JPH10180291A - Nitrificating-denitrificating method of waste water - Google Patents

Nitrificating-denitrificating method of waste water

Info

Publication number
JPH10180291A
JPH10180291A JP8343356A JP34335696A JPH10180291A JP H10180291 A JPH10180291 A JP H10180291A JP 8343356 A JP8343356 A JP 8343356A JP 34335696 A JP34335696 A JP 34335696A JP H10180291 A JPH10180291 A JP H10180291A
Authority
JP
Japan
Prior art keywords
aerobic
denitrification
nitrogen
anaerobic
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8343356A
Other languages
Japanese (ja)
Other versions
JP3278841B2 (en
Inventor
Nobuko Hashimoto
信子 橋本
Tatsuo Sumino
立夫 角野
Kazuhiko Noto
一彦 能登
Takako Ogasawara
多佳子 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP34335696A priority Critical patent/JP3278841B2/en
Publication of JPH10180291A publication Critical patent/JPH10180291A/en
Application granted granted Critical
Publication of JP3278841B2 publication Critical patent/JP3278841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove a nitrogen component in a waste water by executing nitrification.denitrification in one reactor, to make a device remarkably compactor and also to reduce a treating time and a treating cost. SOLUTION: The inside of a reactor 12 is kept in an aerobic state by aerating air into the reactor 12 and regulating an opening degree of an aerating rate regulating valve 42 with a controller 22 so that a DO concn. (dissolved oxygen concn.) in the reactor may be 0.5-5mg/l based on the DO concn. measured with a DO sensor 20. This aerobic state is kept for 10-20min. In this way, ammonia nitrogen in the waste water is aerobically denitrificated by a reaction process of NH4 →NH2 OH→N2 since the aerobic state for executing an aerobic denitrification is formed. Then the aeration into the reactor 12 is stopped with the controller 22 and also the DO concn. in the reactor is kept in <=0.5mg/l to keep the inside of the reactor 12 in an anaerobic state, and this anaerobic state is kept for 15-60min. In this way, a nitrate nitrogen and nitrous nitrogen remained by the aerobic denitrification are anaerobiacally denitrificated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明は、廃水の硝化・脱窒方法に係り、
特に、廃水中の窒素成分を生物学的に除去する廃水の硝
化・脱窒方法に関する。
[0001] The present invention relates to a method for nitrifying and denitrifying wastewater,
In particular, the present invention relates to a wastewater nitrification and denitrification method for biologically removing nitrogen components in wastewater.

【0002】[0002]

【従来の技術】地球環境規模での水質汚染防止策の検討
がなされている昨今、生物学的な廃水処理の開発課題の
1つに廃水中のアンモニア態窒素を除去する除去効率の
向上がある。従来、廃水中から窒素成分を生物学的に除
去する硝化・脱窒方法としては、代表例として活性汚泥
循環変法がある。この硝化・脱窒方法は、硝化槽におい
て独立栄養菌である硝化細菌のアンモニア酸化能力を利
用して、廃水中のアンモニア態窒素を先ず好気性条件下
で亜硝酸態窒素や硝酸態窒素に酸化し、その後、脱窒槽
において従属栄養細菌である脱窒細菌の働きにより、メ
タノール等の水素供与体を栄養源として嫌気性状態で亜
硝酸態窒素や硝酸態窒素を窒素ガスに還元する嫌気脱窒
を行う。これにより、廃水から窒素が除去される。
2. Description of the Related Art In recent years, studies have been made on water pollution control measures on a global environmental scale. One of the development issues of biological wastewater treatment is to improve the efficiency of removing ammonia nitrogen in wastewater. . Conventionally, as a typical example of a nitrification / denitrification method for biologically removing a nitrogen component from wastewater, there is a modified activated sludge circulation method. In this nitrification and denitrification method, ammonia nitrogen in wastewater is first oxidized to nitrite nitrogen or nitrate nitrogen under aerobic conditions by utilizing the ammonia oxidation ability of nitrifying bacteria, which are autotrophic bacteria, in a nitrification tank. After that, in the denitrification tank, anaerobic denitrification in which the nitrite nitrogen and nitrate nitrogen are reduced to nitrogen gas in an anaerobic state using a hydrogen donor such as methanol as a nutrient by the action of a heterotrophic bacterium denitrification bacterium I do. This removes nitrogen from the wastewater.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
廃水の硝化・脱窒方法は、好気細菌である硝化細菌を働
かせるための硝化槽(好気槽)と、嫌気細菌である脱窒
細菌を働かせる脱窒槽(嫌気槽)の2槽を必要とするた
めに、装置が大型化するという欠点がある。また、アン
モニア態窒素を酸化して生成される最終的な酸化生成物
である亜硝酸態窒素、更には硝酸態窒素にしてから窒素
ガスに還元するので、処理時間がかかり効率的ではない
という欠点がある。
However, the conventional method of nitrifying and denitrifying wastewater involves a nitrification tank (aerobic tank) for working nitrifying bacteria, which is an aerobic bacterium, and a denitrifying bacteria, which is an anaerobic bacterium. Since two denitrification tanks (anaerobic tanks) are required to work, there is a disadvantage that the apparatus becomes large. In addition, since nitrate nitrogen, which is the final oxidation product produced by oxidizing ammonia nitrogen, and then nitrate nitrogen, is reduced to nitrogen gas, processing time is long and it is not efficient. There is.

【0004】また、脱窒細菌の栄養源である水素供与体
としての、例えばメタノール等を必要とするので、処理
コストがかかるという欠点がある。本発明のこのような
事情に鑑みてなされたもので、1槽の反応槽で硝化・脱
窒処理を行って廃水中の窒素成分を効率的に除去でき、
装置の大幅なコンパクト化を図ることができると共に、
処理時間や処理コストを低減できる廃水の硝化・脱窒方
法を提供することを目的とする。
[0004] Further, since a hydrogen donor, which is a nutrient source of the denitrifying bacteria, such as methanol, is required, there is a disadvantage that the treatment cost is high. In view of such circumstances of the present invention, it is possible to efficiently remove nitrogen components in wastewater by performing nitrification and denitrification treatment in one reaction tank,
The device can be made much more compact,
An object of the present invention is to provide a method for nitrifying and denitrifying wastewater, which can reduce the processing time and the processing cost.

【0005】[0005]

【課題を解決するための手段】本発明は前記目的を解決
するために、廃水中のアンモニア態窒素を生物学的に除
去する廃水の硝化・脱窒方法において、前記廃水と、1
つの反応槽内に共存させた硝化細菌、鉄酸化細菌、脱窒
細菌とを接触させると共に、前記反応槽内に、好気性状
態と嫌気性状態を少なくとも1回形成することを特徴と
する。
In order to achieve the above object, the present invention provides a method of nitrifying and denitrifying wastewater for biologically removing ammonia nitrogen in wastewater, comprising the steps of:
The method is characterized in that nitrifying bacteria, iron oxidizing bacteria, and denitrifying bacteria coexisting in one reaction vessel are brought into contact with each other, and an aerobic state and an anaerobic state are formed at least once in the reaction vessels.

【0006】本発明によれば、反応槽内が好気性状態に
ある時には、硝化細菌と鉄酸化細菌によりアンモニア態
窒素を酸化態窒素の中間生成物であるヒドロキシルアミ
ンの段階で好気脱窒を行うと共に、嫌気性状態の時に亜
硝酸態窒素や硝酸態窒素まで変換されずに残存するヒド
ロキシルアミンを好気脱窒する。また、反応槽内が嫌気
性状態にある時には、硝化細菌と脱窒細菌によりアンモ
ニア態窒素を酸化態窒素の最終的な生成物物である亜硝
酸態窒素や硝酸態窒素の段階で嫌気脱窒を行うと共に、
好気性状態の時に好気脱窒されずにヒドロキシルアミン
から最終的な酸化生成物まで変換された亜硝酸態窒素や
硝酸態窒素を嫌気脱窒する。
According to the present invention, when the reaction tank is in an aerobic state, nitrifying bacteria and iron-oxidizing bacteria convert ammonia-based nitrogen into aerobic denitrification at the stage of hydroxylamine, an intermediate product of oxidized nitrogen. At the same time, during the anaerobic condition, hydroxylamine remaining without being converted to nitrite nitrogen or nitrate nitrogen is aerobically denitrified. In addition, when the reaction tank is in an anaerobic state, nitrifying bacteria and denitrifying bacteria convert ammonia nitrogen into anaerobic denitrification at the stage of nitrite nitrogen and nitrate nitrogen, the final products of oxidized nitrogen. Along with
In the aerobic state, nitrite nitrogen and nitrate nitrogen converted from hydroxylamine to final oxidation products without aerobic denitrification are anaerobically denitrified.

【0007】即ち、好気性状態の時に処理時間が短く、
メタノール等の水素供与体を必要としない好気脱窒を行
い、好気脱窒で除去されなかった亜硝酸態窒素や硝酸態
窒素を嫌気脱窒で除去するようにしたので、高い窒素除
去率を得ることができ、しかも処理コストや処理時間を
短縮できる。更に、硝化・脱窒を1つの反応槽で行うこ
とができる。
That is, the processing time is short in the aerobic state,
Aerobic denitrification that does not require a hydrogen donor such as methanol is performed, and nitrite nitrogen and nitrate nitrogen that are not removed by aerobic denitrification are removed by anaerobic denitrification. Can be obtained, and the processing cost and processing time can be reduced. Furthermore, nitrification and denitrification can be performed in one reaction tank.

【0008】更には、前記好気性状態を、溶存酸素濃度
が0.5〜5mg/lで好気保持時間を10〜20分と
し、前記嫌気性状態を、溶存酸素濃度が0.5mg/l
以下で嫌気保持時間を15〜60分とすることにより、
好気脱窒及び嫌気脱窒を効率良く行うことができる。更
には、好気性状態と嫌気性状態を複数回繰り返すことに
より、ヒドロキシルアミンの生成量が多くなるので、処
理時間や処理コストの有利な好気脱窒を嫌気脱窒に優先
して行うことができる。
Further, the aerobic condition is such that the dissolved oxygen concentration is 0.5 to 5 mg / l and the aerobic holding time is 10 to 20 minutes, and the anaerobic condition is that the dissolved oxygen concentration is 0.5 mg / l.
By setting the anaerobic holding time to 15 to 60 minutes below,
Aerobic and anaerobic denitrification can be performed efficiently. Furthermore, by repeating the aerobic state and the anaerobic state a plurality of times, the amount of hydroxylamine generated increases, so that aerobic denitrification, which is advantageous in processing time and processing cost, can be performed in preference to anaerobic denitrification. it can.

【0009】[0009]

【発明の実施の形態】以下添付図面に従って本発明に係
る廃水の硝化・脱窒方法の好ましい実施の形態について
詳説する。本発明の実施の形態を説明する前に、先ず本
発明の理論的根拠について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a method for nitrifying and denitrifying wastewater according to the present invention will be described below in detail with reference to the accompanying drawings. Before describing the embodiments of the present invention, the theoretical basis of the present invention will be described first.

【0010】本発明の発明者等は、アンモニア含有廃水
と、硝化細菌と鉄酸化細菌との混成細菌を包括固定した
担体とを好気性条件下で接触させることにより、(1)
式に示すように、アンモニア態窒素(NH4 - N)の最
終的な酸化生成物である亜硝酸態窒素(NO2 - N)や
硝酸態窒素(NO3 - N)に酸化される前の中間生成物
であるヒドロキシルアミン(NH2 OH)の段階で窒素
ガス(N2 )に酸化させる好気的な脱窒反応が生じるこ
とを見い出した。
[0010] The inventors of the present invention contact the ammonia-containing wastewater under aerobic conditions with a carrier on which a mixed bacterium of nitrifying bacteria and iron oxidizing bacteria is immobilized to thereby obtain (1)
As shown in the equation, before being oxidized to nitrite nitrogen (NO 2 -N) or nitrate nitrogen (NO 3 -N) which is a final oxidation product of ammonia nitrogen (NH 4 -N). It has been found that an aerobic denitrification reaction occurs in the stage of an intermediate product, hydroxylamine (NH 2 OH), which is oxidized to nitrogen gas (N 2 ).

【0011】NH4 →NH2 OH→N2 …(1) 即ち、硝化細菌がアンモニア性窒素をヒドロキシルアミ
ンに酸化し、鉄酸化細菌がヒドロキシルアミンを窒素ガ
スに酸化し、どちらも好気性条件下で反応が行われる。
この好気脱窒は、処理時間が短く、メタノール等の水素
供与体を必要としないという大きなメリットがある反
面、ヒドロキシルアミンの段階で好気脱窒されずに亜硝
酸態窒素や硝酸態窒素まで酸化された酸化態窒素は処理
水中に残存してしまうというデメリットがある。
NH 4 → NH 2 OH → N 2 (1) That is, nitrifying bacteria oxidize ammoniacal nitrogen to hydroxylamine, and iron oxidizing bacteria oxidize hydroxylamine to nitrogen gas. The reaction takes place.
This aerobic denitrification has a great merit that the treatment time is short and does not require a hydrogen donor such as methanol, but on the other hand, nitrous nitrogen and nitrate nitrogen are not aerobicly denitrified at the hydroxylamine stage. There is a disadvantage that the oxidized nitrogen oxide remains in the treated water.

【0012】本発明は、上記知見を基に成されたもの
で、好気脱窒のメリットを最大限に生かしながら総窒素
(T- N)除去率の向上を図るために嫌気脱窒を組み合
わせると共に、この好気脱窒と嫌気脱窒を1槽の反応槽
で効率的に行うことができるように構成したものであ
る。図1〜図4は、硝化細菌、鉄酸化細菌、脱窒細菌を
反応槽内に共存させた状態において好気脱窒を行うため
に適切な溶存酸素濃度(以下、DO濃度という)と好気
保持時間、及び嫌気脱窒を行うために適切な溶存酸素濃
度(以下、DO濃度という)と嫌気保持時間を調べた図
である。
The present invention has been made based on the above findings, and combines anaerobic denitrification in order to improve the total nitrogen (TN) removal rate while maximizing the advantages of aerobic denitrification. At the same time, the aerobic denitrification and the anaerobic denitrification can be efficiently performed in one reaction tank. FIGS. 1 to 4 show a dissolved oxygen concentration (hereinafter referred to as a DO concentration) and an aerobic concentration suitable for performing aerobic denitrification in a state where nitrifying bacteria, iron oxidizing bacteria, and denitrifying bacteria coexist in a reaction tank. It is the figure which investigated the retention time, the dissolved oxygen concentration (henceforth DO concentration) suitable for performing anaerobic denitrification, and the anaerobic retention time.

【0013】図1は好気性条件でのDO濃度と窒素除去
率との関係を示したものである。図1に示すように、D
O濃度が0.5mg/l以下及び5mg/l以上では窒
素除去率が低下する。これは、DO濃度が低すぎると硝
化細菌や鉄酸化細菌の活性が小さくなりすぎて好気脱窒
が殆ど行われない一方、DO濃度が高すぎると硝化細菌
の活性が大きくなりすぎてヒドロキシルアミンから亜硝
酸態窒素や硝酸態窒素に変換される率が高くなるためと
考えられる。従って、好気脱窒を行うためのDO濃度条
件としては0.5〜5mg/lが良い。
FIG. 1 shows the relationship between the DO concentration and the nitrogen removal rate under aerobic conditions. As shown in FIG.
When the O concentration is 0.5 mg / l or less and 5 mg / l or more, the nitrogen removal rate decreases. This is because if the DO concentration is too low, the activity of nitrifying bacteria and iron-oxidizing bacteria becomes too small and aerobic denitrification is hardly performed, while if the DO concentration is too high, the activity of nitrifying bacteria becomes too large and hydroxylamine It is considered that the rate of conversion from nitrogen to nitrite nitrogen or nitrate nitrogen increases. Therefore, the DO concentration condition for performing aerobic denitrification is preferably 0.5 to 5 mg / l.

【0014】図2は、DO濃度が0.5〜5mg/lに
おける好気保持時間と窒素除去率との関係を示したもの
である。図2は、図1の結果に時間的要素を加味して好
気脱窒に適切なDO濃度をとらえたものである。図2に
示すように、好気保持時間が10分以下及び20分以上
で窒素除去率が低下する。従って、好気脱窒を行うため
の好気保持時間は、10〜20分が良い。
FIG. 2 shows the relationship between the aerobic holding time and the nitrogen removal rate when the DO concentration is 0.5 to 5 mg / l. FIG. 2 shows a DO concentration appropriate for aerobic denitrification in which the time factor is added to the results of FIG. As shown in FIG. 2, when the aerobic holding time is 10 minutes or less and 20 minutes or more, the nitrogen removal rate decreases. Therefore, the aerobic holding time for performing aerobic denitrification is preferably 10 to 20 minutes.

【0015】図1及び図2から、好気脱窒を効率的に行
うには、DO濃度が0.5〜5mg/lで好気保持時間
を10〜20分にすることが好ましい。図3は、嫌気性
条件でのDO濃度と窒素除去率との関係を示したもので
ある。図3に示すように、DO濃度が0.5mg/l以
上では窒素除去率が低下する。これは、DO濃度が0.
5mg/l以上の好気性状態では硝化細菌により硝化反
応は行われても脱窒細菌の活性が小さくなりすぎて嫌気
脱窒が緩慢になるためと考えられる。また、DO濃度が
0.5mg/l以下の嫌気性状態では硝化細菌の活性が
小さくなり硝化反応が緩慢になるものの、脱窒細菌の活
性が大きくなるので硝化により生成された亜硝酸態窒素
や硝酸態窒素は確実に嫌気脱窒されるためと考えられ
る。 図4は、図3の結果に時間的要素を加味して嫌気
脱窒に適切なDO濃度をとらえたものである。図4に示
すように、嫌気保持時間が15分以下及び60分以上で
は窒素除去率が低下する。従って、嫌気脱窒を行うため
の嫌気保持時間は15〜60分が良い。
From FIGS. 1 and 2, in order to efficiently perform aerobic denitrification, it is preferable that the DO concentration is 0.5 to 5 mg / l and the aerobic holding time is 10 to 20 minutes. FIG. 3 shows the relationship between the DO concentration and the nitrogen removal rate under anaerobic conditions. As shown in FIG. 3, when the DO concentration is 0.5 mg / l or more, the nitrogen removal rate decreases. This means that the DO concentration is 0.
It is considered that in the aerobic state of 5 mg / l or more, even if the nitrification reaction is performed by the nitrifying bacteria, the activity of the denitrifying bacteria becomes too small and the anaerobic denitrification becomes slow. In the anaerobic state where the DO concentration is 0.5 mg / l or less, the activity of the nitrifying bacteria decreases and the nitrification reaction becomes slow, but the activity of the denitrifying bacteria increases. It is considered that nitrate nitrogen is surely anaerobically denitrified. FIG. 4 shows the results of FIG. 3 in which a time factor is added to determine the DO concentration appropriate for anaerobic denitrification. As shown in FIG. 4, when the anaerobic holding time is 15 minutes or less and 60 minutes or more, the nitrogen removal rate decreases. Therefore, the anaerobic holding time for performing anaerobic denitrification is preferably 15 to 60 minutes.

【0016】図3及び図4から、嫌気脱窒を効率的に行
うには、DO濃度が0.5mg/l以下で好気保持時間
を15〜60分にすることが好ましい。図5は、本発明
の廃水の硝化・脱窒方法を適用する硝化・脱窒装置の一
例を示した断面図である。硝化・脱窒装置10は、主と
して、硝化細菌、鉄酸化細菌、脱窒細菌が混成した状態
で収納される反応槽12と、反応槽12の後記するエア
溜め部に廃水を供給する原水供給管14と、反応槽12
内にエアを曝気する曝気装置16と、反応槽12内の廃
水をゆっくりと攪拌する攪拌機18と、反応槽12内の
廃水のDO濃度を測定するDOセンサ20と、DOセン
サ20からの測定値に基づいて曝気装置16の駆動と曝
気量、及び攪拌機18の駆動を制御するコントローラ2
2と、処理水配管24とから構成される。
From FIGS. 3 and 4, in order to efficiently perform anaerobic denitrification, it is preferable that the DO concentration is 0.5 mg / l or less and the aerobic holding time is 15 to 60 minutes. FIG. 5 is a cross-sectional view showing an example of a nitrification / denitrification apparatus to which the method for nitrification / denitrification of wastewater of the present invention is applied. The nitrification / denitrification apparatus 10 mainly includes a reaction tank 12 in which nitrifying bacteria, iron oxidizing bacteria, and denitrifying bacteria are stored in a mixed state, and a raw water supply pipe for supplying wastewater to an air reservoir described later in the reaction tank 12. 14 and the reaction tank 12
An aerator 16 for aerating air into the inside, a stirrer 18 for slowly stirring the wastewater in the reaction tank 12, a DO sensor 20 for measuring the DO concentration of the wastewater in the reaction tank 12, and a measured value from the DO sensor 20 Controller 2 that controls the driving of the aerator 16 and the amount of aeration and the driving of the stirrer 18 based on the
2 and a treated water pipe 24.

【0017】反応槽12内に収納される硝化細菌、鉄酸
化細菌、脱窒細菌は、固定化材料に包括固定化された包
括固定化担体を用いることが、反応槽12内に各細菌を
高濃度に保持する上で好ましい。図5では、硝化細菌と
脱窒細菌を混成した包括固定化担体Aと鉄酸化細菌を包
括固定化した包括固定化担体Bを用いた。包括固定化す
る担体の固定化材料としては、ポリエチレングリコー
ル、ポリビニールアルコール、アクリルアミド、ポリビ
ニルホルマール等をゲル化した高分子ゲルを使用するこ
とができる。反応槽12内の下部には金網状の拡散板2
6が反応槽12の横方向に配設され、拡散板26の上側
に包括固定化担体が収納される反応部28が形成される
と共に、拡散板26の下側に曝気装置16からのエアを
溜めるエア溜め部30が形成される。これにより、エア
溜め部30で曝気されたエアは拡散板26により反応部
28全体に万遍なく供給される。また、反応槽12の上
部の処理水排出部31には担体流出防止用のスクリーン
32が設けられる。
For the nitrifying bacteria, iron oxidizing bacteria, and denitrifying bacteria contained in the reaction tank 12, use of an entrapping immobilization carrier entrapped and immobilized on an immobilizing material can increase the number of bacteria in the reaction tank 12. It is preferable to keep the concentration. In FIG. 5, an entrapping immobilization carrier A in which nitrifying bacteria and denitrifying bacteria are mixed and an entrapping immobilization carrier B in which iron-oxidizing bacteria are entrapped and immobilized were used. As a material for immobilizing the carrier to be comprehensively immobilized, a polymer gel obtained by gelling polyethylene glycol, polyvinyl alcohol, acrylamide, polyvinyl formal, or the like can be used. In the lower part of the reaction tank 12, a wire mesh diffusion plate 2 is provided.
6 is disposed in the lateral direction of the reaction tank 12, a reaction section 28 in which the entrapping immobilization carrier is accommodated is formed above the diffusion plate 26, and air from the aeration device 16 is blown below the diffusion plate 26. An air storage section 30 for storing is formed. Thus, the air aerated in the air reservoir 30 is uniformly supplied to the entire reaction unit 28 by the diffusion plate 26. Further, a screen 32 for preventing carrier outflow is provided in the treated water discharge part 31 at the upper part of the reaction tank 12.

【0018】曝気装置16は、エア溜め部30に配設さ
れた散気管36と、散気管36に圧縮エアを供給するブ
ロアー38と、ブロアー38と散気管36を繋ぐエア配
管40と、エア配管40の途中に設けられた曝気量調整
バルブ42とで構成される。コントローラ22は、DO
センサ20で測定された反応槽12内のDO濃度に基づ
いて曝気量調整バルブ42の開度を調整して曝気量を制
御すると共に、コントローラ22内に内蔵されたタイマ
ー機構により予め設定された好気保持時間と嫌気保持時
間に基づいて曝気量調整バルブ42の開閉時間を制御す
る。更には、曝気量調整バルブ42が閉成されている時
に攪拌機18を作動させる。
The aeration device 16 includes an air diffuser 36 disposed in the air reservoir 30, a blower 38 for supplying compressed air to the air diffuser 36, an air pipe 40 connecting the blower 38 and the air diffuser 36, and an air pipe. And an aeration amount adjusting valve 42 provided in the middle of 40. The controller 22 is a DO
The aeration amount is controlled by adjusting the opening of the aeration amount adjustment valve 42 based on the DO concentration in the reaction tank 12 measured by the sensor 20, and a timer set in advance by a timer mechanism built in the controller 22. The opening / closing time of the aeration amount adjusting valve 42 is controlled based on the air holding time and the anaerobic holding time. Further, the agitator 18 is operated when the aeration amount adjusting valve 42 is closed.

【0019】次に上記の如く構成された硝化・脱窒装置
により本発明の廃水の硝化・脱窒方法を説明する。コン
トローラ22は、曝気量調整バルブ42を開いて反応槽
12内にエアを曝気すると共に、DOセンサ20で測定
された反応槽12内のDO濃度に基づいて反応槽内のD
O濃度が0.5〜5mg/lになるように曝気量調整バ
ルブ42の開度を調整し、反応槽12内を好気性状態に
する。そして、コントローラ22のタイマー機構により
好気性状態を10〜20分間維持する。これにより、好
気脱窒を効率的に行うための好気性状態が形成されるの
で、廃水中のアンモニア態窒素は、NH4 →NH2 OH
→N2 の反応経路により好気脱窒される。次に、好気性
状態が10〜20分間継続したら、コントローラ22
は、曝気量調整バルブ42を閉じて反応槽12内への曝
気を停止すると共に、DOセンサ20で測定された反応
槽12内のDO濃度に基づいて反応槽12内のDO濃度
が0.5mg/l以下になるように攪拌機をゆっくりと
回転して廃水中のエアを脱気し、反応槽12内を嫌気性
状態にする。そして、コントローラ22のタイマー機構
によりこの嫌気性状態を15〜60分間維持する。これ
により、NH4 →NO3 - N(NO 2 - N)→N2 の反
応経路により嫌気脱窒される。従って、好気脱窒で残存
した硝酸態窒素や亜硝酸態窒素が除去される。
Next, a nitrification / denitrification apparatus configured as described above.
The method for nitrification and denitrification of wastewater of the present invention will be described below. Con
The trawler 22 opens the aeration amount adjusting valve 42 to open the reaction tank.
Aerating air inside 12 and measuring with DO sensor 20
D in the reaction tank based on the measured DO concentration in the reaction tank 12
Adjust the aeration amount so that the O concentration becomes 0.5 to 5 mg / l.
The opening of the lube 42 is adjusted to bring the inside of the reaction tank 12 into an aerobic state.
I do. And, by the timer mechanism of the controller 22,
Maintain an aerobic state for 10-20 minutes. This makes it
An aerobic condition is formed to efficiently perform denitrification
And the ammonia nitrogen in the wastewater is NHFour→ NHTwoOH
→ NTwoAerobic denitrification by the reaction path of Next, aerobic
If the state continues for 10 to 20 minutes, the controller 22
Closes the aeration amount adjustment valve 42 and exposes the inside of the reaction tank 12.
And the reaction measured by the DO sensor 20
DO concentration in reaction tank 12 based on DO concentration in tank 12
The stirrer slowly so that the
Rotate to degas air in wastewater and anaerobic inside reaction tank 12
State. And a timer mechanism of the controller 22
Maintain this anaerobic state for 15-60 minutes. this
Gives NHFour→ NOThree-N (NO Two-N) → NTwoAnti
Anaerobic denitrification by response route. Therefore, survived by aerobic denitrification
Nitrate nitrogen and nitrite nitrogen are removed.

【0020】これにより、好気脱窒のメリットを最大限
に生かしながら総窒素(T- N)除去率の向上を図るこ
とができる。また、好気脱窒と嫌気脱窒を1槽の反応槽
12で効率的に行うことができるので、従来のように好
気性条件を形成するための好気槽と嫌気性条件を形成す
るための嫌気槽の2槽を必要としない。従って、硝化・
脱窒装置の大幅なコンパクト化を図ることができる。
As a result, the total nitrogen (TN) removal rate can be improved while maximizing the advantages of aerobic denitrification. Further, since aerobic denitrification and anaerobic denitrification can be efficiently performed in one reaction tank 12, it is necessary to form an aerobic tank and an anaerobic condition for forming aerobic conditions as in the related art. It does not require two anaerobic tanks. Therefore, nitrification
It is possible to greatly reduce the size of the denitrification device.

【0021】この場合、好気性状態と嫌気性状態を複数
回繰り返し形成することにより、ヒドロキシルアミンの
生成量が多くなるので、好気脱窒の効率を更に向上させ
ることができる。従って、好気脱窒のメリットをより生
かすことができる。尚、本実施の形態では、反応槽内に
先ず好気性状態を形成した後に、嫌気性状態を形成する
ことで説明したが、反応槽内を先ず嫌気性状態にしてか
ら好気性状態を形成してもよい。この場合は、嫌気脱窒
で残存したヒドロキシルアミンを好気脱窒で除去する形
になる。
In this case, by repeatedly forming the aerobic state and the anaerobic state a plurality of times, the amount of hydroxylamine produced increases, so that the efficiency of aerobic denitrification can be further improved. Therefore, the advantage of aerobic denitrification can be further utilized. In the present embodiment, the aerobic state is first formed in the reaction tank, and then the anaerobic state is formed. However, the aerobic state is formed after the reaction tank is first set in the anaerobic state. You may. In this case, hydroxylamine remaining in anaerobic denitrification is removed by aerobic denitrification.

【0022】[0022]

【実施例】【Example】

(実施例1)図5に示したように硝化・脱窒装置を用い
て行った実施例について説明する。反応槽内には、硝化
細菌と脱窒細菌を混成した状態で包括固定化した第1の
担体と、鉄酸化細菌を包括固定した第2の担体を収納し
た。第1の担体は、下水処理場の標準活性汚泥を固定化
用種菌として使用した。包括固定は、活性汚泥2重量
%、ポリエチレングリコールプレポリマー15重量%、
N,N,N’,N’−テトラメチルエチレンジアミン
0.5重量%、及び過硫酸カリウム0.25重量%を水
中に混合し、ゲル化させることにより行った。得られた
ゲルは、3mm角のサイコロ状のペレット(担体)に切
断した。そして、得られたペレットをアンモニア態窒素
濃度が30mg/lの廃水で培養した。培養条件は、ペ
レットの充填率10%、廃水中のDO濃度が4.5〜6
mg/lで行った。培養90日目のペレットの硝化細菌
の菌数は、1ペレット当たり2.0×1010cells
/cm3 となり、脱窒細菌の菌数は、1ペレット当たり
4.57×109 cells/cm3 となった。培養さ
れた硝化及び脱窒細菌のペレットを反応槽内に15%の
充填率になるように投入した。
(Embodiment 1) An embodiment performed using a nitrification / denitrification apparatus as shown in FIG. 5 will be described. In the reaction tank, a first carrier entrapping and immobilizing nitrifying bacteria and denitrifying bacteria in a mixed state and a second carrier entrapping and immobilizing iron-oxidizing bacteria were accommodated. As the first carrier, standard activated sludge from a sewage treatment plant was used as an inoculum for immobilization. Comprehensive fixation: activated sludge 2% by weight, polyethylene glycol prepolymer 15% by weight,
The reaction was carried out by mixing 0.5% by weight of N, N, N ', N'-tetramethylethylenediamine and 0.25% by weight of potassium persulfate in water to form a gel. The obtained gel was cut into 3 mm square die-shaped pellets (carriers). Then, the obtained pellet was cultured in wastewater having an ammonia nitrogen concentration of 30 mg / l. The culture conditions were as follows: pellet filling rate 10%, DO concentration in wastewater 4.5 to 6
Performed at mg / l. The number of nitrifying bacteria in the pellet on day 90 of the culture was 2.0 × 10 10 cells / pellet.
/ Cm 3 , and the number of denitrifying bacteria was 4.57 × 10 9 cells / cm 3 per pellet. The pellets of the cultured nitrifying and denitrifying bacteria were charged into the reaction tank so as to have a filling rate of 15%.

【0023】一方、鉄酸化細菌は、廃鉱山から採集した
試料を硝化細菌と同様の方法で包括固定化した。そして
得られたペレットを、アンモニア態窒素濃度が30mg
/lで、且つ2価の鉄が30mg/lの廃水で培養し
た。培養条件は、ペレットの充填率10%、廃水中のD
O濃度が4.5〜6mg/lで行った。培養90日目の
ペレットの鉄酸化細菌の菌数は、1ペレット当たり3.
25×109 cells/cm3 となった。培養された
鉄酸化細菌のペレットを反応槽に3%の充填率になるよ
うに投入した。
On the other hand, as for iron oxidizing bacteria, a sample collected from a waste mine was entrapped and immobilized in the same manner as nitrifying bacteria. Then, the obtained pellets have an ammonia nitrogen concentration of 30 mg.
Per liter and 30 mg / l of divalent iron in wastewater. The culture conditions were as follows: pellet filling rate 10%, D in wastewater.
The test was performed at an O concentration of 4.5 to 6 mg / l. The number of iron oxidizing bacteria in the pellet on day 90 of the culture was 3.
It was 25 × 10 9 cells / cm 3 . The cultured pellets of iron oxidizing bacteria were charged into the reaction tank so as to have a filling rate of 3%.

【0024】試験に供した廃水のアンモニア態窒素濃度
は、30mg/lであり、脱窒細菌の栄養源としての水
素供与体は、酢酸ナトリウム(C)をC/Nの比が1.
6になるように添加した。反応槽の滞留時間は3時間と
した。また、DO濃度を0.5〜5mg/lに維持する
好気保持時間を15分とし、DO濃度を0.5mg/l
以下に維持する嫌気保持時間を45分とした。
The concentration of ammonia nitrogen in the wastewater subjected to the test was 30 mg / l, and the hydrogen donor as a nutrient source of the denitrifying bacteria was sodium acetate (C) having a C / N ratio of 1.
6 was added. The residence time in the reactor was 3 hours. The aerobic holding time for maintaining the DO concentration at 0.5 to 5 mg / l was 15 minutes, and the DO concentration was 0.5 mg / l.
The anaerobic holding time maintained below was 45 minutes.

【0025】また、比較例として、反応槽に鉄酸化細菌
が存在しない以外は実施例と同じ条件で行った。その結
果、比較例の処理水の水質は、NH4-N濃度11mg/l
以下、NH2 OH濃度13mg/l以下、NO2-N濃度
0.1mg/l以下、NO3-N濃度が0.1mg/l以下と
なり、総窒素濃度で約24mg/lあり窒素除去率が20
%と悪かった。
As a comparative example, the experiment was performed under the same conditions as in the example except that no iron-oxidizing bacteria were present in the reaction tank. As a result, the quality of the treated water of the comparative example was found to be NH 4 —N concentration 11 mg / l.
Hereinafter, the NH 2 OH concentration is 13 mg / l or less, the NO 2 -N concentration is 0.1 mg / l or less, the NO 3 -N concentration is 0.1 mg / l or less, and the total nitrogen concentration is about 24 mg / l. 20
% Was bad.

【0026】これに対し、実施例の処理水の水質は、N
4-N濃度5mg/l以下、NH2 OH濃度0.1mg/l
以下、NO2-N濃度0.1mg/l以下、NO3-N濃度
0.1mg/l以下で総窒素濃度でも5mg/l以下であ
り、窒素除去率が83%以上となった。比較例の処理水
にはヒドロキシルアミン(NH2 OH)が多く残存して
おり、鉄酸化細菌が存在する状態で好気脱窒を行うこと
が処理水の総窒素除去にとって有効であることが分か
る。従って、反応槽内を先ず嫌気性状態にしてから次に
好気性状態を形成し、嫌気脱窒で残存したヒドロキシル
アミンを好気脱窒で除去しても十分有効であることが確
かめられた。
On the other hand, the quality of the treated water of the embodiment is N
H 4 -N concentration 5 mg / l or less, NH 2 OH concentration 0.1 mg / l
Hereinafter, the NO 2 -N concentration was 0.1 mg / l or less, the NO 3 -N concentration was 0.1 mg / l or less, and the total nitrogen concentration was 5 mg / l or less, and the nitrogen removal rate was 83% or more. A large amount of hydroxylamine (NH 2 OH) remains in the treated water of the comparative example, and it can be seen that aerobic denitrification in the presence of iron oxidizing bacteria is effective for removing total nitrogen in the treated water. . Therefore, it was confirmed that even if the inside of the reaction tank was first made anaerobic, then an aerobic state was formed, and the remaining hydroxylamine by anaerobic denitrification was removed by aerobic denitrification, and it was sufficiently effective.

【0027】[0027]

【発明の効果】以上説明したように、本発明の廃水の硝
化・脱窒方法によれば、好気脱窒のメリットを最大限に
生かしながら、好気脱窒で残存した亜硝酸態窒素や硝酸
態窒素を嫌気脱窒で除去することができる。これによ
り、総窒素除去率の向上を図ることができると共に、好
気脱窒を行うことにより処理時間及び処理コストを低減
することができる。
As described above, according to the method for nitrifying and denitrifying wastewater of the present invention, while maximizing the advantages of aerobic denitrification, the nitrite nitrogen remaining in aerobic denitrification can be reduced. Nitrate nitrogen can be removed by anaerobic denitrification. As a result, the total nitrogen removal rate can be improved, and the processing time and processing cost can be reduced by performing aerobic denitrification.

【0028】更には、好気脱窒と嫌気脱窒を1槽の反応
槽で効率的に行うことができるように構成したので、好
気性条件を形成するための好気槽と嫌気性条件を形成す
るための嫌気槽の2槽を必要としない。従って、装置の
大幅なコンパクト化を図ることができる。
Further, since the aerobic denitrification and the anaerobic denitrification can be efficiently performed in one reaction tank, the aerobic tank and the anaerobic condition for forming the aerobic condition are used. It does not require two anaerobic tanks to form. Therefore, the size of the apparatus can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、好気性条件での溶存酸素濃度と窒素除
去率の関係を示す説明図
FIG. 1 is an explanatory diagram showing the relationship between dissolved oxygen concentration and nitrogen removal rate under aerobic conditions.

【図2】図2は、好気性条件での好気保持時間と窒素除
去率の関係を示す説明図
FIG. 2 is an explanatory diagram showing the relationship between aerobic holding time and nitrogen removal rate under aerobic conditions.

【図3】図3は、嫌気性条件での溶存酸素濃度と窒素除
去率の関係を示す説明図
FIG. 3 is an explanatory diagram showing a relationship between a dissolved oxygen concentration and a nitrogen removal rate under anaerobic conditions.

【図4】図4は、嫌気性条件での好気保持時間と窒素除
去率の関係を示す説明図
FIG. 4 is an explanatory diagram showing the relationship between aerobic holding time and nitrogen removal rate under anaerobic conditions.

【図5】図5は、本発明の廃水の硝化・脱窒方法を適用
する硝化・脱窒装置の説明する断面図
FIG. 5 is a cross-sectional view illustrating a nitrification / denitrification apparatus to which the wastewater nitrification / denitrification method of the present invention is applied.

【符号の説明】[Explanation of symbols]

10…硝化・脱窒装置 12…反応槽 14…原水供給管 16…曝気装置 18…攪拌機 20…DOセンサ 22…コントローラ 26…拡散板 28…反応部 30…エア溜め部 32…スクリーン 42…曝気量調整バルブ DESCRIPTION OF SYMBOLS 10 ... Nitrification / denitrification apparatus 12 ... Reaction tank 14 ... Raw water supply pipe 16 ... Aeration device 18 ... Stirrer 20 ... DO sensor 22 ... Controller 26 ... Diffusion plate 28 ... Reaction part 30 ... Air reservoir part 32 ... Screen 42 ... Aeration amount Adjustment valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小笠原 多佳子 東京都千代田区内神田1丁目1番14号 日 立プラント建設株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takako Ogasawara 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】廃水中のアンモニア態窒素を生物学的に除
去する廃水の硝化・脱窒方法において、 前記廃水と、1つの反応槽内に共存させた硝化細菌、鉄
酸化細菌、脱窒細菌とを接触させると共に、前記反応槽
内に、好気性状態と嫌気性状態を少なくとも1回形成す
ることを特徴とする廃水の硝化・脱窒方法。
1. A method of nitrifying and denitrifying wastewater for biologically removing ammonia nitrogen in wastewater, wherein the nitrifying bacteria, iron oxidizing bacteria, and denitrifying bacteria coexist in the wastewater and one reaction tank. And nitrifying and denitrifying wastewater, wherein an aerobic state and an anaerobic state are formed at least once in the reaction tank.
【請求項2】前記反応槽内に先ず好気性状態を形成して
から次に嫌気性状態を形成することを特徴とする請求項
1の廃水の硝化・脱窒方法。
2. The method for nitrifying and denitrifying wastewater according to claim 1, wherein an aerobic state is formed first in said reaction tank and then an anaerobic state is formed.
【請求項3】前記好気性状態は、溶存酸素濃度が0.5
〜5mg/lで好気保持時間が10〜20分であり、前
記嫌気性状態は、溶存酸素濃度が0.5mg/l以下で
嫌気保持時間が15〜60分であることを特徴とする請
求項1又は2の廃水の硝化・脱窒方法。
3. The aerobic condition, wherein the dissolved oxygen concentration is 0.5
The aerobic holding time is 10 to 20 minutes at 〜5 mg / l, and the anaerobic state is that the dissolved oxygen concentration is 0.5 mg / l or less and the anaerobic holding time is 15 to 60 minutes. Item 10. The method for nitrifying and denitrifying wastewater according to item 1 or 2.
【請求項4】前記硝化細菌、鉄酸化細菌、脱窒細菌は、
高分子ゲルに包括固定化された担体であることを特徴と
する請求項1、2又は3の廃水の硝化・脱窒方法。
4. The nitrifying bacteria, iron oxidizing bacteria, and denitrifying bacteria,
4. The method for nitrifying and denitrifying wastewater according to claim 1, wherein the carrier is a carrier entrapped and fixed in a polymer gel.
JP34335696A 1996-12-24 1996-12-24 Nitrification and denitrification of wastewater Expired - Fee Related JP3278841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34335696A JP3278841B2 (en) 1996-12-24 1996-12-24 Nitrification and denitrification of wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34335696A JP3278841B2 (en) 1996-12-24 1996-12-24 Nitrification and denitrification of wastewater

Publications (2)

Publication Number Publication Date
JPH10180291A true JPH10180291A (en) 1998-07-07
JP3278841B2 JP3278841B2 (en) 2002-04-30

Family

ID=18360896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34335696A Expired - Fee Related JP3278841B2 (en) 1996-12-24 1996-12-24 Nitrification and denitrification of wastewater

Country Status (1)

Country Link
JP (1) JP3278841B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314903A (en) * 2005-05-11 2006-11-24 National Institute Of Advanced Industrial & Technology Method and apparatus for treating ammonia anaerobically
JP2011507691A (en) * 2007-12-28 2011-03-10 メルコスール コマーシャル エリテーデーアー. Method to increase the concentration of microbial colonies in the process of removing impurities by anaerobic digestion
CN104129851A (en) * 2014-08-14 2014-11-05 合肥工业大学 Method for treating nitrate nitrogen in underground water via calcined pyrite
JP2016091805A (en) * 2014-11-05 2016-05-23 国立研究開発法人農業・食品産業技術総合研究機構 Microbial fuel cell
WO2019064889A1 (en) * 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Liquid treatment system
JP2022171516A (en) * 2021-04-30 2022-11-11 株式会社 イージーエス Treatment method for high concentration organic matter-containing waste water
CN115746857A (en) * 2022-11-08 2023-03-07 甘肃省农业科学院旱地农业研究所 Preparation method of soil conditioner
CN116354506A (en) * 2023-03-21 2023-06-30 北京工业大学 Method for realizing heterotrophic nitrification-aerobic denitrification high-efficiency denitrification through stress of high-concentration quorum sensing inhibitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314903A (en) * 2005-05-11 2006-11-24 National Institute Of Advanced Industrial & Technology Method and apparatus for treating ammonia anaerobically
JP2011507691A (en) * 2007-12-28 2011-03-10 メルコスール コマーシャル エリテーデーアー. Method to increase the concentration of microbial colonies in the process of removing impurities by anaerobic digestion
CN104129851A (en) * 2014-08-14 2014-11-05 合肥工业大学 Method for treating nitrate nitrogen in underground water via calcined pyrite
JP2016091805A (en) * 2014-11-05 2016-05-23 国立研究開発法人農業・食品産業技術総合研究機構 Microbial fuel cell
WO2019064889A1 (en) * 2017-09-27 2019-04-04 パナソニックIpマネジメント株式会社 Liquid treatment system
JP2022171516A (en) * 2021-04-30 2022-11-11 株式会社 イージーエス Treatment method for high concentration organic matter-containing waste water
CN115746857A (en) * 2022-11-08 2023-03-07 甘肃省农业科学院旱地农业研究所 Preparation method of soil conditioner
CN116354506A (en) * 2023-03-21 2023-06-30 北京工业大学 Method for realizing heterotrophic nitrification-aerobic denitrification high-efficiency denitrification through stress of high-concentration quorum sensing inhibitor
CN116354506B (en) * 2023-03-21 2024-01-19 北京工业大学 Method for realizing heterotrophic nitrification-aerobic denitrification high-efficiency denitrification through stress of high-concentration quorum sensing inhibitor

Also Published As

Publication number Publication date
JP3278841B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
EP1806325B1 (en) Method of treating nitrogen-containing liquid
CN107108293B (en) Method and apparatus for removing nitrogen from nitrogen-containing wastewater
CA2247406C (en) Biodegradable effluent nutrient removal
JP3485240B2 (en) Nitrogen removal method and apparatus, and entrapping immobilization carrier
JP2001170684A (en) Ammonia-containing waste water treatment method and device therefor
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP3278841B2 (en) Nitrification and denitrification of wastewater
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
JPH0975984A (en) Biological nitrogen removing device
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
Garrido et al. Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor
JP2003033789A (en) Method for denitrificaton treatment using living organisms and device therefor
JP7133339B2 (en) Nitrogen treatment method
JP3303665B2 (en) Nitrification / denitrification method and apparatus
JP4817057B2 (en) Batch treatment of nitrogen-containing water
JPH10128389A (en) Method and apparatus for waste water treatment
JP2013169529A (en) Wastewater treatment method and wastewater treatment apparatus
JP2000061494A (en) Biological treatment of ammonia nitrogen
JPH07290088A (en) Method for biologically denitrifying organic waste water
JPH07313992A (en) Treatment of sewage
JP3345874B2 (en) Comprehensive immobilization carrier and treatment device for wastewater containing ammonia
JP3125628B2 (en) Wastewater treatment method
JPS6117559B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees