四捨五入)であることが判明した。
The particle size distribution of the obtained chitosan fine particles was measured by a laser light scattering type particle size distribution measuring device. As a result, the average particle size was 484 μm, and the particle size distribution was determined by the value of n in the Rosin-Rammler distribution function equation. It turned out to be 4.88 (rounded to the nearest third decimal place).

【0040】〔実施例4〕図1にて説明した第1実施形
態の装置を用いて微粒子を製造した。なお、回転体は回
転軸に取付けられた円板状の回転円板(直径100m
m)であって、その上面に液体が供給されるものを使用
した。
Example 4 Fine particles were produced using the apparatus of the first embodiment described with reference to FIG. The rotating body is a disk-shaped rotating disk (diameter 100 m) attached to a rotating shaft.
m), whose liquid was supplied to the upper surface thereof.

【0041】そして、上記の回転円板にセルロース濃度
8.0重量%、アルカリ濃度5.3重量%のビスコース
をチューブポンプにて4.5ミリリットル/分の割合で
供給し、回転数1000rpmで回転させ、その他の条
件は実施例1と全く同様にしてセルロースを凝固させた
後、濾過部材9上から回収し、セルロース微粒子を得
た。
Then, viscose having a cellulose concentration of 8.0% by weight and an alkali concentration of 5.3% by weight was supplied to the above rotating disk at a rate of 4.5 ml / min by a tube pump, and the rotation speed was 1,000 rpm. After rotation, the cellulose was coagulated in the same manner as in Example 1 under the other conditions, and then collected from the filtration member 9 to obtain cellulose fine particles.

【0042】得られたセルロース微粒子は、平均粒径が
719μmであり、粒度分布はロージン・ラムラーの分
布関数の式におけるnの値が3.75(小数第3位四捨
五入)であることが判明した。
The obtained cellulose fine particles had an average particle size of 719 μm, and the particle size distribution was found to be 3.75 (rounded to the third decimal place) in the equation of the Rosin-Rammler distribution function. .

【0043】また、図6に示すように、光学顕微鏡で粒
子形状を観察すると、全ての粒子が真球状であり、粒子
内部に空孔は観察されなかった。
Further, as shown in FIG. 6, when the particle shape was observed with an optical microscope, all the particles were truly spherical, and no pores were observed inside the particles.

【0044】〔比較例1〕実施例2で使用した回転容器
に実施例1で用いたビスコースを供給し、回転数100
0rpmで回転させた。
[Comparative Example 1] The viscose used in Example 1 was supplied to the rotating container used in Example 2, and the rotation speed was 100.
Rotated at 0 rpm.

【0045】そして、第1実施形態の液溜槽に代えて、
図7に示すように、8本のホース20を筒体の壁面4の
上縁に等間隔で斜め下方に開口端を向けて配置し、1本
当たり135リットル/分の流量で2Nの塩酸を放出し
て液層を形成し、この液中に前記回転容器から飛散した
ビスコース液滴を捕捉し凝固させてセルロース微粒子を
形成した。
Then, instead of the liquid storage tank of the first embodiment,
As shown in FIG. 7, eight hoses 20 are arranged at equal intervals on the upper edge of the wall surface 4 of the cylindrical body, with the opening ends facing obliquely downward, and 2N hydrochloric acid is supplied at a flow rate of 135 liters / min per tube. The liquid was discharged to form a liquid layer, and the viscose droplets scattered from the rotating container were captured in the liquid and solidified to form cellulose fine particles.

【0046】得られたセルロース微粒子は、平均粒径が
479μmであり、粒度分布はロージン・ラムラーの分
布関数の式におけるnの値が2.96(小数第3位四捨
五入)であった。
The obtained cellulose fine particles had an average particle size of 479 μm, and the particle size distribution was such that the value of n in the expression of the Rosin-Rammler distribution function was 2.96 (rounded to the third decimal place).

【0047】また、図8に示すように、光学顕微鏡で粒
子形状を観察すると、粒子形状が揃わず、粒径も不揃い
であった。
Further, as shown in FIG. 8, when the particle shape was observed with an optical microscope, the particle shape was not uniform and the particle size was not uniform.

【0048】[0048]

【発明の効果】この発明の微粒子の製造方法および装置
は、以上説明したように、簡易で小型の装置で目的を達
成し、液滴が飛散する回転体を囲むように配置した筒体
の内面に沿って周方向にほぼ均等な厚みの凝固液流を形
成し、この凝固液流で液滴を捕捉し凝固したので、遠心
力で形成された微小な液滴を、気泡を混入させたりその
形状を損なうことなく凝固でき、真球度が高く粒度分布
の小さい微粒子を製造できる利点がある。
As described above, the method and apparatus for producing fine particles of the present invention achieve the object with a simple and small apparatus, and have an inner surface of a cylindrical body arranged so as to surround a rotating body on which droplets scatter. A coagulating liquid flow with a substantially uniform thickness is formed in the circumferential direction along with the liquid droplets, and the liquid droplets are captured and coagulated by the coagulating liquid flow. There is an advantage that solidification can be performed without impairing the shape, and fine particles having a high sphericity and a small particle size distribution can be produced.

【0049】また、微粒子の製造装置に係る発明につい
ては、真球度が高く粒度分布の小さい微粒子を連続して
効率よく製造できる利点がある。
The invention relating to the apparatus for producing fine particles has an advantage that fine particles having a high sphericity and a small particle size distribution can be continuously and efficiently produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微粒子の製造装置の第1実施形態の説明図FIG. 1 is an explanatory view of a first embodiment of an apparatus for producing fine particles.

【図2】微粒子の製造装置の第2実施形態の説明図FIG. 2 is an explanatory view of a second embodiment of the apparatus for producing fine particles.

【図3】実施例1に使用した回転体の斜視図FIG. 3 is a perspective view of a rotating body used in the first embodiment.

【図4】実施例2に使用した回転体の斜視図FIG. 4 is a perspective view of a rotating body used in a second embodiment.

【図5】実施例1の微粒子の光学顕微鏡写真FIG. 5 is an optical micrograph of the fine particles of Example 1.

【図6】実施例3の微粒子の光学顕微鏡写真FIG. 6 is an optical micrograph of the fine particles of Example 3.

【図7】比較例1の微粒子の製造装置の説明図FIG. 7 is an explanatory diagram of an apparatus for producing fine particles of Comparative Example 1.

【図8】比較例1の微粒子の光学顕微鏡写真FIG. 8 is an optical micrograph of the fine particles of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1、7 ポンプ 2 回転体 3 回転軸 4 筒体の壁面 5、13 液溜槽 6 流出口 8 微粒子 9 濾過部材 10 回収槽 11 流路 12 スリット 14、19 回転容器 15、17 穴 16 孔 18 ノズル 20 ホース a 粒子形成材料 b 凝固液 A、B 微粒子の製造装置 1, 7 Pump 2 Rotating body 3 Rotating shaft 4 Wall of cylindrical body 5, 13 Liquid reservoir 6 Outlet 8 Fine particles 9 Filtration member 10 Recovery tank 11 Flow channel 12 Slit 14, 19 Rotating container 15, 17 Hole 16 Hole 18 Nozzle 20 Hose a Particle forming material b Coagulating liquid A, B Fine particle manufacturing equipment

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液状の粒子形成材料を回転体に供給し、
この回転体から遠心力で飛散した液滴を凝固させて微粒
子を製造する方法において、 前記回転体を囲むように配置した筒体の上部に前記液滴
の凝固液を貯留する液溜槽を設け、この液溜槽から凝固
液を筒体の内面に沿わせて周方向にほぼ均等な流量で流
出させ、前記内面に沿って自然落下する凝固液流中に前
記液滴を捕捉して凝固させることを特徴とする微粒子の
製造方法。
1. A liquid particle forming material is supplied to a rotating body,
In the method of producing fine particles by coagulating droplets scattered by centrifugal force from the rotating body, a liquid storage tank for storing the coagulating liquid of the droplet is provided on an upper part of a cylindrical body arranged so as to surround the rotating body, The coagulating liquid is allowed to flow out from the liquid reservoir along the inner surface of the cylindrical body at a substantially uniform flow rate in the circumferential direction, and the liquid droplets are captured and coagulated in the coagulating liquid flow that naturally falls along the inner surface. A method for producing fine particles.
【請求項2】 液滴を遠心力で飛散させる回転体の周囲
を囲むように筒体を設け、この筒体の上部に前記液滴の
凝固液を貯留し筒体内側に凝固液を流出させる液溜槽を
設け、この液溜槽の流出口は前記凝固液が筒体の内面に
沿って周方向にほぼ均等な流量で自然落下するように配
置形成し、微粒子回収工程を経た凝固液を前記液溜槽へ
戻す凝固液循環手段を備えてなる微粒子の製造装置。
2. A cylindrical body is provided so as to surround a rotating body that scatters droplets by centrifugal force, and a coagulating liquid of the droplets is stored in an upper portion of the cylindrical body, and the coagulating liquid flows out inside the cylindrical body. A liquid storage tank is provided, and an outlet of the liquid storage tank is arranged and formed such that the coagulation liquid naturally falls at a substantially uniform flow rate in the circumferential direction along the inner surface of the cylindrical body. An apparatus for producing fine particles, comprising a coagulating liquid circulating means for returning to a storage tank.
JP35686496A 1996-12-26 1996-12-26 Fine particle manufacturing method and apparatus Expired - Lifetime JP3677364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35686496A JP3677364B2 (en) 1996-12-26 1996-12-26 Fine particle manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35686496A JP3677364B2 (en) 1996-12-26 1996-12-26 Fine particle manufacturing method and apparatus

Publications (2)

Publication Number Publication Date
JPH10182840A true JPH10182840A (en) 1998-07-07
JP3677364B2 JP3677364B2 (en) 2005-07-27

Family

ID=18451151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35686496A Expired - Lifetime JP3677364B2 (en) 1996-12-26 1996-12-26 Fine particle manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP3677364B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044340A1 (en) * 2008-10-16 2010-04-22 宇部興産株式会社 Method and apparatus for producing polymer particles
JP2012176374A (en) * 2011-02-28 2012-09-13 Univ Of Tokyo Apparatus and method of gelling liquid
JP2015229129A (en) * 2014-06-04 2015-12-21 日本ゼオン株式会社 Granulating device and method of producing composite particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044340A1 (en) * 2008-10-16 2010-04-22 宇部興産株式会社 Method and apparatus for producing polymer particles
CN102977382A (en) * 2008-10-16 2013-03-20 宇部兴产株式会社 Method and apparatus for producing polymer particles
JP2012176374A (en) * 2011-02-28 2012-09-13 Univ Of Tokyo Apparatus and method of gelling liquid
JP2015229129A (en) * 2014-06-04 2015-12-21 日本ゼオン株式会社 Granulating device and method of producing composite particle

Also Published As

Publication number Publication date
JP3677364B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP3177587B2 (en) Method for producing cellulose fine particles
JPH03153704A (en) Gas sparger of fluidized bed vapor phase polymerization apparatus
JPH10182840A (en) Production of fine particles and apparatus
KR960006048B1 (en) Method and device for the granulation of a molten material
JP2004269956A (en) Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
CN109906128A (en) Low-melting-point metal or alloy powder are atomized production technology
US3331898A (en) Method for preparing metal oxide microspheres
JP2017145494A (en) Metal powder production apparatus
KR100756893B1 (en) Electrospinning devices
US4485055A (en) Reproducible production of shaped articles of various geometries from polymer dispersions, melts or solutions
KR880004845A (en) Method and apparatus for preparing liquid droplets
EP0289648B1 (en) Encapsulation apparatus
KR930001513B1 (en) Metallic powder and a paste made from it and a metallic powder manufacture device
JP2672042B2 (en) Metal powder manufacturing equipment
CN207478827U (en) A kind of antipollution high-pressure fine water mist nozzle
JPS6142923B2 (en)
CN104726941B (en) A kind of melt-spun precools jet pipe
JP2672036B2 (en) Method and apparatus for producing metal powder
JP2591671B2 (en) Apparatus for producing spherical particles of oily substance using organic solution as refrigerant
US3725517A (en) Powder production by gas atomization of liquid metal
JPH0322254Y2 (en)
KR100386896B1 (en) apparatus for producing fine powder from molten liquid by high-pressure spray
US11185790B2 (en) Particle production apparatus and particle production method
JPH0578713A (en) Nozzle device for producing metal powder
CA2273808A1 (en) Method and apparatus for granulating bee wax

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term