JPH10182257A - Ceramics-metal joined member - Google Patents

Ceramics-metal joined member

Info

Publication number
JPH10182257A
JPH10182257A JP34350296A JP34350296A JPH10182257A JP H10182257 A JPH10182257 A JP H10182257A JP 34350296 A JP34350296 A JP 34350296A JP 34350296 A JP34350296 A JP 34350296A JP H10182257 A JPH10182257 A JP H10182257A
Authority
JP
Japan
Prior art keywords
metal
ceramic
bonding
joining
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34350296A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
利幸 鈴木
Shigeki Niwa
茂樹 丹羽
Yutaka Okada
裕 岡田
Taiji Kojima
泰治 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP34350296A priority Critical patent/JPH10182257A/en
Publication of JPH10182257A publication Critical patent/JPH10182257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To tightly join a ceramic member made of titanium boride or silicon carbide to a metallic member, to relieve residual stress produced by the difference in thermal expansion between the members and to relieve thermal stress and mechanical stress produced at the time of joining in the joined part by interposing a specified bonding metal between the members. SOLUTION: A ceramic member made of titanium boricle or silicon carbide is joined to a metallic member with Al or Zn as a bonding metal in-between. The metallic member may be made of any of metals ranging from a metal having a relatively low coefft. of thermal expansion, e.g. 'Kovar(R)' or 42Ni alloy to a metal having a relatively high coefft. of thermal expansion, e.g. austenitic metal. The bonding metal is interposed between the members preferably in 0.03-0.3mm and they are heated at the m.p. of the bonding metal, or above in vacuum to obtain the objective ceramics-metal joined member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械部品などの各
種工業製品に応用可能なセラミックス−金属接合部材に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-metal joining member applicable to various industrial products such as mechanical parts.

【0002】[0002]

【従来の技術】一般に、セラミックスは金属材料と比較
して耐熱性、耐摩耗性に優れるため、機械部品のような
耐摩耗製品など、様々な分野において利用が試みられて
いる。しかしながら、セラミックスは高硬度である反
面、靭性及び機械的強度などが不十分であり、かつ機械
的な加工性が劣るため、製品全体をセラミックスに代替
することは、信頼性及び価格面において問題がある。こ
のようなことから、必要とされる部分のみセラミックス
材料とし、その他は金属材料と結合(接合)させること
により両者の特徴を活かした利用が考えられている。
2. Description of the Related Art Generally, ceramics are superior in heat resistance and abrasion resistance as compared with metal materials. Therefore, utilization of ceramics in various fields such as wear-resistant products such as mechanical parts has been attempted. However, ceramics have high hardness, but have insufficient toughness and mechanical strength, and have poor mechanical workability.Therefore, replacing ceramics with the entire product poses problems in terms of reliability and price. is there. For this reason, a ceramic material is used only for a necessary portion, and the other portion is combined (joined) with a metal material to utilize the characteristics of both materials.

【0003】従来、前記金属部材とセラミックス部材と
の結合手段として、ねじ止め、焼きばめ、ろう付けなど
の方法が知られている。しかしながら、ねじ止めによる
方法では接合強度、密着性及び密封性などに問題があ
り、使用条件が限定される。また、焼きばめ法またはろ
う付け法では、セラミックスと金属との熱膨張差によ
り、セラミックス部材及び金属部材に残留応力が発生
し、場合によってセラミックス部材が破損する恐れがあ
る。特に、ろう付けの場合には低熱膨張率のコバール合
金あるいは42Ni合金などを金属部材として用いた接
合が考えられたが、これらの低熱膨張金属は400℃前
後以上において熱膨張率が急激に増加する。このため、
融点700〜900℃の銀ろう材などを用いて接合する
には通常の金属部材と同様に残留応力の問題が生じる。
Conventionally, as a means for connecting the metal member and the ceramic member, methods such as screwing, shrink fitting, brazing and the like have been known. However, the method using screwing has problems in bonding strength, adhesion and sealing properties, and the use conditions are limited. Further, in the shrink fitting method or the brazing method, residual stress is generated in the ceramic member and the metal member due to a difference in thermal expansion between the ceramic and the metal, and the ceramic member may be damaged in some cases. In particular, in the case of brazing, joining using a Kovar alloy or a 42Ni alloy having a low coefficient of thermal expansion as a metal member was considered, but the coefficient of thermal expansion of these low thermal expansion metals rapidly increases at about 400 ° C. or higher. . For this reason,
Joining using a silver brazing material having a melting point of 700 to 900 ° C. causes a problem of residual stress similarly to a normal metal member.

【0004】そこで、特公平7−37346号には70
0℃以下の固相点(液状のろう材が全て固体となる温
度)を有したろう材と金属の変態によるヒステリシスを
利用し、金属の膨張収縮変位差を減少させることにより
接合歪の極めて小さい接合部材を得ることが開示されて
いる。しかしながら、この接合部材に用いられる金属部
材は熱処理する必要があり、この後の冷却に際しその冷
却速度を制御する必要がある。また、前記接合部材に用
いられる金属部材は材質(組成)が制約されるという問
題があった。
Accordingly, Japanese Patent Publication No. 7-37346 discloses 70
Extremely small joint strain by reducing the difference in expansion and contraction displacement of metal by utilizing the hysteresis due to transformation of metal and brazing material having a solidus point of 0 ° C. or less (temperature at which all liquid brazing material becomes solid). It is disclosed to obtain a joining member. However, it is necessary to heat-treat the metal member used for the joining member, and it is necessary to control the cooling rate during the subsequent cooling. Further, there is a problem that the material (composition) of the metal member used for the joining member is restricted.

【0005】また、特公平6−49623号、特公平7
−110794号、特公平7−110795号には、セ
ラミックス部材と金属部材とのろう付けにおいて、応力
緩和層などを介して接合を行う方法が開示されている。
しかしながら、これらの方法は特に接合径の大きなもの
には接合冷却時の収縮差を吸収できないために、適用す
ることが困難である。また、応力緩和層を用いるために
コスト高にもなる。
[0005] Japanese Patent Publication No. 6-49623 and Japanese Patent Publication No. 7
Japanese Patent Publication No. 110794 and Japanese Patent Publication No. 7-110795 disclose a method for joining a ceramic member and a metal member via a stress relaxation layer or the like.
However, these methods are particularly difficult to apply to those having a large joining diameter because the difference in shrinkage during joining cooling cannot be absorbed. In addition, the use of the stress relaxation layer increases costs.

【0006】特公平7−55868号には、セラミック
ス部材内部の残留応力を抑えるためにセラミックス部材
と金属部材の間に繊維強化プラスチック材を介在させ、
両部材を接合した接合部材が開示されている。しかしな
がら、この接合部材は中間層として用いる介在物が繊維
強化プラスチックであるため、耐熱性が乏しく、200
℃以上では使用できない。
In Japanese Patent Publication No. 7-55868, a fiber-reinforced plastic material is interposed between a ceramic member and a metal member in order to suppress residual stress inside the ceramic member.
A joining member in which both members are joined is disclosed. However, since the inclusion used as the intermediate layer is a fiber-reinforced plastic, this joining member has poor heat resistance,
Can not be used above ℃.

【0007】特開平6−172052号、特開平6−1
72053号には、セラミックス部材と金属部材の圧入
接合において、嵌合端近傍に摩擦係数を低減させる表面
処理あるいは滑剤の塗布を施した後、セラミックス部材
を金属部材に圧入し、圧入面を熱処理することにより滑
り作用を低減させて結合保持力を向上させた接合部材の
製造方法を開示されている。しかしながら、この接合部
材はセラミックス部材と金属部材との間の引張り強度
(引き抜き強度)が低いという問題があった。
[0007] JP-A-6-172052, JP-A-6-1
No. 72053 discloses that in the press-fit joining of a ceramic member and a metal member, a surface treatment or a lubricant is applied near the fitting end to reduce the friction coefficient, and then the ceramic member is pressed into the metal member and the press-fit surface is heat-treated. Thus, a method of manufacturing a joining member in which a slipping action is reduced to improve a coupling holding force is disclosed. However, this joining member has a problem that the tensile strength (pulling strength) between the ceramic member and the metal member is low.

【0008】さらに、セラミックス部材と金属部材とを
200℃以上の融点の合金(Sn−Zn系、Pb−In
系、Sn、Pb、Pb−Ag系、Cd−Ag−Sn系、
Sn−Ag−Cu系、In−Au系)または銀ろう(A
g−Cu系、Ag−Cu−Sn系、Ag−Cu−Zn
系、Ag−Cu−In系、Ag−Cu−Sn系)を用い
て接合することが知られている。しかしながら、このよ
うな接合部材において硼化チタン(TiB2 )や炭化ケ
イ素(SiC)からなるセラミックス部材を用いると、
前記ろう材中の主成分または添加成分が前記セラミック
スと反応して接合界面に反応層を形成し易い。このよう
な反応層がセラミックス部材と金属部材との接合界面に
形成されると、前記接合界面に加わる応力を緩和するこ
とが困難になり、セラミック部材に亀裂等の発生要因に
なる。また、Cd、Pb、Sn、Inなどの金属は一般
に有害であり、取り扱いの上で十分な注意が必要となり
環境上問題がある。
Further, the ceramic member and the metal member are made of an alloy (Sn—Zn, Pb—In) having a melting point of 200 ° C. or more.
System, Sn, Pb, Pb-Ag system, Cd-Ag-Sn system,
Sn-Ag-Cu system, In-Au system) or silver brazing (A
g-Cu system, Ag-Cu-Sn system, Ag-Cu-Zn
(Ag-Cu-In-based, Ag-Cu-Sn-based). However, when a ceramic member made of titanium boride (TiB 2 ) or silicon carbide (SiC) is used in such a joining member,
A main component or an additive component in the brazing material reacts with the ceramic to easily form a reaction layer at a bonding interface. When such a reaction layer is formed at the joint interface between the ceramic member and the metal member, it is difficult to reduce the stress applied to the joint interface, which causes a crack or the like in the ceramic member. In addition, metals such as Cd, Pb, Sn, and In are generally harmful, and require careful precautions in handling, and have environmental problems.

【0009】[0009]

【発明が解決しようとする課題】本発明は、セラミック
ス部材と金属部材とが強固に接合され、かつそれら部材
間の熱膨張差により発生する残留応力を低減でき、さら
に接合時に発生する熱応力や機械的な応力を接合部で緩
和することが可能なセラミックス−金属接合部材を提供
しようとするものである。
SUMMARY OF THE INVENTION According to the present invention, a ceramic member and a metal member are firmly joined, and a residual stress generated by a difference in thermal expansion between the members can be reduced. An object of the present invention is to provide a ceramic-metal joining member capable of relieving mechanical stress at a joining portion.

【0010】[0010]

【課題を解決するための手段】本発明に係わるセラミッ
クス−金属接合部材は、硼化チタン(TiB2 )または
炭化ケイ素(SiC)からなるセラミックス部材と金属
部材とを結合金属を介して接合したセラミックス−金属
接合部材において、前記結合金属はアルミニウムまたは
亜鉛からなることを特徴とするものである。
SUMMARY OF THE INVENTION A ceramic-metal joining member according to the present invention comprises a ceramic member formed by joining a ceramic member made of titanium boride (TiB 2 ) or silicon carbide (SiC) and a metal member via a bonding metal. -In the metal bonding member, the bonding metal is made of aluminum or zinc.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係わるセラミックス−金属接合部材は、硼化チ
タン(TiB2 )または炭化ケイ素(SiC)からなる
セラミックス部材と金属部材とを溶融状態において極め
て反応性の低いアルミニウム(融点:約660℃)また
は亜鉛(融点:約420℃)からなる結合金属を介して
接合したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The ceramic-metal bonding member according to the present invention is a material in which a ceramic member made of titanium boride (TiB 2 ) or silicon carbide (SiC) and a metal member are extremely reactive in a molten state to aluminum (melting point: about 660 ° C.) or It is joined via a bonding metal made of zinc (melting point: about 420 ° C.).

【0012】前記金属としては、熱膨張率の比較的小さ
なものコバール合金、42Ni合金のような金属から熱
膨張率の比較的大きなものオーステナイト系金属等を用
いることができる。
As the above-mentioned metal, an austenitic metal having a relatively large coefficient of thermal expansion such as a Kovar alloy or a 42Ni alloy having a relatively small coefficient of thermal expansion can be used.

【0013】前記セラミックス部材と金属部材との接合
界面に介在される結合金属の厚さは、0.03〜0.3
mmにすることが好ましい。前記結合金属の厚さを0.
03mm未満にすると、セラミックス部材と金属部材と
の接合強度を十分に高めることが困難になる。一方、前
記結合金属の厚さが0.3mmを越えると接合強度が低
下する恐れがある。より好ましい結合金属の厚さは、
0.05〜0.25mmである。
The thickness of the bonding metal interposed at the bonding interface between the ceramic member and the metal member is 0.03 to 0.3.
mm is preferable. Set the thickness of the bonding metal to 0.
If the thickness is less than 03 mm, it becomes difficult to sufficiently increase the bonding strength between the ceramic member and the metal member. On the other hand, if the thickness of the bonding metal exceeds 0.3 mm, the bonding strength may be reduced. More preferred thickness of the bonding metal is
It is 0.05 to 0.25 mm.

【0014】次に、本発明に係わるセラミックス−金属
接合部材の製造方法を説明する。硼化チタン(TiB
2 )または炭化ケイ素(SiC)からなるセラミックス
部材と金属部材との接合面にアルミニウムまたは亜鉛か
らなる結合金属を介在させた後、真空中、前記結合金属
の融点より高い温度で加熱処理して前記セラミックス部
材と金属部材都を前記結合金属で接合することによりセ
ラミックス−金属接合部材を製造する。
Next, a method of manufacturing a ceramic-metal joining member according to the present invention will be described. Titanium boride (TiB
2 ) or after a bonding metal made of aluminum or zinc is interposed on a bonding surface between a ceramic member made of silicon carbide (SiC) and a metal member, and then heat-treated in a vacuum at a temperature higher than the melting point of the bonding metal. A ceramic-metal joining member is manufactured by joining a ceramic member and a metal member with the bonding metal.

【0015】前記セラミックス部材は、その接合面をア
セトンのような有機溶媒で洗浄することが好ましい。前
記金属部材は、前記結合金属との濡れ性を向上するため
に、その接合面にNiメッキを施すことが好ましい。
It is preferable that the joining surface of the ceramic member is cleaned with an organic solvent such as acetone. Preferably, the metal member is plated with Ni to improve the wettability with the bonding metal.

【0016】前記結合金属は、粉末または薄板の状態で
前記セラミックス部材と前記金属部材との接合面に介在
させることが好ましい。前記接合工程での真空度は、1
-4Torrオーダー以下にすることが好ましい。接合
時の真空度を10-3Torr以上にすると、接合時に結
合金属が酸化されて前記セラミックス部材と前記金属部
材との接合強度が低下する恐れがある。より好ましい真
空度は、10-4〜10-6Torrである。
It is preferable that the bonding metal is interposed in a state of powder or a thin plate at a joining surface between the ceramic member and the metal member. The degree of vacuum in the bonding step is 1
It is preferable to set it to 0 -4 Torr order or less. If the degree of vacuum at the time of joining is set to 10 -3 Torr or more, the bonding metal may be oxidized at the time of joining, and the joining strength between the ceramic member and the metal member may be reduced. A more preferable degree of vacuum is 10 -4 to 10 -6 Torr.

【0017】前記加熱温度は、結合金属としてAlを用
いた場合には710〜810℃、結合金属としてZnを
用いた場合には470〜570℃にすることが好まし
い。以上説明した本発明に係わるセラミックス−金属接
合部材は、硼化チタン(TiB2 )または炭化ケイ素
(SiC)からなるセラミックス部材と金属部材とを溶
融状態において極めて反応性の低いアルミニウム(融
点:約660℃)または亜鉛(融点:約420℃)から
なる結合金属を介して接合した構造を有する。このよう
なセラミックス−金属接合部材は、次のような作用、効
果を奏する。
The heating temperature is preferably 710-810 ° C. when Al is used as the binding metal, and 470-570 ° C. when Zn is used as the binding metal. The ceramic-metal joining member according to the present invention described above is made of aluminum (melting point: about 660) having a very low reactivity in a molten state between a ceramic member made of titanium boride (TiB 2 ) or silicon carbide (SiC) and a metal member. ° C) or zinc (melting point: about 420 ° C) via a bonding metal. Such a ceramic-metal joining member has the following functions and effects.

【0018】(1)結合金属として低融点のアルミニウ
ム(融点:約660℃)または亜鉛(融点:約420
℃)を用いるため、銀ろう付けに比べて低温での接合処
理によりセラミックス−金属接合部材を得ることができ
る。
(1) Low melting point aluminum (melting point: about 660 ° C.) or zinc (melting point: about 420) as a bonding metal
° C), a ceramic-metal bonding member can be obtained by a bonding process at a lower temperature than silver brazing.

【0019】すなわち、セラミックス部材と金属部材と
の熱膨張差により発生する残留応力が低減できる。ま
た、金属部材としては前述した熱膨張率の比較的小さな
もの(コバール合金、42Ni合金)から大きなもの
(オーステナイト系など)まで幅広く利用できる。
That is, the residual stress generated due to the difference in thermal expansion between the ceramic member and the metal member can be reduced. Further, the metal member can be widely used from the above-described one having a relatively small coefficient of thermal expansion (a Kovar alloy or a 42Ni alloy) to a large one (such as an austenitic alloy).

【0020】(2)結合金属として延性の高いアルミニ
ウムまたは亜鉛を用いるため、接合時に発生する熱応力
を前記結合金属層自体で緩和することができる。また、
使用時において機械的応力が加わった場合でも、この結
合金属が塑性変形することによりその機械的な応力を緩
和することができる。その結果、金属に比べて脆い性質
を有するセラミックス部材に亀裂や割れが発生するのを
防止することができる。
(2) Since aluminum or zinc having high ductility is used as the bonding metal, the thermal stress generated at the time of joining can be reduced by the bonding metal layer itself. Also,
Even when mechanical stress is applied during use, the mechanical stress can be reduced by plastic deformation of the bonding metal. As a result, it is possible to prevent cracks and cracks from being generated in the ceramic member having the brittle property compared to the metal.

【0021】(3)接合処理時における溶融状態の結合
金属(アルミニウムまたは亜鉛)は、TiB2 またはS
iCからなるセラミックス部材との反応性が極めて低
く、熱処理後の前記セラミックスと結合金属との界面に
は反応物が生成するのを防止できる。その結果、例えば
図1に示すように底部に開口部1を有する有底筒状の金
属部材2に中心に貫通穴3を有する円柱状のセラミック
ス部材4を挿入し、それらの接合面で結合金属層5によ
り接合したセラミックス−金属接合部材において前記接
合界面に機械的応力が付加された場合、図1の矢印に示
すように前記セラミックス部材4と前記結合金属層5の
接合界面でズレが起こるため、前記機械的な応力を緩和
することができる。
(3) The bonding metal (aluminum or zinc) in the molten state during the bonding process is TiB 2 or S
The reactivity with the ceramic member made of iC is extremely low, and the formation of a reactant at the interface between the ceramic and the bonding metal after the heat treatment can be prevented. As a result, for example, a cylindrical ceramic member 4 having a through hole 3 at the center is inserted into a bottomed cylindrical metal member 2 having an opening 1 at the bottom as shown in FIG. When a mechanical stress is applied to the bonding interface in the ceramic-metal bonding member bonded by the layer 5, a displacement occurs at the bonding interface between the ceramic member 4 and the bonding metal layer 5 as shown by an arrow in FIG. 1. The mechanical stress can be reduced.

【0022】一方、銀ろう付けによる接合および低融点
のろう材を用いた接合では、ろう材と金属部材あるいは
セラミックス部材との接合界面での化学的な反応により
反応物が生成してより強固な結合される。その結果、こ
の接合界面に機械的応力が付加されてもこの接合界面で
はズレによる応力の緩和が困難となる。
On the other hand, in the joining by silver brazing and the joining using a brazing material having a low melting point, a reaction product is generated by a chemical reaction at the joining interface between the brazing material and the metal member or the ceramic member, and a stronger material is obtained. Be combined. As a result, even if a mechanical stress is applied to the bonding interface, it is difficult to relax the stress at the bonding interface due to displacement.

【0023】このような本発明に係わるよるセラミック
ス−金属接合部材、銀ろう付けにより製造されたセラミ
ックス−金属接合部材および焼きばめにより製造された
セラミックス−金属接合部材の特徴を下記表1に示す。
The characteristics of the ceramic-metal bonding member according to the present invention, the ceramic-metal bonding member manufactured by silver brazing, and the ceramic-metal bonding member manufactured by shrink fitting are shown in Table 1 below. .

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 (実施例1〜6)本実施例1〜6では、図2に示すSU
S304または42Ni合金からなり、内周側面はNi
メッキ処理が施された治具11に、図3に示すTiB2
セラミックス(東芝セラミックス社製商品名:TiB
X)またはSiCセラミックス(東芝セラミックス社製
商品名:CERASIC−B)からなるリング12を接
合する試験を実施した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. Embodiments 1 to 6 In the embodiments 1 to 6, the SU shown in FIG.
S304 or 42Ni alloy.
The jig 11 which has been subjected to the plating process is provided with TiB 2 shown in FIG.
Ceramics (trade name: TiB, manufactured by Toshiba Ceramics Corporation)
X) or a test for joining the ring 12 made of SiC ceramics (trade name: CERAIC-B, manufactured by Toshiba Ceramics Co., Ltd.).

【0026】まず、図3に示すセラミックスのリング1
2をアセトン中で約5分間洗浄した。つづいて、図2に
示す内周面側がNiメッキされた治具11内に図3に示
すセラミックスのリング12を挿入し、これら部材の接
合部の隙間に結合金属としてのアルミニウム粉末(純度
98%以上、粒径50μm以下)またはZn粉末(純度
98%以上、粒径50μm以下)を充填した後、10-4
Torrオーダーの真空中にて、前記結合金属の融点+
約50℃の温度で10分間保持し、その後炉内放冷する
ことにより6種のセラミックス−金属接合部材を製造し
た。
First, the ceramic ring 1 shown in FIG.
2 was washed in acetone for about 5 minutes. Subsequently, a ceramic ring 12 shown in FIG. 3 is inserted into a jig 11 whose inner peripheral surface side shown in FIG. 2 is Ni-plated, and aluminum powder (purity 98%) as a bonding metal is inserted into a gap between joints of these members. After filling with Zn powder (purity 98% or more, particle diameter 50 μm or less) or Zn powder (particle diameter 50 μm or less), 10 −4
In a vacuum of the Torr order, the melting point of the binding metal +
It was kept at a temperature of about 50 ° C. for 10 minutes, and then allowed to cool in a furnace to produce six types of ceramic-metal joining members.

【0027】(比較例1〜6)TiB2 セラミックス
(東芝セラミックス社製商品名:TiBX)またはSi
Cセラミックス(東芝セラミックス社製商品名:CER
ASIC−B)からなる前述した図3に示すリング12
をアセトン中で約5分間洗浄した。つづいて、図2に示
す形状を有し、SUS304または42Ni合金からな
る内周側面がNiメッキされた治具11の内周側面を融
点約800℃の銀ろう材ペースト(銀ろう材粉末;粒径
50μm以下)または厚さ55μmの銀ろう材薄板で被
覆した後、図3に示す外周面側がメタライズ処理された
セラミックスのリング12を挿入し、10-4Torrオ
ーダーの真空中にて、約850℃の温度で10分間保持
し、その後炉内放冷することにより6種のセラミックス
−金属接合部材を製造した。
(Comparative Examples 1 to 6) TiB 2 ceramics (trade name: TiBX, manufactured by Toshiba Ceramics Co., Ltd.) or Si
C ceramics (Toshiba ceramics product name: CER
ASIC-B) shown in FIG.
Was washed in acetone for about 5 minutes. Subsequently, the inner peripheral side surface of the jig 11 having the shape shown in FIG. 2 and having the inner peripheral side surface made of SUS304 or 42Ni alloy plated with Ni is coated with a silver brazing material paste (silver brazing material powder; After coating with a silver brazing thin plate having a thickness of 50 μm or less and a thickness of 55 μm, a ceramic ring 12 whose outer peripheral surface is metallized as shown in FIG. 3 is inserted, and about 850 in a vacuum of the order of 10 −4 Torr. It was kept at a temperature of 10 ° C. for 10 minutes and then allowed to cool in a furnace, thereby producing six types of ceramic-metal joining members.

【0028】得られた実施例1〜6及び比較例1〜6の
金属−セラミックス接合部材のリングの状態を観察し
た。その結果を下記表2に示す。表2には接合条件、ろ
う材層(結合金属層)の厚さ等を併記する。
The states of the rings of the obtained metal-ceramic bonding members of Examples 1 to 6 and Comparative Examples 1 to 6 were observed. The results are shown in Table 2 below. Table 2 also shows the joining conditions, the thickness of the brazing material layer (bonding metal layer), and the like.

【0029】また、比較例2、4の金属−セラミックス
接合部材のリング表面及び断面を観察した。その結果、
図4の(a)、(b)[比較例2]、図5の(a)、
(b)[比較例4]に示すようにセラミックスリング1
2にクラック13が多数発生されていることが確認され
た。
Further, the ring surface and the cross section of the metal / ceramic bonding members of Comparative Examples 2 and 4 were observed. as a result,
(A) and (b) of FIG. 4 [Comparative Example 2], (a) of FIG.
(B) Ceramic ring 1 as shown in [Comparative Example 4]
It was confirmed that a number of cracks 13 were generated in No. 2.

【0030】[0030]

【表2】 [Table 2]

【0031】(実施例7〜12)接合強度を評価するた
めに、図6に示すように両端の一端側にネジ穴31を有
し、他端側に外径4.5mm、内径3.7mmの連結筒
32を有するSUS304またはS45Cからなる2本
の継手33を用意した。つづいて、図7に示すように一
方の継手33の連結筒32に内径3.5mm、長さ30
mmのTiB2 またはSiCのセラミックスからなるロ
ッド34の一端を挿入した後、これら継手とロッドの間
にアルミニウム粉末(純度98%以上、粒径50μm以
下)またはZn粉末(純度98%以上、粒径50μm以
下)を充填した。ひきつづき、他方の継手33の連結筒
32に前記ロッド34の他端を挿入した後、これら継手
とロッドの間にアルミニウム粉末(純度98%以上、粒
径50μm以下)またはZn粉末(純度98%以上、粒
径50μm以下)を充填した。次いで、これら継手およ
びロッドを10-4Torrオーダーの真空中にて、前記
結合金属の融点+約50℃の温度で10分間保持し、そ
の後炉内放冷することにより6種のセラミックス−金属
接合試験片を製造した。
(Examples 7 to 12) In order to evaluate the bonding strength, as shown in FIG. 6, a screw hole 31 is provided at one end of both ends, and the other end has an outer diameter of 4.5 mm and an inner diameter of 3.7 mm. Two joints 33 made of SUS304 or S45C having the connection cylinder 32 of No. 3 were prepared. Subsequently, as shown in FIG. 7, the connecting cylinder 32 of one joint 33 has an inner diameter of 3.5 mm and a length of 30 mm.
After inserting one end of a rod 34 made of TiB 2 or SiC ceramics having a thickness of 0.1 mm, aluminum powder (purity 98% or more, particle diameter 50 μm or less) or Zn powder (purity 98% or more, particle diameter 50 μm or less). After inserting the other end of the rod 34 into the connecting cylinder 32 of the other joint 33, aluminum powder (purity of 98% or more, particle size of 50 μm or less) or Zn powder (purity of 98% or more) is inserted between the joint and the rod. , A particle size of 50 μm or less). Next, these joints and rods are held in a vacuum of the order of 10 -4 Torr at a temperature of the melting point of the bonding metal + about 50 ° C. for 10 minutes, and then allowed to cool in a furnace to thereby obtain six types of ceramic-metal bonding. Test pieces were manufactured.

【0032】(比較例7〜10)継手とセラミックスの
ロッドとの接合を銀ろう材薄板を用いた以外、実施例7
〜12と同様な方法により4種のセラミックス−金属接
合試験片を製造した。
(Comparative Examples 7 to 10) Example 7 was repeated except that the joint and the ceramic rod were joined using a thin silver brazing material.
Four kinds of ceramic-metal bonded test pieces were manufactured in the same manner as in Nos. 1 to 12.

【0033】得られた実施例7〜12および比較例7〜
10のセラミックス−金属接合試験片(各々5個)にお
ける両側の継手33のネジ穴31に図8に示すようにフ
ック35をそれぞれ螺着した後、島津製作所製の強度試
験機(AG−2000C)を用いてフックを通して引張
り応力を加え、引張り強度の測定を実施した。その結果
を下記表3に5個の平均値として示す。なお、下記表3
には接合条件、ろう材層(結合金属層)の厚さ等を併記
する。
The obtained Examples 7 to 12 and Comparative Examples 7 to
After screwing the hooks 35 into the screw holes 31 of the joints 33 on both sides of the ten ceramic-metal joint test pieces (five each) as shown in FIG. 8, a strength tester (AG-2000C) manufactured by Shimadzu Corporation , Tensile stress was applied through the hooks, and the tensile strength was measured. The results are shown in Table 3 below as an average value of five samples. Table 3 below
Indicates the joining conditions, the thickness of the brazing material layer (bonding metal layer), and the like.

【0034】[0034]

【表3】 [Table 3]

【0035】(実施例13〜16、比較例11〜14)
実施例1〜4及び比較例3〜6の接合部材(各々5個)
を用いて接合界面付近から中央部までのセラミックス側
に発生する残留応力の値をIF法により測定した。その
結果を下記表4に示す。ここで、残留応力の存在のもと
ではセラミックスの破壊靭性値が見かけ上、変化するこ
とを利用して、IF法(ビッカース圧痕から求める方
法)により破壊靭性値を求め、これからそのときの残留
応力を逆算する次式(1)より残留応力を計算した。
(Examples 13 to 16, Comparative Examples 11 to 14)
Joint members of Examples 1-4 and Comparative Examples 3-6 (5 each)
The value of the residual stress generated on the ceramics side from the vicinity of the bonding interface to the center was measured by the IF method. The results are shown in Table 4 below. Here, utilizing the fact that the fracture toughness value of ceramics apparently changes in the presence of residual stress, the fracture toughness value is determined by the IF method (method determined from Vickers indentation), and the residual stress at that time is determined. The residual stress was calculated from the following equation (1), which calculates back.

【0036】 Kc =Kc * +2Yσ a/π (1) Kc :残留応力の無い場合の破壊靭性値 Kc * :見かけの破壊靭性値 a:圧痕の四隅から発生する亀裂の長さ σ:残留応力 Y:定数K c = K c * + 2Yσ a / π (1) K c : Fracture toughness without residual stress K c * : Apparent fracture toughness a: Length of crack generated from four corners of indentation : Residual stress Y: Constant

【0037】[0037]

【表4】 [Table 4]

【0038】前記表2〜表4の実施例に示したように本
発明のTiB2 またはSiCからなるセラミックス部材
と金属部材とを接合したセラミックス−金属接合部材
は、銀ろう付けなど比較的高い温度で接合したものより
低温での処理が可能であるため、残留応力の値も小さく
なる。
As shown in the examples of Tables 2 to 4, the ceramic-metal bonding member obtained by bonding the ceramic member made of TiB 2 or SiC and the metal member of the present invention has a relatively high temperature such as silver brazing. Since the treatment at a lower temperature can be performed than that bonded by the method described above, the value of the residual stress is also reduced.

【0039】また、本発明のセラミックス−金属接合部
材は機械的応力も前記結合金属層により緩和できるた
め、セラミックス部材の破損も極めて少なくなる。さら
に、本発明のセラミックス−金属接合部材の接合強度は
通常の銀ろう付け接合部材と同程度あるいは若干優れて
おり、耐熱温度としても有機系の接着材、あるいは強化
プラスチック材を中間層とした接合体より十分優れてい
るため、広範囲での使用が可能となる。
Further, in the ceramic-metal joining member of the present invention, since the mechanical stress can be relieved by the bonding metal layer, breakage of the ceramic member is extremely reduced. Furthermore, the bonding strength of the ceramic-metal bonding member of the present invention is comparable to or slightly superior to that of a normal silver brazing bonding member, and the bonding strength of an organic adhesive or a reinforced plastic material as an intermediate layer in terms of heat resistance is also high. Because it is far superior to the body, it can be used in a wide range.

【0040】[0040]

【発明の効果】以上詳述したように、本発明によればセ
ラミックス部材と金属部材とが強固に接合され、かつそ
れら部材間の熱膨張差により発生する残留応力を低減で
き、さらに接合時に発生する熱応力や機械的な応力を接
合部で緩和することができ、各種工業製品に応用可能な
セラミックス−金属接合部材を提供できる。
As described above in detail, according to the present invention, the ceramic member and the metal member are firmly joined, and the residual stress generated due to the difference in thermal expansion between the members can be reduced. It is possible to reduce the thermal stress and mechanical stress that occur at the joint, and to provide a ceramic-metal joint member applicable to various industrial products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックス−金属接合部材おける応
力の緩和作用を説明するための断面図。
FIG. 1 is a cross-sectional view for explaining a stress relieving action of a ceramic-metal joining member of the present invention.

【図2】本発明の実施例1〜6および比較例1〜6で用
いる治具を示す断面図。
FIG. 2 is a cross-sectional view showing a jig used in Examples 1 to 6 and Comparative Examples 1 to 6 of the present invention.

【図3】本発明の実施例1〜6および比較例1〜6で用
いるセラミックスリングを示す断面図。
FIG. 3 is a sectional view showing a ceramic ring used in Examples 1 to 6 and Comparative Examples 1 to 6 of the present invention.

【図4】比較例2のセラミックス−金属接合部材におけ
るセラミックスリングの状態を示す図。
FIG. 4 is a view showing a state of a ceramic ring in a ceramic-metal bonding member of Comparative Example 2.

【図5】比較例4のセラミックス−金属接合部材におけ
るセラミックスリングの状態を示す図。
FIG. 5 is a view showing a state of a ceramic ring in a ceramic-metal bonding member of Comparative Example 4.

【図6】実施例7〜12および比較例7〜10で用いる
継手を示す断面図。
FIG. 6 is a sectional view showing a joint used in Examples 7 to 12 and Comparative Examples 7 to 10.

【図7】実施例7〜12および比較例7〜10で接合し
たセラミックス−金属接合試験片を示す断面図。
FIG. 7 is a cross-sectional view showing ceramic-metal bonded test pieces bonded in Examples 7 to 12 and Comparative Examples 7 to 10.

【図8】実施例7〜12および比較例7〜10で接合し
たセラミックス−金属接合試験片の引張り強度を測定す
るために試験片にフックを螺着した状態を示す図。
FIG. 8 is a diagram showing a state in which a hook is screwed on a ceramic-metal bonded test piece joined in Examples 7 to 12 and Comparative Examples 7 to 10 in order to measure tensile strength.

【符号の説明】[Explanation of symbols]

2…金属部材、 4…セラミックス部材、 11…治具、 12…セラミックスリング、 33…継手、 34…セラミックスロッド、 35…フック。 Reference numeral 2 denotes a metal member, 4 denotes a ceramic member, 11 denotes a jig, 12 denotes a ceramic ring, 33 denotes a joint, 34 denotes a ceramic rod, and 35 denotes a hook.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 泰治 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuji Kojima 1 Minamifuji, Ogakie-cho, Kariya-shi, Aichi Pref. Toshiba Ceramics Co., Ltd. Kariya Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硼化チタンまたは炭化ケイ素からなるセ
ラミックス部材と金属部材とを結合金属を介して接合し
たセラミックス−金属接合部材において、 前記結合金属は、アルミニウムまたは亜鉛からなること
を特徴とするセラミックス−金属接合部材。
1. A ceramic-metal bonding member in which a ceramic member made of titanium boride or silicon carbide and a metal member are bonded via a bonding metal, wherein the bonding metal is made of aluminum or zinc. -Metal joining members.
JP34350296A 1996-12-24 1996-12-24 Ceramics-metal joined member Pending JPH10182257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34350296A JPH10182257A (en) 1996-12-24 1996-12-24 Ceramics-metal joined member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34350296A JPH10182257A (en) 1996-12-24 1996-12-24 Ceramics-metal joined member

Publications (1)

Publication Number Publication Date
JPH10182257A true JPH10182257A (en) 1998-07-07

Family

ID=18362014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34350296A Pending JPH10182257A (en) 1996-12-24 1996-12-24 Ceramics-metal joined member

Country Status (1)

Country Link
JP (1) JPH10182257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170836A (en) * 2005-12-19 2007-07-05 Jeol Ltd Fine adjusting device and scanning probe microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170836A (en) * 2005-12-19 2007-07-05 Jeol Ltd Fine adjusting device and scanning probe microscope
JP4607754B2 (en) * 2005-12-19 2011-01-05 日本電子株式会社 Fine movement device and scanning probe microscope

Similar Documents

Publication Publication Date Title
EP0147360B1 (en) Method for bonding ceramics and metals
EP0135937B1 (en) Method of bonding alumina to metal
JPH03205382A (en) Joined product of ceramic member to metal member
US5525432A (en) Internal soldering in metal/ceramic composites
EP1135348B1 (en) Method for joining ceramic to metal
JPS6359996B2 (en)
JPH10182257A (en) Ceramics-metal joined member
US5855313A (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JPH07247177A (en) Cemented body of ceramic with metal having stress-buffering metallic layer
JPH0328391B2 (en)
JPH0940476A (en) Joined body of aluminum alloy member and ceramic member
JPS60166195A (en) Brazing filler metal consisting of active metal
JP2001048670A (en) Ceramics-metal joined body
JPH0159998B2 (en)
JPH07172944A (en) Adhesive composition, bonded product, and bonding process
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH01208374A (en) Conjugate of sic ceramics member and metallic member
JPS62130843A (en) Metallic ceramics joining body
JPS6351994B2 (en)
JPS62132779A (en) Ceramic joined structure
JPH0571544B2 (en)
JPH0455146B2 (en)
JPH0371393B2 (en)
JPS61155268A (en) Diffusion bonding method
JPS62113775A (en) Method of joining ceramic members