JPH10180263A - Structure-controlled water, its preparation and its utilization - Google Patents

Structure-controlled water, its preparation and its utilization

Info

Publication number
JPH10180263A
JPH10180263A JP34528296A JP34528296A JPH10180263A JP H10180263 A JPH10180263 A JP H10180263A JP 34528296 A JP34528296 A JP 34528296A JP 34528296 A JP34528296 A JP 34528296A JP H10180263 A JPH10180263 A JP H10180263A
Authority
JP
Japan
Prior art keywords
water
group
raw
substance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34528296A
Other languages
Japanese (ja)
Inventor
Kunihiko Okajima
邦彦 岡島
Tomonori Koizumi
智徳 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP34528296A priority Critical patent/JPH10180263A/en
Publication of JPH10180263A publication Critical patent/JPH10180263A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain useful water groups from an aq. raw soln. contg. raw water or a group of materials compatible with the raw water by specifying each peak temp. of specified relaxation peaks and a depolarization current value in the heat-stimulated depolarization current-temp. curve of water base on the raw water. SOLUTION: In the heat-stimulated depolarization current-temp. curve of water based on the raw water, at least one water group selected from among the first, second and third water groups with the respective peak temps. Tm (i=a, b,..., e) of the five relaxation peaks (a, b,..., e from the low-temp. side) appearing at -150 to -20 deg.C and the depolarization current values Imi (i=a, b,..., e) satisfying the following conditions is obtained. In this case, Tma -143 deg.C, Tmb<-120 deg.C, Tmc<-102 deg.C, Tme<-36 deg.C and Ima/Imc>5.0 for the first group, Tma<-143 deg.C, Tmb<-120 deg.C, Tmc<-100 deg.C, Ima/Imb<2.0 and Ima/Imc<4.0 for the second group, and Tma>-142 deg.C, Ima/Imc>5.0, Ima/Imd<1.5 or Imd/Imc>4.5 for the third group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原料水および原料水
系液の構造を制御して得られた特定のパラメータを有す
る水群を利用して力学的、電気的に緩和する物体または
物質系の構造を制御する方法及び、副次的に植物や細胞
などの増殖促進法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an object or a substance which is mechanically and electrically relaxed by utilizing a water group having specific parameters obtained by controlling the structures of raw water and raw liquid. And a method for promoting the growth of plants, cells, and the like.

【0002】[0002]

【従来の技術】従来、水は高分子も含めた化学製品、成
形体などを製造、管理する過程で、プロセスや品質上、
色々な点で悪影響を及ぼしたり、時には、好結果を与え
ることが、経験的に知られている。一方で、水に外的刺
激を加え、例えば一定の磁束密度下で処理した水が配管
中の鉄錆を除去するとか、いわゆるイオン水を用いて、
食品、魚介類の鮮度を保持するなどの工業的に意味のあ
る利用も行われているが、残念ながら、いずれにして
も、水の構造を特定し、その構造を選択的に制御するこ
とを利用または、応用した例は殆ど見あたらない。特
に、力学的、電気的に緩和する物体または物質系に対し
ては、水の与える影響は非常に大きいにもかかわらず、
上記視点を応用した構造制御に関する技術は、皆無に等
しい。
2. Description of the Related Art Conventionally, water is used in the process of manufacturing and managing chemical products and molded products including polymers, and in terms of process and quality,
It has been empirically known to adversely affect and, in some cases, produce good results. On the other hand, by applying external stimulus to the water, for example, water treated under a constant magnetic flux density removes iron rust in the piping, or using so-called ionic water,
There are also industrially meaningful uses such as preserving the freshness of food and seafood, but unfortunately, in any case, it is necessary to identify the structure of water and selectively control the structure. Almost no use or application is found. In particular, the effect of water is very large for objects and material systems that are mechanically and electrically relaxed.
There are almost no techniques for structural control using the above viewpoint.

【0003】即ち、従来、水の平均的な構造を測定する
手段として、密度、粘度、音速、ラマン分光、NMR法
緩和時間、時間分解誘電緩和法などがあるが、色々な外
的刺激を加えることにより水の構造が変化しているにも
かかわらず、水の構造差を断定できるものではなく、さ
らに、構造の分布については全く、規定できないのが現
状である。逆に言えば、もっとミクロな領域が変わって
いる可能性があると言える。このことが一因となって、
高分子など力学的、電気的に緩和する系に各種処理水を
適応し、新しい作用効果を見いだそうということ自体、
根本的な科学的根拠が希薄となるがゆえ実施されていな
いのが現状である。
Conventionally, means for measuring the average structure of water include density, viscosity, sound velocity, Raman spectroscopy, NMR relaxation time, time-resolved dielectric relaxation method, etc., but various external stimuli are applied. In spite of the fact that the structure of water has changed, it is not possible to determine the difference in the structure of water, and furthermore, at present, the distribution of the structure cannot be specified at all. Conversely, it can be said that there is a possibility that more microscopic areas have changed. This is partly due to
Applying various types of treated water to mechanically and electrically relaxing systems such as polymers, and finding new effects themselves,
At present, it has not been implemented because the underlying scientific basis is sparse.

【0004】一方で、色々な外的刺激で処理された水ま
たはその外的刺激法を応用した場合、水のクラスターが
小さくなるとか、科学的根拠無しに云々されており、特
に人間の健康によいとか、植物の生育が速まるとか、趣
向品の味が変わるなど、定量的評価の不可能な領域で信
じられているのも事実である。このような領域でも、科
学的な意義付けは重要である。
[0004] On the other hand, when water treated with various external stimuli or its external stimulus method is applied, it is said that water clusters become small or without scientific evidence. It is true that they are believed to be in areas where quantitative evaluation is not possible, such as good quality, faster plant growth, or a change in taste of specialty items. Scientific significance is important in these areas as well.

【0005】また、最近、ポリアミドやセルロースの機
械特性や物性安定性が、極めて低温(−50℃以下)の
力学的緩和モードによってほぼ決定されることが最近判
ってきており、文献等に記載されている。この事実を基
に先に述べたように、仮に水のミクロな状態が変化した
ことが特定されるなら、これを適応して高分子やその溶
液などの力学的、誘電的緩和を制御し、場合によって
は、より有用な製品に転化できる可能性がある。即ち、
極めて、広範な技術領域を創成させ得る可能性がある。
Recently, it has recently been found that the mechanical properties and stability of physical properties of polyamides and celluloses are almost determined by the mechanical relaxation mode at an extremely low temperature (-50 ° C. or lower). ing. As mentioned earlier based on this fact, if it is specified that the microscopic state of water has changed, it is adapted to control the mechanical and dielectric relaxation of polymers and their solutions, In some cases, it can be converted to a more useful product. That is,
It is possible that a very wide range of technology can be created.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは上記観点
より、先ず、水のミクロな構造とその分布を評価する手
段を開発した。そして、それを基に、本発明では、基本
的に構造が制御された水を提供し、および該水またはそ
れを与える外的刺激を利用して高分子やその溶液の構造
を制御し、有用な最終製品に転換する方法を特に提供す
るものである。
SUMMARY OF THE INVENTION From the above viewpoints, the present inventors have first developed means for evaluating the microstructure of water and its distribution. On the basis of this, the present invention provides water whose structure is basically controlled, and controls the structure of a polymer or a solution thereof by utilizing the water or an external stimulus that gives the water. It specifically provides a way to convert to a final product.

【0007】[0007]

【課題を解決するための手段】上記の課題を達成するた
めには、通常用いられる蒸留水やイオン交換水(原料
水)を対象に、外的刺激による各種処理水のミクロ構造
を規定する手段の開発と、該刺激条件に対する水構造を
規定することが不可欠である。本発明者らは、各種処理
水に対して熱刺激脱分極電流−温度曲線測定法を適用し
鋭意検討を重ねた結果、特定の外的刺激条件を与えると
原料水またはこれに相溶性の物質群を含む原料水系液か
ら3つの群からなる有用な水群が得られることを見出し
た。さらにこれら3群の水群により力学的、電気的に緩
和する物体または物質系に含浸などの処理を施した該物
体または、物質系の構造制御性に対して、固体構造、相
分離現象、系中での構造形成性および該物質との反応性
などの観点から検討した結果、前記の水群は、通常の水
やそれに相溶する物質を加えた系では達成出来ない新た
な構造制御や、それに伴う反応促進が可能になることを
見出し本発明に至ったものである。
Means for Solving the Problems In order to achieve the above-mentioned object, means for defining the microstructure of various kinds of treated water by external stimulus for commonly used distilled water or ion-exchanged water (raw water). It is imperative to develop and to define the water structure for the stimulation conditions. The present inventors have applied the heat-stimulated depolarization current-temperature curve measurement method to various types of treated water, and as a result of intensive studies, when given a specific external stimulus condition, the raw material water or a substance compatible therewith. It has been found that a useful water group consisting of three groups can be obtained from the raw material aqueous solution containing the groups. Furthermore, the object or material which is mechanically and electrically relaxed by these three water groups is subjected to treatment such as impregnation or the like, and the solid structure, phase separation phenomenon, system As a result of examination from the viewpoint of the structure forming property in and the reactivity with the substance, the water group is a new structure control that cannot be achieved with a system to which ordinary water or a substance compatible therewith is added, It has been found that the reaction can be accelerated accordingly, and the present invention has been accomplished.

【0008】すなわち、本発明は、(1)原料水を基準
にして、本文に規定する方法で得られる水に対する熱刺
激脱分極電流−温度曲線(図1参照)において、−15
0℃〜−20℃に出現する5つの緩和ピーク(低温側よ
りa,b,…,e)の各ピーク温度Tmi(i=a,
b,…,e)と脱分極電流値Imi(i=a,b,…,
e)が以下の条件を満足するように制御された下記第1
群水、第2群水および第3群水の3群の水群から選ばれ
た少なくとも1つの水群、 第1群水;Tma<−143℃ Tmb<−120℃ Tmc<−102℃ Tme< −36℃ Ima/Imc>5.0 第2群水;Tma<−143℃ Tmb<−120℃ Tmc<−100℃ Ima/Imb<2.0 Ima/Imc<4.0 第3群水;Tma>−142℃ Ima/Imc>5.0 Ima/Imd<1.5またはImd/Imc>4.5 (2)水と相溶する物質群を混合してなる前記(1)記
載の水群、または、水と相溶する物質群を含む原料水系
液に対し、本質的に水自身が、前記(1)記載の条件を
満たすべく外的刺激を加えて調製された前記(1)記載
の水群、(3)前記(1)、(2)記載の水群を用いて
力学的、電気的に緩和する物体または物質系を処理する
ことにより、該物体または、物質系の構造を制御する方
法、(4)前記(2)記載の水群に反応性物質が存在し
ている系を用いて、力学的、電気的に緩和する物体を処
理をすることにより該物体との反応を促進する方法、
(5)前記(1)、(2)記載の原料水および原料水系
液を用いて、力学的、電気的に緩和する物体または物質
系を処理した後、本質的に水自身が前記(1)記載の条
件を満たすべく外的刺激を加えることを特徴とした該物
体または、物質系の構造を制御する方法、(6)前記
(2)記載の原料水系液に反応性物質が存在している系
を用いて、力学的、電気的に緩和する物体を処理した
後、本質的に水自身が前記(1)記載の条件を満たすべ
く外的刺激を加えることを特徴とした該物体との反応を
促進する方法に関する。
That is, the present invention relates to (1) a heat-stimulated depolarization current-temperature curve (see FIG. 1) for water obtained by the method defined in the present text, based on raw water.
Each peak temperature Tm i (i = a, 5) of five relaxation peaks (a, b,..., E from the low temperature side) appearing at 0 ° C. to −20 ° C.
b,..., e) and the depolarization current value Im i (i = a, b,.
e) is controlled to satisfy the following condition:
Gunsui, at least one water groups selected from the second group water, and the third 3 group of water groups group water, first Gunsui; Tm a <-143 ℃ Tm b <-120 ℃ Tm c <-102 ℃ Tm e <-36 ℃ Im a / Im c> 5.0 second Gunsui; Tm a <-143 ℃ Tm b <-120 ℃ Tm c <-100 ℃ Im a / Im b <2.0 Im a / Im c <4.0 third group water; Tm a > −142 ° C. Im a / Im c > 5.0 Im a / I m d <1.5 or Im d / I m c > 4.5 (2) Water In contrast to the water group described in (1) above, which is obtained by mixing a substance group compatible with water, or a raw material aqueous liquid containing a substance group compatible with water, water itself essentially contains the water group described in (1) above. Using the water group according to the above (1) and (3) the water group according to the above (1) and (2), which are prepared by applying an external stimulus to satisfy the conditions, mechanically and electrically relax the water group. A method for controlling the structure of an object or a substance system by treating the object or the substance system, (4) using a system in which a reactive substance is present in the water group according to (2) above, A method of treating an electrically relaxed object to promote a reaction with the object,
(5) After treating an object or a substance system that is mechanically and electrically relaxed using the raw water and the raw water-based liquid described in the above (1) and (2), the water itself essentially contains the water (1). A method for controlling the structure of the object or the substance system, which comprises applying an external stimulus to satisfy the conditions described in (6), wherein a reactive substance is present in the raw material aqueous solution according to (2). After treating a mechanically and electrically relaxed object using the system, the water itself essentially applies an external stimulus to satisfy the condition described in (1) above, and the reaction with the object. How to promote.

【0009】即ち、本発明の技術原理は、特定の外的刺
激を通常の水に加え構造を制御した水、または、通常の
水存在下に該外的刺激を作用せしめて、基本的に水が作
用し得る部位を有する物質または物質系の構造を制御
し、それらの有用性を顕著に向上させるという、極めて
応用範囲の広い技術である。
That is, the technical principle of the present invention is to apply a specific external stimulus to ordinary water to control the structure of the water or to apply the external stimulus in the presence of ordinary water to basically apply water to the water. This is an extremely wide-ranging technique of controlling the structure of a substance or a substance system having a site where can act, and significantly improving their usefulness.

【0010】以下、本発明を詳細に説明する。本発明に
言う3群の水は原料水を基準として、本文に規定する方
法で得られる水に対する熱刺激脱分極電流−温度曲線
(図1参照)において、−150℃〜−20℃に出現す
る5つの緩和ピーク(低温側よりa,b,…,e)の各
ピーク温度Tmi(i=a,b,…,e)と脱分極電流
値Imi(i=a,b,…,e)が以下の条件を満足す
るように制御された3群の水群である。これらは各水群
単独でも、また任意の組み合わせ、および配合割合で混
合して使用することもできる。
Hereinafter, the present invention will be described in detail. The three groups of water referred to in the present invention appear at -150 ° C to -20 ° C in the heat-stimulated depolarization current-temperature curve (see Fig. 1) for water obtained by the method defined in the present text, based on the raw water. The peak temperatures Tm i (i = a, b,..., E) of the five relaxation peaks (a, b,..., E from the low temperature side) and the depolarization current value Im i (i = a, b,. ) Are three water groups controlled to satisfy the following conditions. These water groups can be used alone or in any combination and mixing ratio.

【0011】 第1群水;Tma<−143℃ Tmb<−120℃ Tmc<−102℃ Tme< −36℃ Ima/Imc>5.0 第2群水;Tma<−143℃ Tmb<−120℃ Tmc<−100℃ Ima/Imb<2.0 Ima/Imc<4.0 第3群水;Tma>−142℃ Ima/Imc>5.0 Ima/Imd<1.5またはImd/Imc>4.5 ここに、先ず、熱刺激脱分極電流(I)−温度曲線
(T)の測定法を説明する。熱刺激脱分極電流−温度測
定法は、試料に直流電場をかけて分極という準平衡な励
起状態を作り、そのまま温度を下げて先の分極を凍結さ
せた後、等速昇温過程で起こる脱分極挙動を電流値とし
て観測するものである。具体的には、不活性ガスである
ヘリウム気体中において、該水系試料を電極間に静置さ
せ、−10℃(凍結温度:Tf)で15分間(凍結時間
f)凍結させ、その後2分間(分極時間:tp)−10
℃(分極温度:Tp)で、100V/mm(電界強度:
p)の直流電界を加えることにより該試料の双極子モ
ーメントを電界方向に配向させる。さらにその後、−1
65℃(脱分極温度:Td)まで、急激に冷却した後、
電界を開放し2分間等温(脱分極時間:td)に維持し
た後、7℃/分(昇温速度:β)の速度で昇温していく
過程で双極子モーメントの脱分極が起こり、−165℃
から−20℃付近までにa〜eの5つのピークが電流強
度の変化値として観測できる。上記測定法により得られ
た脱イオン水の熱刺激脱分極電流(I)−温度(T)曲
線を図1に記載する。ここで、TおよびIの添え字mは
マキシマムピークを、a〜eは低温側から順次出現する
ピークを示すものであり、この熱刺激脱分極電流(I)
−温度(T)曲線において、Tmが低いほど動きやすい
構造の水の存在を示唆し、また、脱分極電流強度が大き
い程その状態を形成する水の分率が高いことを示すもの
である。さらに詳細には、各ピークa〜eの昇温速度依
存性から各ピークの運動構成単位を評価した結果、概
ね、活性化エネルギーはdモードを除き、低温側から夫
々、4.8、6.3、13.3、22.0キロカロリー
/モルとなっており、低温モードほど水自身の協同運動
構成単位は小さいものと判断できる。すなわち、水の分
子運動は、水分子単独で運動状態を形成しているのでは
なく、ある数の水分子の集合体を構成単位とした協同運
動を形成していることが判り、この単位を協同運動構成
単位という。また、図1から明らかなように、eピーク
はそれに続く氷の融解に基づくピークの肩として観測さ
れ、このピーク強度温度Tmeが低い程、融点が低いと
考えられる。
[0011] The first Gunsui; Tm a <-143 ℃ Tm b <-120 ℃ Tm c <-102 ℃ Tm e <-36 ℃ Im a / Im c> 5.0 second Gunsui; Tm a <- 143 ℃ Tm b <-120 ℃ Tm c <-100 ℃ Im a / Im b <2.0 Im a / Im c <4.0 third Gunsui; Tm a> -142 ℃ Im a / Im c> 5 here .0 Im a / Im d <1.5 or Im d / Im c> 4.5, first, thermally stimulated depolarization current (I) - describing a method of measuring the temperature curve (T). In the thermal stimulation depolarization current-temperature measurement method, a DC electric field is applied to a sample to create a quasi-equilibrium excited state called polarization, and the temperature is lowered as it is to freeze the previous polarization. The polarization behavior is observed as a current value. Specifically, the aqueous sample was allowed to stand still between the electrodes in helium gas, which is an inert gas, and frozen at −10 ° C. (freezing temperature: T f ) for 15 minutes (freezing time t f ). minutes (polarization time: t p) -10
° C (polarization temperature: T p ), 100 V / mm (electric field strength:
By applying a DC electric field of V p ), the dipole moment of the sample is oriented in the direction of the electric field. After that, -1
After rapidly cooling to 65 ° C. (depolarization temperature: T d ),
After releasing the electric field and maintaining the temperature isothermally (depolarization time: t d ) for 2 minutes, depolarization of the dipole moment occurs in the process of increasing the temperature at a rate of 7 ° C./min (heating rate: β), -165 ° C
From 5 to around −20 ° C., five peaks a to e can be observed as changes in current intensity. FIG. 1 shows a heat-stimulated depolarization current (I) -temperature (T) curve of deionized water obtained by the above measurement method. Here, the suffix m of T and I indicates the maximum peak, and a to e indicate the peaks appearing sequentially from the low temperature side.
-In the temperature (T) curve, a lower Tm indicates the presence of water having a more mobile structure, and a higher depolarization current intensity indicates a higher fraction of water forming the state. More specifically, as a result of evaluating the motion constituent units of each peak from the temperature rise rate dependence of each of the peaks a to e, the activation energy was generally 4.8 and 6. It is 3, 13.3, and 22.0 kcal / mol, and it can be determined that the cooperative movement constituent unit of water itself is smaller in the lower temperature mode. In other words, it is understood that the molecular motion of water does not form a motion state by water molecules alone, but forms a cooperative motion with an aggregate of a certain number of water molecules as a constituent unit. This is called a cooperative movement unit. Moreover, as is clear from FIG. 1, e peak was observed as a peak of the shoulder which is based on melting of ice subsequent, the lower the peak intensity temperature Tm e, melting point considered low.

【0012】即ち、本発明の3群の水群は、各々次のよ
うな特徴を有していることが判る。 第1群水:通常の原料水よりTma、Tmb、Tmcが低
温側にシフトし、特に、Imaが増加することより、水
分子の協同運動構成単位が相対的に小さくなることに伴
い、その分子運動性が向上する特徴を有する。このこと
は、一般的に表現されている、「水のクラスターが小さ
くなる」という解釈に相当する。
That is, it can be seen that each of the three water groups of the present invention has the following characteristics. First Gunsui: normal raw water from Tm a, Tm b, shifts Tm c is the cold side, in particular, from the Im a increases, to cooperate motion structural units of water molecules is relatively small Accordingly, the molecular mobility is improved. This corresponds to the commonly expressed interpretation of "water clusters become smaller".

【0013】第2群水:通常の原料水より相対的に、後
に説明する第3群水と第1群水との中間的状態と考えら
れ、Tmaは原料水と変わらないが、Tmbは低下し、I
aとImbが同程度になる特徴を有し、1番目と2番目
に小さい構造単位が、協同的になる特徴を有する。
A second Gunsui: relatively than normal raw water, is considered an intermediate state between the third group of water and the first group of water to be described later, although Tm a does not change the raw water, Tm b Decreases and I
It characterized that m a and Im b is comparable, the first and the second smallest structural unit, has a characteristic to be cooperative.

【0014】第3群水:通常の原料水より相対的に、T
aが高温側にシフトし、Imaが減少することより、水
の協同運動の構造単位が大きくなることに伴い、その分
子運動性が低下する特徴を有しており、さらに、原料水
や他の1、2群の水では、極めて僅かしか観測されない
dのピークが格段に大きく(逆に、b、c、eピークの
存在が不明瞭になる)なることから、特定の協同運動構
成単位のみ選択的に増加している特徴を有する。
Third group water: T is relatively higher than ordinary raw water.
m a is shifted to the high temperature side, from the Im a decrease, structural units of the cooperative motion of water due to the increase, has a feature that the molecular mobility is lowered further, Ya raw water In the other group 1 and 2 waters, the peak of d which is observed only very little is much larger (in contrast, the existence of the b, c and e peaks becomes unclear). Only features that are selectively increasing.

【0015】本発明に用いる原料水としては通常用いら
れる蒸留水、イオン交換水が好ましいが、水道水など普
通の水でもよい。また、微量のイオン成分が含まれた水
も原料水系液として使用可能であり、その他原料水系液
としては前記原料水に相溶する物質群を含むものも用い
られる。本発明の水群は、比較的簡単な装置を用いて、
例えば、以下のようにして調製できる。
The starting water used in the present invention is preferably distilled water or ion-exchanged water, but may be ordinary water such as tap water. Further, water containing a trace amount of ionic components can also be used as the raw material aqueous solution, and as the other raw material aqueous solution, those containing a group of substances compatible with the raw material water are also used. The water group of the present invention uses a relatively simple device,
For example, it can be prepared as follows.

【0016】第1群水:電極間に原料水または原料水系
液を電極の一方に触れないように配置し、電場勾配10
0V/cm以上、さらに好ましくは500V/cm以上
で好ましくは24時間以上処理することを特徴とする。
First group water: Raw water or raw water-based liquid is placed between the electrodes so as not to touch one of the electrodes, and an electric field gradient of 10
The treatment is performed at 0 V / cm or more, more preferably 500 V / cm or more, preferably for 24 hours or more.

【0017】第2群水:原料水または原料水系液を磁束
密度500〜15000ガウスの交流磁場内で30Hz
〜104Hzの周波数範囲で好ましくは24時間以上処
理することを特徴とする。
Second group water: raw water or raw water-based liquid is subjected to 30 Hz in an alternating magnetic field having a magnetic flux density of 500 to 15,000 gauss.
It is characterized in that the treatment is carried out in a frequency range of 〜1010 4 Hz, preferably for 24 hours or more.

【0018】第3群水:原料水または原料水系液に対し
て、黒体放射法で測定される放射遠赤外線の波長分布の
ピークマキシムが1〜20ミクロンにあるもの、さらに
好ましくは、波長分布のピークマキシムが8〜12ミク
ロンにあるものを直接、または、遠赤外線を透過する物
体を通して間接的に該原料群に供給し好ましくは24時
間以上処理する。
Third group water: a raw water or a raw water-based liquid having a peak maximum of 1 to 20 microns in the wavelength distribution of radiation far-infrared ray measured by a black body radiation method, more preferably a wavelength distribution Is supplied to the raw material group directly or indirectly through an object that transmits far-infrared rays, and is preferably treated for 24 hours or more.

【0019】本発明者らの検討からは、基本的に、第
1、2群水は外的刺激として異なる周波数、または異な
る波長の関数として同一カテゴリーの構造制御法に属す
と考えられ、周波数または、波長を変化させることによ
り水の協同運動構成単位を任意選択的に制御することが
可能である。特に、第1群水については、他の2、3群
の水に比べ、通常の原料水より協同運動構成単位が小さ
く、水の分子運動性が高くなることが特徴である。さら
に、処理の効果は処理時間と関係しており、基本的な限
定要因ではないが、好ましくは上記処理条件であれば、
数時間以上の処理を加えることが望ましい。また、第3
群の水は、他の2群の水とは決定的に異なり、通常の原
料水より相対的に協同運動構造単位が大きく、その分子
運動性は低下しており、かつ、原料水や他の2群の水で
は、極めて僅かしか観測されないdのピークが格段にお
おきく(逆に、b、eピークの存在が不明瞭になる)な
ることから、特定の協同運動構成単位のみ選択的に増加
している。この第3群の水は本発明者らの検討からは、
沸騰水を冷却したものに近く、特に植物生育を増進する
ことが大きな特徴である。
According to the present inventors' studies, it is basically considered that the first and second group waters belong to the same category of structure control method as a function of the external stimulation at different frequencies or different wavelengths. It is possible to optionally control the cooperative building blocks of water by changing the wavelength. In particular, the first group water is characterized in that the cooperative movement constituent units are smaller than the ordinary raw water and the molecular mobility of water is higher than the other groups of water. Further, the effect of the processing is related to the processing time, and is not a basic limiting factor, but preferably the above processing conditions,
It is desirable to add processing for several hours or more. Also, the third
The water of the group is crucially different from the other two groups of water, has a larger cooperative structural unit than normal raw water, has a lower molecular mobility, and has a lower water content and other raw water. In the two groups of water, the peak of d, which is observed very little, is significantly large (conversely, the existence of the b and e peaks is unclear), so that only specific cooperative movement constituent units are selectively increased. ing. This third group of water, from our studies,
It is close to that of boiling water cooled, and it is a major feature that it enhances plant growth.

【0020】このように構造を制御した本発明の水群を
もちいて、力学的、電気的に緩和する物体または物質系
の構造を制御することができる。また、場合によって
は、有用な製品へ転換する場合、本発明の前記3群の水
各々に、基本的に水と相溶する物質群を混合してなる水
系液体群、または、水と相溶する物質群を含む蒸留水、
またはイオン交換水(以下原料水系液と記す)に対し、
本質的に水自身が、本発明の前記水群の有する条件を満
たすべく外的刺激を加えて調製された3種の水系液体群
も利用できる。更に、上記、原料水群、原料水系液群を
用いて力学的、電気的に緩和する物体または物質系を処
理したのち、先に記載した外的刺激を加えても該物体ま
たは、物質系の構造制御が可能である。この場合、前記
処理手段としては、浸漬、含浸、湿潤、あるいは被覆な
ど前記物体または物質系に対して前記水群、水系群を十
分に接触させ得る手段であればよい。
By using the water group of the present invention whose structure is controlled as described above, the structure of an object or a substance system that is mechanically and electrically relaxed can be controlled. In some cases, when converting to a useful product, a water-based liquid group obtained by mixing a substance group basically compatible with water with each of the three groups of water of the present invention, or a water-compatible group. Distilled water containing a group of substances
Or, for ion-exchanged water (hereinafter referred to as raw material aqueous solution),
Essentially, water can also use three kinds of aqueous liquid groups prepared by applying external stimuli to satisfy the conditions of the water group of the present invention. Furthermore, the above-mentioned raw material water group, mechanically, using the raw material aqueous liquid group, mechanically, after treating an object or a substance system that is relaxed, even if the external stimulus described above is applied, the object or the substance system is treated. Structural control is possible. In this case, the treatment means may be any means capable of sufficiently bringing the water group or the water group into contact with the object or substance system, such as immersion, impregnation, wetting, or coating.

【0021】また、本発明の水群に水と相溶性の反応性
物質が存在している場合、これと力学的、電気的に緩和
する物体との反応を促進することができる。また、原料
水系液にそれと相溶性の反応性物質が存在している系に
より前記物体を処理した後、水自身が本発明の条件を満
たすべく外的刺激を加えて、前記反応性物質と前記物体
との反応を促進することができる。このような反応性物
質としては、例えばNa+、Li+、K+、Ca2+、Mg
2+、NH4+のアルカリイオン系列、Fe2+、Fe3+、C
2+などの金属イオン、前記イオンの水和物であるNa
OH、KOH、LiOH、Mg(OH)2、Ca(O
H)2、Fe(OH)2、 Fe(OH)3、Cu(O
H)2さらに前記イオンの塩化物であるNaCl、KC
l、LiCl、MgCl2、CaCl2、CuCl2さら
には、HCl、HNO3、H2SO4などが例として挙げ
られる。そして、後記するように前記物体は無定形領域
をもつ高分子であり、前記の反応は高分子に対するプロ
トン交換反応、末端基に対する交換反応などの反応によ
り原料水溶液内に存在する該イオン化合物による水和状
態の変化が、無定型構造に対し作用し高分子構造を変化
させる。特に上記無定型領域を有する高分子のなかで、
セルロース、ポリアミドのような水素結合を有する高分
子に対しては、該作用効果は大きい。
Further, when a reactive substance compatible with water is present in the water group of the present invention, it is possible to promote a reaction between the reactive substance and a substance which is mechanically and electrically relaxed. Further, after treating the object with a system in which a reactive substance compatible with the raw water-based liquid is present, water itself applies an external stimulus to satisfy the conditions of the present invention, and the reactive substance and the Reaction with an object can be promoted. Such reactive substances include, for example, Na + , Li + , K + , Ca 2+ , Mg
2+ , NH 4+ alkali ion series, Fe 2+ , Fe 3+ , C
metal ions such as u 2+ , Na which is a hydrate of said ions
OH, KOH, LiOH, Mg (OH) 2 , Ca (O
H) 2 , Fe (OH) 2 , Fe (OH) 3 , Cu (O
H) 2 Further, NaCl and KC which are chlorides of the above-mentioned ions
1, LiCl, MgCl 2 , CaCl 2 , CuCl 2 , HCl, HNO 3 , H 2 SO 4 and the like. And, as described later, the substance is a polymer having an amorphous region, and the above-mentioned reaction is caused by a reaction such as a proton exchange reaction with a polymer and an exchange reaction with a terminal group. The change in the sum state acts on the amorphous structure to change the polymer structure. Especially in the polymer having the amorphous region,
The effect is large for polymers having hydrogen bonds such as cellulose and polyamide.

【0022】本発明に言う、力学的、電気的に緩和する
物体とは、物体に一定の応力または電気的な力を負荷し
た後それを取り除くと、その力により物体が受けた影響
が経時的緩和されるような物体を意味するもので、無定
形領域を持つ高分子化合物を指すが、好ましくは、双極
性部位、水素結合可能部位、イオン性部位を持つものな
ら、何でも良く、枚挙に暇がない。また、力学的、電気
的に緩和する物質系とは、上記、高分子群が溶媒に溶解
または分散している系、および、それらに他の物質が混
合溶解または混合分散している系を指す。前記高分子化
合物としては無定形領域をもつ高分子化合物であれば制
限はないが、好ましくは、セルロース、ポリアミド(ナ
イロン66、6、612、610、46など)などがあ
る。
The term "mechanically and electrically relaxed object" as used in the present invention means that when a certain stress or electric force is applied to an object and then removed, the influence of the force on the object over time is reduced. It refers to a substance that is relaxed and refers to a high molecular compound having an amorphous region. Preferably, any compound having a bipolar site, a hydrogen bondable site, or an ionic site may be used. There is no. In addition, the mechanically and electrically relaxed substance system refers to a system in which the polymer group is dissolved or dispersed in a solvent, and a system in which other substances are mixed or dissolved or dispersed therein. . The polymer compound is not limited as long as it is a polymer compound having an amorphous region, but preferably includes cellulose, polyamide (nylon 66, 6, 612, 610, 46, etc.).

【0023】[0023]

【発明の実施の形態】以下、実施例にて、詳細を説明す
るが、本発明の応用技術領域が極めて広範なため、これ
らに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto because the application technical field of the present invention is extremely wide.

【0024】実施例1 本実施例では、3群の水を調製する方法を例示する。Example 1 This example illustrates a method for preparing three groups of water.

【0025】第1群水:Millipore社製の脱イ
オン水製造機を用い、イオン電導度0.35μs/cm
の脱イオン水を作製し試料とした。該試料である脱イオ
ン水を500mlのサンプル管に入れ周囲をアルミ箔で
覆い、一方の電極を絶縁した状態で、マイナス側の電極
のみに接触させ、1次側電圧90V、4Aで、電場勾配
100V/cmの条件下で24時間静電場処理した水。
First group water: using a deionized water production machine manufactured by Millipore, with an ion conductivity of 0.35 μs / cm
Was prepared as a sample. The sample, deionized water, was placed in a 500 ml sample tube, and the periphery was covered with aluminum foil. One of the electrodes was insulated, and only the negative electrode was brought into contact with the negative electrode. Water subjected to an electrostatic field treatment under the condition of 100 V / cm for 24 hours.

【0026】第2群水:Millipore社製の脱イ
オン水製造機を用い、イオン電導度0.35μs/cm
の脱イオン水を作製し試料とした。その該水試料を交流
電圧90V、印加周波数50Hz以下で、700ガウス
の磁束密度を加え8hr磁場処理した水。
Second group water: using a deionized water production machine manufactured by Millipore, having an ion conductivity of 0.35 μs / cm.
Was prepared as a sample. Water obtained by subjecting the water sample to an AC voltage of 90 V and an applied frequency of 50 Hz or less, applying a magnetic flux density of 700 gauss and applying a magnetic field of 8 hours.

【0027】第3群水:Millipore社製の脱イ
オン水製造機を用い、イオン電導度0.35μs/cm
の脱イオン水を作製し試料とした。該水試料を500l
のビーカに入れ、その回りを黒体放射法で測定される波
長ピークが10ミクロンである遠赤外処理された物質で
囲う状態で24hr静置遠赤外処理した水。
Third group water: using a deionized water producing machine manufactured by Millipore, having an ion conductivity of 0.35 μs / cm.
Was prepared as a sample. 500 l of the water sample
And subjected to standing far-infrared treatment for 24 hours in a state of being surrounded by a far-infrared treated substance whose wavelength peak measured by a black body radiation method is 10 microns.

【0028】上記実施例で得られた典型的な熱刺激脱分
極−温度曲線を図1に記載する。
A typical heat-stimulated depolarization-temperature curve obtained in the above example is shown in FIG.

【0029】実施例2 本実施例では、カルボキシル末端分率の高いポリアミド
フィルムを、予めイオン交換水を静電場で処理し、本発
明の第1群の水に変換させた水に浸透させることによ
り、通常の水を使用した場合に比べ、遥かに構造安定性
の高いものに変換できることを例示する。
Example 2 In this example, a polyamide film having a high carboxyl terminal fraction was treated with an ion-exchanged water in advance by an electrostatic field, and then permeated into water converted into the first group of water of the present invention. It is exemplified that the structure can be converted to a substance having much higher structural stability than the case where ordinary water is used.

【0030】カルボキシル末端分率(カルボキシル末端
基数/(カルボキシル末端基数+アミノ末端基数))
0.36の溶融製膜した数平均分子量15000のナイ
ロン66フィルム(厚み;0.080μm)に第1群の
水を吸収せしめ、24時間放置後、−150℃から10
0℃まで7℃/分で乾燥するサイクルを10回繰り返し
て得たフィルムの乾燥毎過程での熱刺激脱分極電流−温
度曲線を図2aに示す。他方、比較例として同様にイオ
ン交換水で処理した場合の結果を図2bに示す。実施例
は比較例に比べ、α、β分散のピーク温度の変化率が小
さく、特に、β分散ピーク温度は殆ど変化せず、比較例
に比べ、遥かに、構造安定性の高いことが判る。また、
実施例、比較例で得たフィルムは、温度45℃、湿度8
5%で、48時間、ウエザーオートメーターで処理後、
強度保持率を調べたところ、比較例では9%にすぎない
ものが、実施例のフィルムでは80%以上の高い保持率
を示した。
Carboxyl terminal fraction (number of carboxyl terminal groups / (number of carboxyl terminal groups + number of amino terminal groups))
A first group of water was absorbed into a 0.36 melt-formed nylon 66 film having a number average molecular weight of 15,000 (thickness: 0.080 µm), left for 24 hours, and then left at -150 ° C to 10 ° C.
FIG. 2A shows a heat-stimulated depolarization current-temperature curve in each step of drying of a film obtained by repeating a cycle of drying at 0 ° C. at 7 ° C./min 10 times. On the other hand, FIG. 2B shows the result when the same treatment was performed with ion-exchanged water as a comparative example. In the examples, the rate of change of the peak temperatures of α and β dispersion is smaller than that of the comparative example. In particular, the β dispersion peak temperature hardly changes, and it can be seen that the structural stability is much higher than that of the comparative example. Also,
The films obtained in the examples and comparative examples had a temperature of 45 ° C. and a humidity of 8
After treatment with a weather autometer at 5% for 48 hours,
When the strength retention was examined, the comparative example showed only 9%, but the film of the example showed a high retention of 80% or more.

【0031】この時使用した静電場処理の条件、熱刺激
脱分極電流−温度測定条件及び、得られた水のパラメー
タ、熱刺激脱分極電流−温度測定条件は以下の如きであ
る。 (1)静電場処理条件 脱イオン水を500mlのサンプル管に入れ周囲をアル
ミ箔で覆い、該試料を一方の電極を絶縁した状態で、マ
イナス側の電極のみに接触させ、1次側電圧90V、4
Aで、電場勾配100V/cmの条件下で24時間静電
場処理した水を該ナイロン66フィルムに含浸させた。
The conditions of the electrostatic field treatment, the heat-stimulated depolarization current-temperature measurement conditions, the obtained water parameters, and the heat-stimulated depolarization current-temperature measurement conditions used at this time are as follows. (1) Electrostatic field treatment conditions Deionized water was placed in a 500 ml sample tube, the periphery was covered with aluminum foil, and the sample was brought into contact with only the negative electrode while one electrode was insulated, and the primary voltage was 90 V. , 4
In A, the nylon 66 film was impregnated with water subjected to an electrostatic field treatment under an electric field gradient of 100 V / cm for 24 hours.

【0032】(2)上記静電場処理により得られた水の
パラメータは以下に記載する如きである。
(2) The parameters of the water obtained by the above-mentioned electrostatic field treatment are as described below.

【0033】(実施例における処理水のパラメータ) Tma=−143.7℃ Tmb=−123.0℃ Tmc=−104.5℃ Tme=−36.3℃ Ima/Imc=7.7 (比較例におけるイオン交換水のパラメータ) Tma=140.2℃ Tmb=−119.5℃ Tmc=−101.5℃ Tme=−34.7℃ Ima/Imc=4.2 (3)熱刺激脱分極電流−温度測定条件 分極温度:Tp=70℃、分極時間:tp=2分、電界強
度:Vp=3000V/mm、脱分極温度:Td=−15
0℃、脱分極時間:td=2分、昇温速度:β=7℃/
分、最終到達温度:Th=100℃ 実施例3 本実施例では再生セルロースに対して実施例2で示した
本発明の第1群の水および静電場で処理した塩水溶液を
用いて処理すると、通常のイオン交換水および静電場で
処理していない塩水溶液を用いて処理した場合と比べ、
水浸入に伴う寸法変化が少なくなることを例示する。
[0033] (parameter of the treated water in Example) Tm a = -143.7 ℃ Tm b = -123.0 ℃ Tm c = -104.5 ℃ Tm e = -36.3 ℃ Im a / Im c = 7.7 (parameters of the ion-exchanged water in Comparative example) Tm a = 140.2 ℃ Tm b = -119.5 ℃ Tm c = -101.5 ℃ Tm e = -34.7 ℃ Im a / Im c = 4.2 (3) Thermally stimulated depolarization current-temperature measurement conditions Polarization temperature: T p = 70 ° C., polarization time: t p = 2 minutes, electric field strength: V p = 3000 V / mm, depolarization temperature: T d = -15
0 ° C., depolarization time: t d = 2 minutes, heating rate: β = 7 ° C. /
Min, final temperature: Th = 100 ° C. Example 3 In this example, the regenerated cellulose is treated with the first group of water of the present invention shown in Example 2 and the salt aqueous solution treated with the electrostatic field, Compared to the case of treating with normal ion-exchanged water and salt solution not treated with electrostatic field,
Exemplify that the dimensional change due to water intrusion is reduced.

【0034】セルロース/銅アンモニア溶液を15wt
%の硫酸水溶液で凝固再生して得た膜に実施例2で示し
た本発明の第1群の水を吸収せしめ、120℃で2時間
乾燥した。この操作を合計2回繰り返した後、通常のイ
オン交換水を含浸させ膜厚を測定して、初期の乾燥状態
での膜厚と比較した。イオン交換水の含浸により膜厚は
1.46倍に膨れたが、通常のイオン交換水を用いて含
浸・乾燥を同様に繰り返したものは1.52倍であり、
第1群の水で処理した膜のほうが水浸入に伴う寸法変化
は少なかった。
A cellulose / copper ammonia solution of 15 wt.
A film obtained by coagulation and regeneration with an aqueous sulfuric acid solution of 1% was allowed to absorb the water of the first group of the present invention shown in Example 2 and dried at 120 ° C. for 2 hours. After this operation was repeated twice in total, the film thickness was measured by impregnating with ordinary ion-exchanged water, and compared with the film thickness in the initial dry state. The film thickness swelled to 1.46 times by impregnation with ion-exchanged water, but 1.52 times when impregnation and drying were repeated in the same manner using normal ion-exchanged water.
The membranes treated with the first group of water showed less dimensional change due to water penetration.

【0035】1mol/lのNaCl水溶液を、水自身
が本発明の第1群に属するような静電場を処理し、この
水溶液をセルロース膜に吸収せしめ同様な操作で乾燥・
含浸を繰り返し、イオン交換水の浸入にともなう寸法変
化を測定したところ、寸法変化は1.32倍であり,静
電場で処理していない同濃度のNaCl水溶液で処理し
た場合の1.45倍より小さかった。このように、本発
明による水構造制御方法によれば、水浸入に伴う寸法変
化を少なくすることが可能である。
A 1 mol / l NaCl aqueous solution is treated with an electrostatic field such that water itself belongs to the first group of the present invention, and the aqueous solution is absorbed by a cellulose membrane, and dried and dried in the same manner.
The impregnation was repeated, and the dimensional change due to the infiltration of ion-exchanged water was measured. The dimensional change was 1.32 times, which was higher than the 1.45 times that when treated with the same concentration of NaCl aqueous solution that had not been treated with the electrostatic field. It was small. As described above, according to the water structure control method of the present invention, it is possible to reduce a dimensional change due to water intrusion.

【0036】上記静電場処理により得られた水の請求項
1記載のパラメータと熱刺激脱分極電流−温度測定条件
は以下に記載する如きである。
The parameters according to claim 1 of the water obtained by the above-mentioned electrostatic field treatment and the conditions for the heat-stimulated depolarization current-temperature measurement are as follows.

【0037】<実施例における処理水のパラメータ> Tma=−144.1℃ Tmb=−123.5℃ Tm
c=−103.5℃ Tme=− 36.5℃ Ima/Imc=7.0 <比較例におけるイオン交換水のパラメータ> Tma=−140.0℃ Tmb=−119.0℃ Tm
c=−101.3℃ Tme=− 34.8℃ Ima/Imc=4.0 <熱刺激脱分極電流−温度測定条件> 分極温度:Tp=−10℃、分極時間:tp=2分、電界
強度:Vp=3000V/mm、脱分極温度:Td=−1
65℃、脱分極時間:td=2分、昇温速度:β=7℃
/分、最終到達速度:Th:=40℃ 実施例4 本実施例では、ポリアミドのメタノール/塩化カルシュ
ーム溶液に水を添加し、相分離せしめて、粒子を製造す
る際に、脱イオン水を交流電圧90V、印加周波数50
Hz下で、700ガウスの磁束密度を加え8hr処理す
ることにより得た本発明の第2群に属する水を添加する
と、磁場処理しない水を使用した場合に比べ、著しく、
構造単位の小さい粒子にし得ることを例示する。
[0037] <parameters of the treated water in Example> Tm a = -144.1 ℃ Tm b = -123.5 ℃ Tm
c = -103.5 ℃ Tm e = - 36.5 ℃ Im a / Im c = 7.0 < parameters of the ion-exchanged water in Comparative Example> Tm a = -140.0 ℃ Tm b = -119.0 ℃ Tm
c = -101.3 ℃ Tm e = - 34.8 ℃ Im a / Im c = 4.0 < thermally stimulated depolarization current - Temperature Measurement Conditions> polarization temperature: T p = -10 ℃, polarization time: t p = 2 minutes, electric field strength: V p = 3000 V / mm, depolarization temperature: T d = −1
65 ° C., depolarization time: t d = 2 minutes, heating rate: β = 7 ° C.
/ Min, final arrival speed: Th: = 40 ° C. Example 4 In this example, water was added to a methanol / calcium chloride solution of polyamide, and the phases were separated to exchange deionized water when producing particles. Voltage 90V, applied frequency 50
When the water belonging to the second group of the present invention obtained by adding a magnetic flux density of 700 gauss and performing the treatment for 8 hours under Hz is significantly different from the case where the water without the magnetic field treatment is used,
The fact that the particles can have a small structural unit will be exemplified.

【0038】カルボキシル末端基分率0.48、数平均
分子量15000のナイロン66を塩化カルシウム無水
物を20wt%含有するメタノール溶液に2wt%の濃
度で溶解した。この溶液1重量部に対し、1重量部の上
記第2群に属する水、および、比較として、脱イオン水
をそれぞれ25℃で投入、同様に撹拌し、沈殿してきた
粒子のSEM観察をおこなった。そのSEM写真を図3
に記載する。写真で明らかなように、本実施例の方が基
本骨格粒子径は0.06μm程度であるのに対し、比較
例では、0.3μm程度であった。粒径が小さいと、他
成分の吸着効果、他マトリックスへの充填効果が大きい
ことが予想される。また、この処理により得られた水の
本発明のパラメータは以下に記載する如きである。熱刺
激脱分極電流−温度測定条件は、実施例3と同様であ
る。
Nylon 66 having a carboxyl end group fraction of 0.48 and a number average molecular weight of 15,000 was dissolved at a concentration of 2 wt% in a methanol solution containing 20 wt% of calcium chloride anhydride. To 1 part by weight of this solution, 1 part by weight of water belonging to the second group and, as a comparison, deionized water were added at 25 ° C., respectively, stirred similarly, and SEM observation of precipitated particles was performed. . Figure 3 shows the SEM photograph.
It describes in. As is clear from the photograph, the basic skeleton particle diameter of this example was about 0.06 μm, while that of the comparative example was about 0.3 μm. If the particle size is small, it is expected that the effect of adsorbing other components and the effect of filling other matrices will be large. The parameters of the water obtained by this treatment according to the present invention are as described below. The conditions for the heat-stimulated depolarization current-temperature measurement are the same as in Example 3.

【0039】(実施例における処理水のパラメータ) Tma=−143.5℃ Tmb=−123.9℃ Tmc=−101.6℃ Ima/Imb=1.0 Ima/Imc=3.3 (比較例におけるイオン交換水のパラメータ) Tma=−140.0℃ Tmb=−119.0℃ Tmc=−101.3℃ Ima/Imb=2.5 Ima/Imc=4.0 実施例5 本実施例では、セルロース(精製コットンリンター)を
銅アンモニア溶液に溶解する際に、通常の20wt%ア
ンモニア水とそれを水自身が本発明の第1群に属するよ
うな静電場処理をした水を用いた場合の溶解速度と溶解
残渣に関する結果を示す。
[0039] (parameter of the treated water in Example) Tm a = -143.5 ℃ Tm b = -123.9 ℃ Tm c = -101.6 ℃ Im a /Imb=1.0 Im a / Im c = 3.3 (parameters of the ion-exchanged water in Comparative example) Tm a = -140.0 ℃ Tm b = -119.0 ℃ Tm c = -101.3 ℃ Im a / Im b = 2.5 Im a / Im c = 4.0 Example 5 In this example, when dissolving cellulose (purified cotton linter) in a copper ammonia solution, normal 20 wt% ammonia water and the water itself were considered to belong to the first group of the present invention. The results regarding the dissolution rate and the dissolution residue when using water subjected to various electrostatic field treatments are shown.

【0040】20wt%のアンモニア水を500mlの
サンプル管に入れ周囲をアルミ箔で覆い、該資料を一方
の電極を絶縁した状態で、マイナス側の電極のみに接触
させ、1次側電圧100V、0.5Aで、電場勾配50
0V/cmの条件下で24時間静電場処理した。その2
0wt%アンモニア水と、精製コットンリンター、塩基
性硫酸銅をそれぞれ10wt%、7.8wt%(アンモ
ニア換算)、3.7wt%(銅換算)になるように混合
し所定時間撹拌した。さらに苛性ソーダを全重量の0.
3wt%になるように添加し1時間撹拌した。苛性ソー
ダ添加前の撹拌時間をtとし、tと溶解残渣の関係を図
4に示した。ここで溶解残渣はt=0minの場合の原
液の濾過定数KSt=0とt時間撹拌後の原液の濾過定数
KStとの比(KSt/KSt=0)と定義した。濾過定数
は1000メッシュのフィルターを使用し低圧濾過の式
(1)(化学工学便覧 改定5版 化学工学協会編p6
99)から求めた。ここでsは濾過時間、vは濾過量、
vmは定数である。
A 20 wt% aqueous ammonia solution was placed in a 500 ml sample tube, the periphery thereof was covered with aluminum foil, and the sample was brought into contact with only the negative electrode while one electrode was insulated. At 5A, an electric field gradient of 50
Electrostatic field treatment was performed for 24 hours under the condition of 0 V / cm. Part 2
0 wt% ammonia water, purified cotton linter, and basic copper sulfate were mixed at 10 wt%, 7.8 wt% (calculated as ammonia) and 3.7 wt% (calculated as copper), respectively, and stirred for a predetermined time. Further, caustic soda is added to the total weight of 0.1%.
It was added so as to have a concentration of 3 wt% and stirred for 1 hour. The stirring time before the addition of caustic soda is t, and the relationship between t and the dissolved residue is shown in FIG. Here dissolved residue was defined as the ratio (KS t / KS t = 0 ) of the filtered constant KS t filtration constants KS t = 0 and t time after stirring the stock stock in the case of t = 0min. The filtration constant is a low pressure filtration equation (1) using a 1000 mesh filter (Chemical Engineering Handbook Revised 5th edition, Chemical Engineering Association, p. 6)
99). Where s is the filtration time, v is the amount of filtration,
vm is a constant.

【0041】 s/v=(1/KSt)×(v+2vm) (1) 通常の20wt%アンモニア水を溶解に使用したもの
は、溶解を完全に進めるために150分程度の時間が必
要であるが、静電場で処理したアンモニア水を使用する
と、溶解速度は著しく上昇し完全溶解に必要な時間tは
わずか10分であった。
S / v = (1 / KS t ) × (v + 2 vm) (1) In the case where normal 20 wt% ammonia water is used for dissolution, it takes about 150 minutes to completely dissolve. However, when ammonia water treated in an electrostatic field was used, the dissolution rate was significantly increased, and the time t required for complete dissolution was only 10 minutes.

【0042】実施例6 本実施例は通常のイオン交換水を遠赤外線処理した第3
群の水に苛性ソーダを溶解し、9wt%に調整した水、
および苛性ソーダ濃度9wt%に調整した通常のイオン
交換水を遠赤外線処理した水溶液系に対するセルロース
への溶解性を例示する。
Embodiment 6 In this embodiment, the third ion-exchanged water is treated with far infrared rays.
Water adjusted to 9 wt% by dissolving caustic soda in group water,
The solubility of cellulose in an aqueous solution obtained by subjecting ordinary ion-exchanged water adjusted to a caustic soda concentration of 9 wt% to far-infrared rays is exemplified.

【0043】ここで、遠赤外線処理は、海藻を炭化させ
て得た遠赤外線放射粒子を含有したポリエステル綿を用
いて、水および苛性ソーダ水溶液の入った密栓付きエー
レンマイヤーフラスコを包み込む様に覆い、室温下で2
4時間静置することにより処理した。
Here, the far-infrared treatment is performed by using a polyester cotton containing far-infrared radiating particles obtained by carbonizing seaweed to cover an airtightly sealed Erlenmeyer flask containing water and an aqueous solution of caustic soda. Below 2
The treatment was performed by leaving still for 4 hours.

【0044】木材パルプを蒸煮処理して得られた重合度
310のセルロース10gを通常のイオン交換水に苛性
ソーダを溶解し9wt%に調整した水(A)、通常のイ
オン交換水を遠赤外線処理した水に苛性ソーダを溶解し
9wt%に調整した水(B)、および苛性ソーダ濃度9
wt%に調整した通常のイオン交換水を遠赤外線処理し
た水(C)おのおの190gに5℃下で撹拌溶解させ
た。溶解後3時間経過した溶液を遠心分離機(1.0×
104rpm×60分)を用いて、均一な溶液相と未溶
解物を含むゲル相に分離し、ゲル相中に含まれるセルロ
ース重量から未溶解セルロース分率を算出した。その結
果(A)、(B)、(C)の未溶解セルロース分率はそ
れぞれ11%、4%、3%であった。このように本発明
の水を使用すれば、未溶解残渣が少なくなり、セルロー
スに対する溶解力が向上する。本発明で使用した遠赤外
処理水は以下の如きであり、熱刺激脱分極電流−温度測
定条件は、実施例3と同様である。
Water (A) prepared by dissolving caustic soda in normal ion-exchanged water to obtain 10 g of cellulose having a degree of polymerization of 310 and obtained by steaming wood pulp (A), and ordinary ion-exchanged water were subjected to far infrared treatment. Water (B) adjusted to 9 wt% by dissolving caustic soda in water, and caustic soda concentration 9
Normal ion-exchanged water adjusted to wt% was dissolved under stirring at 5 ° C. in 190 g of each of the water (C) treated with far infrared rays. The solution 3 hours after the dissolution was centrifuged (1.0 ×
(10 4 rpm × 60 minutes) to separate into a uniform solution phase and a gel phase containing undissolved matter, and the undissolved cellulose fraction was calculated from the weight of cellulose contained in the gel phase. As a result, the undissolved cellulose fractions of (A), (B) and (C) were 11%, 4% and 3%, respectively. As described above, when the water of the present invention is used, the undissolved residue is reduced, and the dissolving power for cellulose is improved. The far-infrared treated water used in the present invention is as follows, and the heat-stimulated depolarization current-temperature measurement conditions are the same as in Example 3.

【0045】<実施例における処理水のパラメータ> Tma=−144.2℃ Ima/Imc=6.0 Ima/Imd=1.2またはImd/Imc=5.0 <比較例におけるイオン交換水のパラメータ> Tma=−140.1℃ Ima/Imc=4.0 Ima/Imd=2.1 Imd/Imc=4.0 実施例7 本実施例は通常のイオン交換水に苛性ソーダを溶解し9
wt%に調整した水、および苛性ソーダ濃度9wt%に
調整した通常水を水自身が本発明の第1群に属するよう
に、サンプル管に入れ周囲をアルミ箔で覆い、該試料を
一方の電極を絶縁した状態で、マイナス側の電極のみに
接触させ、1次側電圧100V、0.5Aで、電場勾配
500V/cmの条件下で24時間静電場処理した。そ
のそれぞれの水溶液に対して、セルロース繊維を弛緩状
態で20℃で30秒間処理後、水洗、乾燥して得た各処
理セルロース繊維のTSC曲線を図5に記載する。
[0045] <parameters of the treated water in Example> Tm a = -144.2 ℃ Im a / Im c = 6.0 Im a / Im d = 1.2 or Im d / Im c = 5.0 <Comparison ion-exchanged water parameters> Tm a in the example = -140.1 ℃ Im a / Im c = 4.0 Im a / Im d = 2.1 Im d / Im c = 4.0 example 7 this example Dissolve caustic soda in ordinary ion-exchanged water and add 9
Water adjusted to wt.% and normal water adjusted to caustic soda concentration of 9 wt% are put into a sample tube and covered with aluminum foil so that the water itself belongs to the first group of the present invention. In the insulated state, only the electrode on the negative side was brought into contact with the electrode, and subjected to an electrostatic field treatment at a primary voltage of 100 V and 0.5 A for an electric field gradient of 500 V / cm for 24 hours. FIG. 5 shows a TSC curve of each treated cellulose fiber obtained by treating each aqueous solution with the cellulose fiber in a relaxed state at 20 ° C. for 30 seconds, washing with water and drying.

【0046】(1)水自身が本発明の第1群に属すよう
な上記静電場処理をした9wt%の苛性ソーダ水溶液を
用いたセルロース繊維はTSC曲線における80℃付近
のピーク(TSCα)が低温側にシフトすると共にピー
ク強度も低下する。これに対し通常のイオン交換水に濃
度9wt%になるように調整した苛性ソーダ水を用いた
セルロース繊維ではピーク温度は変化せずピーク強度の
みが増加する。
(1) A cellulose fiber using a 9 wt% aqueous solution of caustic soda which has been subjected to the above-mentioned electrostatic field treatment such that water itself belongs to the first group of the present invention has a peak (TSCα) near 80 ° C. in the TSC curve on the low temperature side. And the peak intensity also decreases. On the other hand, in the case of cellulose fibers using caustic soda water adjusted to a concentration of 9 wt% in ordinary ion-exchanged water, the peak temperature does not change and only the peak intensity increases.

【0047】(2)セルロース繊維に対する同様の操作
を、通常のイオン交換水に硫酸を58wt%の濃度で溶
解した場合と静電場処理した場合の結果を示す。電場静
処理の有無を問わず、いずれの処理においてもTSCα
は低温にシフトすると共に強度も低下するが、静電場処
理したものはピーク強度が静電場処理していないものに
比べ約1/2に低下し、低温シフト幅も大きくなってお
り、より大きな構造変化を与えることができる。
(2) The results of the same operation on cellulose fibers are shown in the case where sulfuric acid is dissolved in ordinary ion-exchanged water at a concentration of 58 wt% and in the case where it is subjected to an electrostatic field treatment. Regardless of the presence or absence of electric field static treatment,
Although the intensity shifts to low temperature and the intensity also decreases, the peak intensity of the sample subjected to the electrostatic field treatment is reduced to about 比 べ compared with the sample not subjected to the electrostatic field treatment, and the low-temperature shift width is increased. You can make a change.

【0048】このように、酸、アルカリ両極端の水系液
系に本発明の方法を適用しても、充分構造制御ができる
ことを示す。
As described above, it is shown that the structure can be sufficiently controlled even when the method of the present invention is applied to an aqueous liquid system having both an acid and an alkali.

【0049】実施例8 本実施例は、通常水で調製されたスチレン、ブタジエン
ラテックスに含有される水自身を本発明の第1群水にな
るような静電場処理条件を用いて調製することによりラ
テックスの経時安定性及び、塗工性が向上することを例
示する。
Example 8 In this example, water contained in a styrene / butadiene latex usually prepared with water was prepared by using an electrostatic field treatment condition such that the water itself became the first group water of the present invention. It illustrates that the stability over time of latex and the coating property are improved.

【0050】固形分濃度37.9wt%のスチレンブタ
ジエン共重合ラテックス8gをサンプル管に入れ周囲を
アルミ箔で覆い、該試料を一方の電極を絶縁した状態
で、マイナス側の電極のみに接触させ、1次側電圧90
V、4Aで、電場勾配100V/cmの条件下で24時
間静電場処理した。その後、10Pa、1Hz、25℃
で動的粘弾性測定を行った。この静電場処理により貯蔵
弾性率が通常水での値1022から587Paに減少す
るとともに、損失弾性率が71から141Paへ増加す
る。このように、本発明の方法を適用するとラテックス
の塗工性が向上する方向に改質できる。
8 g of a styrene-butadiene copolymer latex having a solid content of 37.9 wt% was placed in a sample tube, the periphery was covered with aluminum foil, and the sample was brought into contact with only the negative electrode while one electrode was insulated. Primary side voltage 90
V, 4 A, and subjected to an electrostatic field treatment under an electric field gradient of 100 V / cm for 24 hours. Thereafter, 10 Pa, 1 Hz, 25 ° C.
The dynamic viscoelasticity was measured at. By this electrostatic field treatment, the storage elastic modulus decreases from 1022 in normal water to 587 Pa, and the loss elastic modulus increases from 71 to 141 Pa. As described above, when the method of the present invention is applied, the latex can be modified so as to improve the coatability.

【0051】実施例9 本実施例は、通常水で調製されるスチレン−ブタジエン
ラテックスに標準配合した塗工液を、それらに含有され
る水自身が本発明の第1群水になるような静電場処理条
件を用い調製することにより塗工液の経時安定性及び、
塗工性が向上することを例示する。
Example 9 In this example, a coating liquid prepared by standard blending with a styrene-butadiene latex usually prepared with water was used in such a manner that the water contained therein became the first group water of the present invention. Stability of the coating liquid over time by preparing using electric field treatment conditions,
An example in which the coatability is improved will be described.

【0052】一般的な配合組成で調整された固形分濃度
64wt%塗工液100gをサンプル管に入れ周囲をア
ルミ箔で覆い、該試料を一方の電極を絶縁した状態で、
マイナス側の電極のみに接触させ、1次側電圧90V、
4Aで、電場勾配100V/cmの条件下で24時間静
電場処理した。この塗工液を1500rpmで30分撹
拌した後、1pa、1Hz、25℃で動的粘弾性の経時
変化を測定した。その貯蔵弾性率の102と103秒後の
測定結果を表1に示す。また、比較例として上記と同様
にして調製した塗工液を上記静電場処理を加えず42時
間静置した後1500rpmで30分撹拌した塗工液
を、それぞれ1Pa、1Hz、25℃で動的粘弾性の経
時変化を測定した。その貯蔵弾性率の102と103秒後
の測定結果を表1に示す。すなわち、それらに含有され
る水自身を本発明の第1群水になるような静電場処理条
件を用い調製することにより塗工液の経時安定性が向上
させることができる。
100 g of a coating solution having a solid content of 64 wt% adjusted by a general compounding composition was put into a sample tube, the periphery was covered with aluminum foil, and the sample was insulated with one electrode insulated.
Contact only the negative side electrode, primary side voltage 90V,
At 4 A, an electrostatic field treatment was performed for 24 hours under an electric field gradient of 100 V / cm. After this coating solution was stirred at 1500 rpm for 30 minutes, the change over time in dynamic viscoelasticity was measured at 1 pa, 1 Hz, and 25 ° C. Table 1 shows the measurement results of the storage elastic modulus after 10 2 and 10 3 seconds. In addition, as a comparative example, a coating solution prepared in the same manner as above was allowed to stand for 42 hours without applying the above-mentioned electrostatic field treatment, and then stirred at 1500 rpm for 30 minutes. The change with time of the viscoelasticity was measured. Table 1 shows the measurement results of the storage elastic modulus after 10 2 and 10 3 seconds. That is, the stability over time of the coating liquid can be improved by preparing the water contained therein under the electrostatic field treatment conditions so as to become the first group water of the present invention.

【0053】[0053]

【表1】 [Table 1]

【0054】実施例10 本実施例は、水道水を一定内容量のビンの脱脂綿に吸収
させ、乾燥重量が15.0mg/15.9mgの貝割れ
大根の種30粒を蒔いたビン6ケを用意し、3ケのビン
の下に海藻を炭化させた遠赤外放射粒子を敷いて生育し
た場合とそうでない場合2種ずつ、直射日光の当たらな
い南向きにおいた。室温は最低27度C、最高32度C
であった。種は水に数時間浸漬したあと、脱脂綿上に移
した。水は朝、夕の2回追加した。種子の殻が割れて、
主根が出始めたときを発芽とし、種を蒔いてから3日目
までの発芽率を示す。通常の条件下の貝割れ大根の発芽
率は80〜85%であり、海藻炭なしの条件での発芽率
は2日目でこの範囲に到達し、以後増加しなかった。一
方、海藻炭を敷いたビンでの発芽率は1日目で81%に
達し、その後も発芽率は増加して3日目で97%の高率
に達した。
EXAMPLE 10 In this example, tap water was absorbed into absorbent cotton in a bottle having a fixed internal volume, and 30 bottles of cracked radish seeds having a dry weight of 15.0 mg / 15.9 mg were sowed into 6 bottles. Prepared and grown under the three bottles with far-infrared radiating particles carbonized with seaweed, and when not grown, two species were placed facing south without direct sunlight. Room temperature is minimum 27 degrees C, maximum 32 degrees C
Met. The seeds were immersed in water for several hours and then transferred onto absorbent cotton. Water was added twice in the morning and evening. The seed shell cracks,
Germination is defined as the time when the main root begins to emerge, and the germination rate is shown up to 3 days after sowing the seed. The germination rate of the cracked radish under normal conditions was 80-85%, and the germination rate without seaweed charcoal reached this range on the second day and did not increase thereafter. On the other hand, the germination rate in the seaweed charcoal bottle reached 81% on the first day, and thereafter the germination rate increased to reach a high rate of 97% on the third day.

【0055】[0055]

【表2】 [Table 2]

【0056】実施例11 本実施例はセルロース布帛のいわゆる樹脂加工におい
て、本発明の方法で処理すると布帛の耐摩耗性が向上す
る事を例示する。
Example 11 This example illustrates that in the so-called resin processing of a cellulosic fabric, treatment with the method of the present invention improves the abrasion resistance of the fabric.

【0057】イオン交換水をサンプル管に入れ周囲をア
ルミ箔で覆い、該試料を一方の電極を絶縁した状態で、
マイナス側の電極のみに接触させ、1次側電圧90V、
4Aで、電場勾配100V/cmの条件下で24時間静
電場処理して得た本発明の第1群の水、および、比較例
として通常のイオン交換水、それぞれに低ホリマリン加
工剤4.5wt%、塩化マグネシウム0.4wt%にな
るように加工剤液を調整し、20℃で布帛をそれぞれに
浸漬後、owf3%になるようにマングルで絞り、16
0℃で3分間キュアーした布帛の耐フィブリル性試験結
果を示す。耐フィブリル性試験は布帛を3wt%の硫酸
水溶液で70℃、30分加水分解した後、ホームミキサ
ーで20分撹拌して繊維のフィブリル化度合を80倍の
光学顕微鏡で観察した。本発明の第1群の水を使用した
場合は、ほとんどフィブリル化していないのに対して、
通常のイオン交換水を使用した場合は、元の繊維径をほ
とんど維持しないほどまでフィブリル化が進行した。こ
のフィブリルの光学顕微鏡写真を図6に記載する。
Place ion-exchanged water in a sample tube, cover the periphery with aluminum foil, and insulate the sample with one electrode insulated.
Contact only the negative side electrode, primary side voltage 90V,
4A, a first group of water of the present invention obtained by performing an electrostatic field treatment under an electric field gradient of 100 V / cm for 24 hours, and a normal ion-exchanged water as a comparative example, each having 4.5 wt. % And 0.4 wt% of magnesium chloride, and after immersing the cloths at 20 ° C. in each, squeezing with a mangle so as to have an owf of 3%.
The result of the fibril resistance test of the fabric cured at 0 ° C. for 3 minutes is shown. In the fibril resistance test, the fabric was hydrolyzed with a 3 wt% sulfuric acid aqueous solution at 70 ° C. for 30 minutes, followed by stirring with a home mixer for 20 minutes and observing the degree of fibrillation of the fiber with an optical microscope of 80 ×. When the water of the first group of the present invention was used, it hardly fibrillated,
When ordinary ion-exchanged water was used, fibrillation proceeded to such an extent that the original fiber diameter was hardly maintained. An optical micrograph of this fibril is shown in FIG.

【0058】また、フィブリル化度が、対照樹脂処理程
度で良いのであれば、対繊維重量当たりの樹脂量は半減
できることも判明した。使用したイオン交換水及びその
静電場処理水の熱刺激脱分極電流−温度パラメータは、
実施例3と同様である。
It was also found that if the degree of fibrillation was about the same as the control resin treatment, the amount of resin per fiber weight could be reduced by half. The thermally stimulated depolarization current-temperature parameter of the used ion-exchanged water and its electrostatically treated water is as follows:
This is the same as the third embodiment.

【0059】[0059]

【発明の効果】以上のように、本発明の特定のパラメー
タを有する水群は、高分子、その溶液、更には植物まで
に適用することにより、従来の水では達成不可能な、構
造制御、相分離挙動制御、反応または溶解促進、植物の
育成促進などが可能となり、極めて、重要な基本技術が
提供される。
As described above, the water group having the specific parameters of the present invention can be applied to a polymer, a solution thereof, and even a plant to obtain a structure control, which cannot be achieved by conventional water. It is possible to control the phase separation behavior, promote the reaction or dissolution, promote the growth of plants, and provide a very important basic technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各処理水の典型的な熱刺激脱分極−温度曲線を
示すグラフ、
FIG. 1 is a graph showing a typical heat-stimulated depolarization-temperature curve of each treated water.

【図2】ナイロン66フィルムの熱刺激脱分極電流−温
度(TSC)曲線を示すグラフ、図2aが静電場処理水
使用、図2bがイオン交換水使用、
FIG. 2 is a graph showing a heat-stimulated depolarization current-temperature (TSC) curve of a nylon 66 film, FIG. 2a using electrostatic field treated water, FIG. 2b using ion-exchanged water,

【図3】ポリアミドのメタノール/塩化カルシューム水
溶液から水添加により沈澱した粒子のSEM写真、aが
磁場処理あり、bが磁場処理なし、
FIG. 3 is an SEM photograph of particles precipitated from a methanol / calcium chloride aqueous solution of polyamide by adding water, wherein a is a magnetic field treatment, b is no magnetic field treatment,

【図4】苛性ソーダ添加前の撹拌時間tと溶解残渣の関
係を示すグラフ、
FIG. 4 is a graph showing the relationship between the stirring time t before adding caustic soda and the dissolved residue,

【図5】静電場処理セルロース繊維のTSC曲線を示す
グラフ、(a)9wt%苛性ソーダ水溶液を用いた場
合、(b)58wt%硫酸水溶液を用いた場合で(1)
が静電場処理あり、(2)が静電場処理なし、
FIG. 5 is a graph showing a TSC curve of a cellulose fiber treated with an electrostatic field, (a) when a 9 wt% aqueous sodium hydroxide solution is used, and (b) when a 58 wt% aqueous sulfuric acid solution is used (1).
Is with electrostatic field treatment, (2) is without electrostatic field treatment,

【図6】セルロース布帛の樹脂加工におけるフィブリル
の光学顕微鏡写真、(a)が静電処理水使用、(b)が
イオン交換水使用。
FIG. 6 is an optical micrograph of fibrils in resin processing of a cellulose fabric, (a) using electrostatically treated water, and (b) using ion-exchanged water.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原料水を基準にして、本文に規定する方
法で得られる水に対する熱刺激脱分極電流−温度曲線に
おいて、−150℃〜−20℃に出現する5つの緩和ピ
ーク(低温側よりa,b,…,e)の各ピーク温度Tm
i(i=a,b,…,e)と脱分極電流値Imi(i=
a,b,…,e)が以下の条件を満足するように制御さ
れた下記第1群水、第2群水および第3群水の3群の水
群から選ばれた少なくとも1つの水群。 第1群水;Tma<−143℃ Tmb<−120℃ Tmc<−102℃ Tme< −36℃ Ima/Imc>5.0 第2群水;Tma<−143℃ Tmb<−120℃ Tmc<−100℃ Ima/Imb<2.0 Ima/Imc<4.0 第3群水;Tma>−142℃ Ima/Imc>5.0 Ima/Imd<1.5またはImd/Imc>4.5
1. In a heat-stimulated depolarization current-temperature curve for water obtained by a method defined in the text based on raw water, five relaxation peaks appearing at −150 ° C. to −20 ° C. (from the lower temperature side) a, b, ..., e) each peak temperature Tm
i (i = a, b,..., e) and the depolarization current value Im i (i =
a, b,..., e) at least one water group selected from the following three groups of first group water, second group water and third group water controlled such that the following conditions are satisfied: . First Gunsui; Tm a <-143 ℃ Tm b <-120 ℃ Tm c <-102 ℃ Tm e <-36 ℃ Im a / Im c> 5.0 second Gunsui; Tm a <-143 ℃ Tm b <-120 ℃ Tm c <-100 ℃ Im a / Im b <2.0 Im a / Im c <4.0 third Gunsui; Tm a> -142 ℃ Im a / Im c> 5.0 Im a / Im d <1.5 or Im d / Im c> 4.5
【請求項2】 水と相溶する物質群を混合してなる請求
項1記載の水群、または、水と相溶する物質群を含む原
料水系液に対し、本質的に水自身が、請求項1記載の条
件を満たすべく外的刺激を加えて調製された請求項1記
載の水群。
2. The water group according to claim 1, which is obtained by mixing a group of substances compatible with water, or the raw water-based liquid containing the group of substances compatible with water, the water itself essentially comprises 2. The water group according to claim 1, wherein the water group is prepared by applying an external stimulus to satisfy the condition according to item 1.
【請求項3】 請求項1、2記載の水群を用いて力学
的、電気的に緩和する物体または物質系を処理すること
により、該物体または、物質系の構造を制御する方法。
3. A method for controlling the structure of an object or a substance system by treating an object or a substance system which is mechanically and electrically relaxed using the water group according to claim 1.
【請求項4】 請求項2記載の水群に反応性物質が存在
している系を用いて、力学的、電気的に緩和する物体を
処理をすることにより該物体との反応を促進する方法。
4. A method for promoting a reaction with an object by mechanically and electrically relaxing an object by using the system in which a reactive substance is present in the water group according to claim 2. .
【請求項5】 請求項1、2記載の原料水および原料水
系液を用いて、力学的、電気的に緩和する物体または物
質系を処理した後、本質的に水自身が請求項1記載の条
件を満たすべく外的刺激を加えることを特徴とした該物
体または、物質系の構造を制御する方法。
5. After treating an object or a substance system that is mechanically and electrically relaxed by using the raw water and the raw water-based liquid according to claim 1 or 2, the water itself essentially includes the raw water according to claim 1. A method for controlling the structure of the object or the substance system, which comprises applying an external stimulus to satisfy the condition.
【請求項6】 請求項2記載の原料水系液に反応性物質
が存在している系を用いて、力学的、電気的に緩和する
物体を処理した後、本質的に水自身が請求項1記載の条
件を満たすべく外的刺激を加えることを特徴とした該物
体との反応を促進する方法。
6. After treating an object which is mechanically and electrically relaxed by using a system in which a reactive substance is present in the raw material aqueous solution according to claim 2, the water itself essentially contains water. A method for promoting a reaction with the object, characterized by applying an external stimulus to satisfy the described conditions.
JP34528296A 1996-12-25 1996-12-25 Structure-controlled water, its preparation and its utilization Withdrawn JPH10180263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34528296A JPH10180263A (en) 1996-12-25 1996-12-25 Structure-controlled water, its preparation and its utilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34528296A JPH10180263A (en) 1996-12-25 1996-12-25 Structure-controlled water, its preparation and its utilization

Publications (1)

Publication Number Publication Date
JPH10180263A true JPH10180263A (en) 1998-07-07

Family

ID=18375543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34528296A Withdrawn JPH10180263A (en) 1996-12-25 1996-12-25 Structure-controlled water, its preparation and its utilization

Country Status (1)

Country Link
JP (1) JPH10180263A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056832A1 (en) * 1999-03-23 2000-09-28 Shishiai-Kabushikigaisha Composition having high specific heat
WO2010065141A3 (en) * 2008-12-04 2010-08-26 D & Y Laboratories Water clusters, products with water clusters, and methods of producing
JP2013092443A (en) * 2011-10-26 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> Method for detecting coating film degradation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056832A1 (en) * 1999-03-23 2000-09-28 Shishiai-Kabushikigaisha Composition having high specific heat
WO2010065141A3 (en) * 2008-12-04 2010-08-26 D & Y Laboratories Water clusters, products with water clusters, and methods of producing
US8383688B2 (en) 2008-12-04 2013-02-26 D & Y Laboratories Products with water clusters
JP2013092443A (en) * 2011-10-26 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> Method for detecting coating film degradation

Similar Documents

Publication Publication Date Title
Lv et al. Biomimetic hybridization of kevlar into silk fibroin: nanofibrous strategy for improved mechanic properties of flexible composites and filtration membranes
Jiao et al. Efficient removal of dyes from aqueous solution by a porous sodium alginate/gelatin/graphene oxide triple-network composite aerogel
Chen et al. Super‐strong and super‐stiff chitosan filaments with highly ordered hierarchical structure
Zhang et al. Functionalization of polyethylene terephthalate fabrics using nitrogen plasma and silk fibroin/chitosan microspheres
Luo et al. Liquid crystalline phase behavior and fiber spinning of cellulose/ionic liquid/halloysite nanotubes dispersions
Giusti et al. Hydrogels of poly (vinyl alcohol) and collagen as new bioartificial materials
CN104264260A (en) Graphene/nanometer cellulose composite fibers and preparation method thereof
WO2016165649A1 (en) Method for preparing salt-resistant and detergent-resistant seaweed fiber
CN109134890B (en) Preparation method and application of cellulose microsphere carrier
Khakkulov et al. Electrochemical Reduction Of Macroiones As A Surface-Active Nanocoating And Nanocomposites
CN105017541A (en) Banana cellulose crystallite/polylactic acid aerogel and preparation method and use thereof
CN110055807A (en) A kind of p-aramid fiber and graphene oxide/graphene extrusion coating paper preparation method
Karpova et al. Nonwoven blend composites based on poly (3-hydroxybutyrate)–chitosan ultrathin fibers prepared via electrospinning
CN105507014A (en) Composite fiber fabric
CN110218339A (en) Beading nano-cellulose microfibre, preparation method and its application in composite hydrogel preparation
CN107325303B (en) Degumming-free silk fiber solution, preparation method and application thereof
Hu et al. Electrochemical grafting of poly (glycidyl methacrylate) on a carbon-fibre surface
JPH10180263A (en) Structure-controlled water, its preparation and its utilization
Pu et al. Polydopamine modified CuS particles filled cellulose fiber for photothermal conversion performance
Yamane et al. Dissolution of cellulose nanofibers in aqueous sodium hydroxide solution
CN108624972B (en) Graphene/silicon compound, graphene/silicon compound/polyacrylonitrile composite fiber and preparation method thereof
CN107059151A (en) A kind of graphene polyacrylonitrile composite fiber preparation method
JPH09510391A (en) Method for forming thin durable coatings of ion-containing polymers on specific substrates
Li et al. Preparation of regenerated silk fibroin‐based heat‐management sponge for wound healing
Wang et al. Effects of ultrasonic treatment on hydrophilicity and thermal stability of silk

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302