WO2000056832A1 - Composition having high specific heat - Google Patents

Composition having high specific heat Download PDF

Info

Publication number
WO2000056832A1
WO2000056832A1 PCT/JP1999/001463 JP9901463W WO0056832A1 WO 2000056832 A1 WO2000056832 A1 WO 2000056832A1 JP 9901463 W JP9901463 W JP 9901463W WO 0056832 A1 WO0056832 A1 WO 0056832A1
Authority
WO
WIPO (PCT)
Prior art keywords
specific heat
base material
high specific
composition
water
Prior art date
Application number
PCT/JP1999/001463
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Ohira
Mitsuo Hori
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to PCT/JP1999/001463 priority Critical patent/WO2000056832A1/en
Publication of WO2000056832A1 publication Critical patent/WO2000056832A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials

Definitions

  • the present invention is applied to uses such as engine coolant, transformer cooling fluid, grinding fluid, polishing fluid, floor heating heat medium, cold storage agent, heat storage agent, solar heating medium, etc. It can be used as a liquid base material or as a gaseous base material used in applications such as circulating fluid for floor heating, fluid for heat exchangers, refrigerant for home air conditioners, building air conditioners, and large freezers. It relates to a specific heat composition. For example, in the field of automotive coolants and transformer coolants, water has been used as a liquid high specific heat substance, and a freezing point depressant, a corrosion inhibitor, a stabilizer, a pH regulator, etc. have been added to this. Many have been implemented.
  • water is frequently used as a high specific heat base material in fields such as cold storage agents / heat storage agents, grinding fluids, polishing fluids, circulating fluids for floor heating or refrigerants.
  • water has the largest specific heat (lea 1 / g / ° C) of a substance and is easily available, as is also described by the phrase, "It is difficult to warm up, but it is difficult to cool down once it has warmed up.” , And because of its excellent stability. For this reason, in the fields of automotive coolants, transformer coolants, regenerators, grinding fluids, polishing fluids, floor heating circulating fluids, heat storage agents, etc., their performance is evaluated and designed based on water.
  • This high specific heat composition is used mainly for liquids such as engine coolant, transformer cooling fluid, grinding fluid, polishing fluid, heat medium for floor heating, cold storage agent, heat storage agent, and heat medium for solar.
  • a gaseous main material used in applications such as circulating fluid for floor heating, fluid for heat exchangers, refrigerant for home air conditioners, air conditioners for buildings, and large freezers.
  • Performance such as cooling, heat storage, cold storage, and heating can be dramatically improved.
  • a substrate when the high specific heat composition is applied to uses such as an engine coolant, a polishing liquid, a heating medium for floor heating, and a heat storage agent (when the substrate is a liquid), it is subjected to an electrostatic field treatment.
  • the water may be any water such as tap water, well water, ion-exchanged water.
  • Glycols include ethylene glycol (EG), propylene glycol (PG), 1,3-butylene glycol, hexylene glycol (HG), ethylene glycol, glycerin, trimethylene glycol, butylene glycol, 1,1-dimethyl Preferred are ethylene glycol, 1,2-dimethylethylene glycol, propylethylene glycol, 2-butylethylene glycol, 2,2-dimethyltrimethylene glycol and the like. Of these, ethylene propylene glycol is particularly preferred in terms of solubility in water and corrosion prevention.
  • the substrate of the present invention comprises the above-mentioned water, glycols, or a mixture thereof, It is obtained by processing.
  • Electrostatic field treatment means that, for example, water, glycol or a mixture thereof to be treated is placed in a container placed in an ungrounded state, one electrode (for example, a carbon electrode) is placed in the container, and the other electrode is placed in the container. Is the static voltage
  • a corrosion inhibitor, a dye, an antioxidant, a pH adjuster, an antistatic agent, a stabilizer, or a wetting agent may be appropriately added to the base material as necessary. it can.
  • the above-mentioned base material is displaced by the application of thermal energy to the dipole 12 existing inside the base material 11 as shown in FIG.
  • the displacement of the dipoles 12 means that the dipoles 12 inside the base material 11 rotate or shift in phase. It can be said that the arrangement state of the dipoles 12 inside the base material 11 before the energy is applied as shown in FIG. 1 is in a stable state.
  • the base material 1 when the energy is applied, when the dipole 12 existing inside the base material is displaced, the base material 1
  • Each dipole 1 2 inside 1 will be placed in an unstable state, and each dipole 1
  • the amount of dipole moment generated in the base material changes depending on the temperature when energy is applied.
  • the amount of dipole moment also changes depending on the magnitude of the energy applied to the substrate.
  • the base material components not only the amount of dipole moment in the base material, but also the handleability, formability, availability, etc., depending on the application and use form of the high specific heat composition. It is desirable to consider temperature performance (heat resistance and cold resistance), weather resistance, and price.
  • the active component is a component that dramatically increases the amount of dipole moment in the base material.
  • the active component itself has a large dipole moment, or the active component itself has a small dipole moment.
  • active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHBSA), 2-mercaptobide (MBTS), N-ci (CBS), and N-tert. BS), N-Oxyjec ), N, N-diisopropyl benzothiazyl 2-sulfenamide (DPBS) and other compounds with a mercaptobenzothiazyl group.
  • DCHBSA N-dicyclohexylbenzothiazyl-2-sulfenamide
  • MBTS 2-mercaptobide
  • CBS N-ci
  • BS N-tert.
  • N-Oxyjec N, N-diisopropyl benzothiazyl 2-sulfenamide
  • DPBS N-diisopropyl benzothiazyl 2-sulfenamide
  • the high specific heat composition When the high specific heat composition is applied to applications such as a circulating fluid for floor heating, a fluid for a heat exchanger, a refrigerant used in a home air conditioner, a building air conditioner, a large freezer, and the like (when the base material is a gas). It is desirable to select and use an active ingredient whose boiling point is close to that of the base material.
  • the content of the above-mentioned active ingredient is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the base material. When the content of the active ingredient is less than 0.1 part by weight, a drastic increase in specific heat due to the incorporation of the above active ingredient cannot be obtained.
  • the content of the active ingredient is more than 100 parts by weight, the effect of only the added amount cannot be obtained, and it becomes uneconomical.
  • the use of water, glycols, or a mixture thereof, which has been subjected to an electrostatic field treatment, as the base material facilitates the dissolution of the active ingredient, and the active ingredient constitutes the base material. It is thought that the specific heat rise by the above-mentioned active ingredient progresses more effectively, and as a result, a higher level of high specific heat effect can be obtained.
  • the high specific heat composition according to claims 4 to 6 will be described.
  • This high specific heat composition is based on water, glycols, or a mixture thereof, to which an active ingredient is blended, and which has been subjected to an electrostatic field treatment.
  • This high specific heat composition is different from the above high specific heat composition according to claims 1 to 3 in that the base material is subjected to an electrostatic field treatment, whereas the entire composition is subjected to an electrostatic field treatment. The details of the composition and each component are omitted because they are only different.
  • FIG. 1 is a schematic diagram showing a dipole in a substrate.
  • FIG. 2 is a schematic diagram showing a state of a dipole in a base material when energy is applied.
  • FIG. 3 is a schematic diagram showing a state of a dipole in a base material when an active ingredient is blended.
  • FIG. 4 is a schematic diagram showing an electrostatic field treatment device.
  • Figure 5 shows the high specific heat compositions of EG alone, the high specific heat composition of EG mixed with CBS, and the high specific heat composition of EG mixed with CBS treated with electrostatic field.
  • 4 is a graph showing specific heat at ° C.
  • Example An EG is subjected to an electrostatic field treatment using the electrostatic field treatment device shown in FIG.
  • the electrostatic field treatment device 21 includes a container 23 placed on a support base 22 made of an insulator and in an ungrounded state, and one electrode (for example, a carbon electrode) disposed in the container 23. Consists of four.
  • the other electrode 25 is disposed in the atmosphere.
  • EG is put into the container 23, and an electric field is formed by applying a static voltage (for example, 1.7 kv) from the high voltage power source 26, and the electric field is left as it is.
  • CBS was added at a ratio of 1 part by weight to 100 parts by weight of the EG subjected to the electrostatic field treatment.
  • a high specific heat composition (Example) was obtained.
  • EG not subjected to electrostatic field treatment was used, and 100 parts by weight of this EG was mixed with 1 part by weight of CBS, and a high specific heat composition (Comparative Example 1) and no CBS were added.
  • a high specific heat composition (Comparative Example 2) consisting only of EG not subjected to the electrostatic field treatment was prepared, and the specific heat at 50 ° C (ca) of each of the high specific heat compositions of Examples and Comparative Examples 1 and 2 was obtained. ⁇ / s / ° C) over time (daily).
  • Figure 5 shows the results. From FIG. 5, the specific heat (ca 1 / g / ° C) of the high specific heat composition of Comparative Example 2 is about 0.58, while the high specific heat composition of Comparative Example 1 Until the day, it was in the range of about 0.58 to 0.78, after which it remained stable at about 0.67.
  • the specific heat of the high specific heat composition of the example immediately rises from about 0.8 to 0.83 after the adjustment, does not immediately drop, and maintains a stable level at about 0.78. It was much higher than those of 1 and 2, and it was confirmed to have an excellent high specific heat effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A high specific heat composition having a specific heat greater than that of water, characterized in that the composition comprises a base material comprising the water treated with an electrostatic field, glycols or a mixture thereof and, incorporated therein, an active component which increases the dipole moment of the base material. The present composition is outside a conventional chemical recognition that water has the greatest specific heat. This high specific heat composition can be used as a main agent of a liquid substance for use as, for example, an engine coolant, a transformer coolant, a grinding liquid, an abrasive liquid, a medium for floor heating, a heat reserving agent, a cool reserving agent, a medium for a solar heating unit, or as a main agent of a gaseous substance for use as, for example, a circulating fluid for floor heating, a fluid for a heat exchanger, a cooling medium for a domestic air conditioner, an air conditioner for a building and a large freezing chamber. This composition allows the significant enhancement of the performance, such as cooling, heat reserving, cool reserving, and heating, when used in above applications.

Description

明糸田書 高比熱組成物 技術分野 本発明は、 例えばエンジンクーラント、 トランス冷却液、 研削液、 研磨液、 床 暖房用熱媒体、 蓄冷剤、 蓄熱剤、 ソーラー用熱媒体などの用途に適用される液体 状の主材として、 あるいは床暖房用循環流体、 熱交換器用流体、 家庭用エアコン やビル用エアコン、 大型冷凍庫などの冷媒といった用途に適用される気体状の主 材として適用することができる高比熱組成物に関する。 景ナ支 従来より、 例えば自動車用クーラントやトランス冷却液の分野では、 液体状の 高比熱物質として水を用い、 これに凝固点降下剤、 腐食防止剤、 安定剤、 p H調 整剤などを添加したものが多く実施されている。 その他、 蓄冷剤ゃ蓄熱剤、 研削液、 研磨液、 床暖房用循環流体あるいは冷媒な どの分野においても同じく、 水は高比熱基材として多用されている。 これは、 「暖まり難いが一旦暖まった後は冷め難い」 という言葉でも表現されているよう に、 水が物質中で最も比熱 (l e a 1 / g /°C ) が大きく、 しかも容易に入手で き、 かつ安定性に優れているという理由からである。 このため、 例えば自動車用クーラント、 トランス冷却液、 蓄冷剤、 研削液、 研 磨液、 床暖房用循環液、 蓄熱剤などの各分野では、 水を基準にして、 その性能評 価、 設計がなされていた。 発明の開示 本発明は、 従来より、 水が最も比熱が高いという技術常識を打ち破り、 水の比 熱よりも大きな比熱を持ち、 液状または気体状の主材として幅広い用途に適用す ることができる高比熱組成物を提供することを目的とするものである。 まず請求項 1〜 3記載の高比熱組成物について説明する。 この高比熱組成物は、 例えばエンジンク一ラント、 トランス冷却液、 研削液、 研磨液、 床暖房用熱媒体、 蓄冷剤、 蓄熱剤、 ソーラー用熱媒体などの用途に適用される液体状の主材として、 あるいは床暖房用循環流体、 熱交換器用流体、 家庭用エアコンやビル用エアコン、 大型冷凍庫などの冷媒といった用途に適用される気体状の主材として適用するこ とができ、 これにより、 冷却、 蓄熱、 蓄冷、 暖房といった性能を飛躍的に高める ことができる。 基材としては、 当該高比熱組成物をエンジンクーラント、 研磨液、 床暖房用熱 媒体、 蓄熱剤などの用途に適用する場合 (基材が液体である場合) には、 静電場 処理された、 水、 グリコール類、 あるいはこれらの混合物を用いる。 水としては、 水道水、 井戸水、 イオン交換水など何でも良い。 グリコール類としては、 エチレングリコール (E G) 、 プロピレングリコール ( P G) 、 1, 3ブチレングリコール、 へキシレンダリコール (H G ) 、 ジェチ レングリコール、 グリセリン、 卜リメチレングリコール、 ブチレングリコール、 1 , 1—ジメチルエチレングリコール、 1 , 2—ジメチルエチレングリコール、 プロピルエチレングリコール、 2—ブチルエチレングリコール、 2 , 2—ジメチ ルトリメチレングリコールなどが好ましい。 特にこれらの中でもエチレンダリコ —ルゃプロピレングリコールは、 水に対する溶解性、 腐食防止性の点で好ましい。 本発明の基材は、 上記水、 グリコール類、 あるいはこれらの混合物を、 静電場 処理することにより得られる。 静電場処理とは、 例えば非接地の状態におかれた 容器に処理すべき水、 グリコールあるいはこれらの混合物を入れ、 この容器中に に一方の電極 (例えば炭素電極) を設置し、 他方の電極は大気中に配して静電圧TECHNICAL FIELD The present invention is applied to uses such as engine coolant, transformer cooling fluid, grinding fluid, polishing fluid, floor heating heat medium, cold storage agent, heat storage agent, solar heating medium, etc. It can be used as a liquid base material or as a gaseous base material used in applications such as circulating fluid for floor heating, fluid for heat exchangers, refrigerant for home air conditioners, building air conditioners, and large freezers. It relates to a specific heat composition. For example, in the field of automotive coolants and transformer coolants, water has been used as a liquid high specific heat substance, and a freezing point depressant, a corrosion inhibitor, a stabilizer, a pH regulator, etc. have been added to this. Many have been implemented. Similarly, water is frequently used as a high specific heat base material in fields such as cold storage agents / heat storage agents, grinding fluids, polishing fluids, circulating fluids for floor heating or refrigerants. This is because water has the largest specific heat (lea 1 / g / ° C) of a substance and is easily available, as is also described by the phrase, "It is difficult to warm up, but it is difficult to cool down once it has warmed up." , And because of its excellent stability. For this reason, in the fields of automotive coolants, transformer coolants, regenerators, grinding fluids, polishing fluids, floor heating circulating fluids, heat storage agents, etc., their performance is evaluated and designed based on water. I was Disclosure of the invention The present invention breaks down the conventional wisdom that water has the highest specific heat, has a higher specific heat than that of water, and can be applied to a wide range of applications as a liquid or gaseous main material. The purpose is to provide things. First, the high specific heat composition according to claims 1 to 3 will be described. This high specific heat composition is used mainly for liquids such as engine coolant, transformer cooling fluid, grinding fluid, polishing fluid, heat medium for floor heating, cold storage agent, heat storage agent, and heat medium for solar. Or as a gaseous main material used in applications such as circulating fluid for floor heating, fluid for heat exchangers, refrigerant for home air conditioners, air conditioners for buildings, and large freezers. Performance such as cooling, heat storage, cold storage, and heating can be dramatically improved. As a substrate, when the high specific heat composition is applied to uses such as an engine coolant, a polishing liquid, a heating medium for floor heating, and a heat storage agent (when the substrate is a liquid), it is subjected to an electrostatic field treatment. Use water, glycols, or mixtures thereof. The water may be any water such as tap water, well water, ion-exchanged water. Glycols include ethylene glycol (EG), propylene glycol (PG), 1,3-butylene glycol, hexylene glycol (HG), ethylene glycol, glycerin, trimethylene glycol, butylene glycol, 1,1-dimethyl Preferred are ethylene glycol, 1,2-dimethylethylene glycol, propylethylene glycol, 2-butylethylene glycol, 2,2-dimethyltrimethylene glycol and the like. Of these, ethylene propylene glycol is particularly preferred in terms of solubility in water and corrosion prevention. The substrate of the present invention comprises the above-mentioned water, glycols, or a mixture thereof, It is obtained by processing. Electrostatic field treatment means that, for example, water, glycol or a mixture thereof to be treated is placed in a container placed in an ungrounded state, one electrode (for example, a carbon electrode) is placed in the container, and the other electrode is placed in the container. Is the static voltage
(例えば 1 . 7 k v ) を印加することで電場を形成し、 このままー晚静置すると いう処理である。 当該高比熱組成物を床暖房用循環流体、 熱交換器用流体、 家庭用エアコンゃビ ル用エアコン、 大型冷凍庫などに用いられる冷媒などの用途に適用する場合 (基 材が気体である場合) は、 上述の如く静電場処理された、 水、 グリコール、 ある いはこれらの混合物を気化させたものを基材として用いる。'尚、 混合物の気化は、 後述の活性成分の配合後に行うのがよい。 尚、 基材中には、 上述の成分の他、 例えば腐食防止剤、 染料、 酸化防止剤、 p H調整剤、 制電剤、 安定剤、 あるいは湿潤剤などを必要に応じて適宜加えること ができる。 上述の基材は、 熱エネルギーが加わることで、 図 2に示すように基材 1 1内部 の存在する双極子 1 2に変位が生じる。 双極子 1 2に変位が生じるとは、 基材 1 1内部における各双極子 1 2が回転したり、 位相がズレれたりすることをいう。 図 1に示すようなエネルギーが加わる前の基材 1 1内部における双極子 1 2の 配置状態は安定な状態にあると言える。 ところが、 図 2に示すように、 エネルギ 一が加わることで、 基材内部の存在する双極子 1 2に変位が生じたとき、 基材 1(For example, 1.7 kV) to form an electric field, and leave it as it is. When the high specific heat composition is applied to applications such as circulating fluid for floor heating, fluid for heat exchangers, refrigerant for home air conditioners, air conditioners for buildings, and large freezers (when the base material is gas), Water, glycol, or a mixture thereof, which has been subjected to an electrostatic field treatment as described above, is used as a substrate. The vaporization of the mixture is preferably performed after the incorporation of the below-mentioned active ingredient. In addition, in addition to the above-described components, for example, a corrosion inhibitor, a dye, an antioxidant, a pH adjuster, an antistatic agent, a stabilizer, or a wetting agent may be appropriately added to the base material as necessary. it can. The above-mentioned base material is displaced by the application of thermal energy to the dipole 12 existing inside the base material 11 as shown in FIG. The displacement of the dipoles 12 means that the dipoles 12 inside the base material 11 rotate or shift in phase. It can be said that the arrangement state of the dipoles 12 inside the base material 11 before the energy is applied as shown in FIG. 1 is in a stable state. However, as shown in Fig. 2, when the energy is applied, when the dipole 12 existing inside the base material is displaced, the base material 1
1内部における各双極子 1 2は不安定な状態に置かれることになり、 各双極子 1Each dipole 1 2 inside 1 will be placed in an unstable state, and each dipole 1
2は、 図 1に示す安定な状態に戻ろうとする。 このとき、 エネルギーの消費が生じるのである。 こうした、 基材内部におけ る双極子の変位、 双極子の復元作用によるエネルギー消費を通じて、 「暖まり難 いが一旦暖まった後は冷め難い」 という比熱効果が生じているものと考えられる。 このようなエネルギーの消費のメカニズムを考えるとき、 図 1及び図 2に示す ような基材 1 1内部における双極子モ一メントの量が大きく関与していることが 解る。 すなわち基材 1 1内部における双極子モーメントの量が大きいとき、 その 基材 1 1の持つエネルギーの消費 (比熱) は高くなるのである。 基材における双極子モーメントの量は、 上述した基材を構成する成分の種類に より様々に異なっている。 また、 同一の基材成分を用いたとしても、 エネルギー が加わったときの温度により、 基材に生じる双極子モーメントの量は変わる。 ま た、 基材に加わるエネルギーの大小によっても、 双極子モーメントの量は変わる。 このため、 高比熱組成物として適用するときの温度、 エネルギーの大きさなどを 考慮して、 そのとき最も大きな双極子モーメント量となる基材成分を適宜選択し て用いるのが望ましい。 ただ、 基材成分の選択に際しては、 基材における双極子モーメント量だけに限 らず、 当該高比熱組成物の適用される用途や使用形態に応じて、 取り扱い性、 成 形性、 入手容易性、 温度性能 (耐熱性や耐寒性) 、 耐候性、 価格なども考慮する のが望ましい。 この基材に、 基材における双極子モーメント量を増加させる活性成分が配合さ れているのである。 活性成分とは、 基材における双極子モーメントの量を飛躍的 に増加させる成分であり、 当該活性成分そのものが双極子モーメント量が大きい もの、 あるいは活性成分そのものの双極子モーメント量は小さいが、 当該活性成 分を配合することで、 基材における双極子モ一メント量を飛躍的に増加させるこ とができる成分をいう。 例えば所定の温度条件、 エネルギーの大きさとしたときの、 基材 1 1に生じる 双極子モーメントの量が、 これに活性成分を配合することで、 図 3に示すように、 同じ条件の下で 3倍とか、 1 0倍とかいった量に増加することになるのである。 これに伴って、 前述のエネルギーが加わつたときの双極子の復元作用によるエネ ルギー消費量も飛躍的に増大することになり、 予測を遥かに超えた高比熱効果が 生じることになると考えられる。 このような作用効果を導く活性成分としては、 例えば N、 N—ジシクロへキシ ルベンゾチアジル— 2—スルフェンアミド (DCHBSA) 、 2—メルカプトべ イド (MBTS) 、 N—シ (CBS) 、 N- t e r t BS) 、 N—ォキシジェチ
Figure imgf000007_0001
) 、 N、 N—ジイソプロピ ルベンゾチアジルー 2—スルフェンアミド (DPBS) などのメルカプトべンゾ チアジル基を持つ化合物、 ベンゼン環にァゾール基が結合したべンゾトリァゾ一ルを母核とし、 これにフ ェニル基が結合した 2— { 2 ' —ハイド口キシー 3' - (3〃 , A" , 5〃 , 6 〃 テトラハイド口フ夕リミデメチル) 一 5 ' —メチルフエ二ル} 一べンゾトリア ゾール (2HPMMB) 、 2 - { 2 ' —ハイドロキシ一 5 ' —メチルフエ二ル} —ベンゾトリアゾ一ル (2HMPB) 、 2 - { 2 ' —ハイド口キシ— 3' - t - ブチル— 5 ' —メチルフエ二ル} — 5—クロ口べンゾトリアゾ一ル (2HBMP CB) 、 2 - { 2 ' —ハイド口キシ一 3 ' , 5 ' —ジー t _ブチルフエ二ル} - 5—クロ口べンゾトリアゾール (2HDBPCB) などのベンゾトリアゾ一ル基 を持つ化合物、 ェチル一 2—シァノー 3, 3—ジ一フエ二ルァクリレ一卜などのジフエ二ルァ クリレート基を持つ化合物、 あるいは 2—ハイド口キシ一 4—メトキシベンゾフエノン (HMBP) 、 2 - ハイドロキシー 4—メトキシベンゾフエノン _ 5—スルフォニックァシド (HM BPS) などのベンゾフエノン基を持つ化合物の中から選ばれた 1種若しくは 2 種以上を挙げることができる。 尚、 当該高比熱組成物を床暖房用循環流体、 熱交換器用流体、 家庭用エアコン やビル用エアコン、 大型冷凍庫などに用いられる冷媒などの用途に適用する場合 (基材が気体である場合) は、 基材と沸点が近い活性成分を選択し使用するのが 望ましい。 上述の活性成分の含有量としては、 基材 1 0 0重量部に対して、 0 . 1〜1 0 0重量部の割合で含まれていることが望ましい。 活性成分の含有量が 0 . 1重量 部を下回るとき、 上述の活性成分を配合したことによる飛躍的な比熱上昇効果が 得られなくなる。 一方、 活性成分の含有量が 1 0 0重量部を上回るときには、 そ の配合分だけの効果が得られず、 不経済となる。 この高比熱組成物にあっては、 静電場処理がなされている、 水、 グリコール類、 あるいはこれらの混合物を基材として用いることで、 活性成分が溶け込み易くな り、 活性成分が基材を構成する分子レベルまで入り込むようになることから、 前 述の活性成分による比熱上昇がより効果的に進行し、 この結果、 より高レベルの 高比熱効果が得られると考えられる。 次に請求項 4〜 6記載の高比熱組成物について説明する。 この高比熱組成物は、 水、 グリコール類、 あるいはこれらの混合物を基材とし、 これに活性成分が配合 され、 かつ静電場処理がなされたものである。 この高比熱組成物は、 前述の請求 項 1〜3記載の高比熱組成物が、 基材に対し静電場処理がなされているのに対し、 組成物全体に静電場処理がなされている点で相違するだけであるので、 組成物及 び各構成材の詳説は割愛する。 この高比熱組成物にあっては、 基材及び活性成分に静電場処理がなされており、 請求項 1〜 3記載の高比熱組成物と同じく基材中に活性成分が溶け込み易くなり、 活性成分が基材を構成する分子レベルまで入り込むようになることから、 活性成 分による比熱上昇がより効果的に進行し、 この結果、 より高レベルの高比熱効果 が得られると考えられる。 図面の簡単な説明 図 1は、 基材における双極子を示した模式図である。 図 2は、 エネルギーが加わったときの基材における双極子の状態を示した模式 図である。 図 3は、 活性成分が配合されたときの基材における双極子の状態を示した模式 図である。 図 4は、 静電場処理装置を示す模式図である。 図 5は、 E G単独の高比熱組成物、 E GにC B Sを配合した高比熱組成物、 及 び静電場処理がなされた E Gに C B Sを配合した高比熱組成物の各高比熱組成物 の 5 0 °Cにおける比熱を示すグラフである。 実施例 図 4に示す静電場処理装置を用いて、 E Gに静電場処理を行う。 静電場処理装 置 2 1は、 絶縁碍子よりなる支持台 2 2上に置かれて非接地の状態とした容器 2 3と、 この容器 2 3内に配した一の電極 (例えば炭素電極) 2 4とからなる。 尚、 他方の電極 2 5は大気中に配されている。 そして、 前記容器 2 3内に E Gを入れ、 高圧電源 2 6より静電圧 (例えば 1 . 7 k v ) を印加することで電場を形成し、 このままー晚静置する。 こうして静電 場処理がなされた E G 1 0 0重量部に対し、 C B Sを 1重量部の割合で配合して 高比熱組成物 (実施例) を得た。 また比較として、 静電場処理がなされていない EGを用い、 この EG 100重 量部に対し、 CBSを 1重量部の割合で配合して高比熱組成物 (比較例 1) と、 CB S未添加の静電場処理がなされていない EGのみからなる高比熱組成物 (比 較例 2) を調製し、 これら実施例、 比較例 1および 2の各高比熱組成物について、 50°Cにおける比熱 (c a \ /s/°C) の経時変化 (日毎) を調べた。 その結果 を図 5に示した。 図 5から、 比較例 2の高比熱組成物の比熱 (c a 1 /g/°C) が、 約 0. 58 前後であるのに対し、 比較例 1の高比熱組成物は、 調整日より 20日までは約 0. 58から 0. 78の範囲を推移し、 その後約 0. 67前後で安定した数値を示し ている。 実施例の高比熱組成物の比熱は、 調整後すみやかに約 0. 8から 0. 83まで 上がり、 その後直ぐに降下せず、 約 0. 78前後で安定したレベルを保ち、 その レベルは、 比較例 1および 2のものに比べて遙かに高く、 優れた高比熱効果を有 することが確認された。
2 tries to return to the stable state shown in Figure 1. At this time, energy is consumed. It is thought that the specific heat effect of "difficult to warm but difficult to cool once heated" is caused by the displacement of the dipole inside the base material and the energy consumption by the restoring action of the dipole. When considering the mechanism of such energy consumption, it is understood that the amount of dipole moment inside the substrate 11 as shown in FIGS. 1 and 2 plays a large role. In other words, when the amount of the dipole moment inside the substrate 11 is large, the consumption of the energy (specific heat) of the substrate 11 increases. The amount of the dipole moment in the base material varies depending on the types of components constituting the base material described above. Even if the same base material components are used, the amount of dipole moment generated in the base material changes depending on the temperature when energy is applied. The amount of dipole moment also changes depending on the magnitude of the energy applied to the substrate. For this reason, it is desirable to appropriately select and use a base material component that gives the largest amount of dipole moment in consideration of the temperature, the magnitude of energy, and the like when applied as a high specific heat composition. However, when selecting the base material components, not only the amount of dipole moment in the base material, but also the handleability, formability, availability, etc., depending on the application and use form of the high specific heat composition. It is desirable to consider temperature performance (heat resistance and cold resistance), weather resistance, and price. An active ingredient that increases the amount of dipole moment in the base material is added to the base material. The active component is a component that dramatically increases the amount of dipole moment in the base material.The active component itself has a large dipole moment, or the active component itself has a small dipole moment. A component that can dramatically increase the amount of dipole moment in the base material by incorporating an active component. For example, the amount of the dipole moment generated in the base material 11 under the predetermined temperature conditions and the magnitude of the energy can be reduced by adding the active ingredient to the base material 11 under the same conditions as shown in FIG. That is, it will increase by a factor of two or ten. Along with this, it is thought that the energy consumption due to the dipole restoring action when the above-mentioned energy is added will increase drastically, and a high specific heat effect far beyond the prediction will be generated. Examples of active ingredients that induce such effects include N, N-dicyclohexylbenzothiazyl-2-sulfenamide (DCHBSA), 2-mercaptobide (MBTS), N-ci (CBS), and N-tert. BS), N-Oxyjec
Figure imgf000007_0001
), N, N-diisopropyl benzothiazyl 2-sulfenamide (DPBS) and other compounds with a mercaptobenzothiazyl group. 2— {2 '—Hyd mouth 3'-(3〃, A ”, 5〃, 6〃 tetrahide mouth fluorimidomethyl) 1 5 '—Methylphenyl} 1-benzotriazole with phenyl group attached 2HPMMB), 2- {2'-hydroxy-5'-methylphenyl} -benzotriazol (2HMPB), 2- {2'-hydroxy- 3'-t-butyl-5'-methylphenyl} — 5—Black benzotriazole (2HBMP CB), 2- {2 ′ —Hyd mouth 3 ′, 5 ′ —Di-t_butylphenyl} -5—Black benzotriazole (2HDBPCB) A compound having a benzotriazolyl group, ethyl 2-cyano 3, Compounds having diphenyl acrylate group such as 3-diphenyl acrylate, 2-hydroxyl 4-methoxybenzophenone (HMBP), 2-hydroxy-4-methoxybenzophenone _ 5— One or two selected from compounds having a benzophenone group, such as sulfonic acid (HM BPS) More than species can be mentioned. When the high specific heat composition is applied to applications such as a circulating fluid for floor heating, a fluid for a heat exchanger, a refrigerant used in a home air conditioner, a building air conditioner, a large freezer, and the like (when the base material is a gas). It is desirable to select and use an active ingredient whose boiling point is close to that of the base material. The content of the above-mentioned active ingredient is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the base material. When the content of the active ingredient is less than 0.1 part by weight, a drastic increase in specific heat due to the incorporation of the above active ingredient cannot be obtained. On the other hand, when the content of the active ingredient is more than 100 parts by weight, the effect of only the added amount cannot be obtained, and it becomes uneconomical. In this high specific heat composition, the use of water, glycols, or a mixture thereof, which has been subjected to an electrostatic field treatment, as the base material facilitates the dissolution of the active ingredient, and the active ingredient constitutes the base material. It is thought that the specific heat rise by the above-mentioned active ingredient progresses more effectively, and as a result, a higher level of high specific heat effect can be obtained. Next, the high specific heat composition according to claims 4 to 6 will be described. This high specific heat composition is based on water, glycols, or a mixture thereof, to which an active ingredient is blended, and which has been subjected to an electrostatic field treatment. This high specific heat composition is different from the above high specific heat composition according to claims 1 to 3 in that the base material is subjected to an electrostatic field treatment, whereas the entire composition is subjected to an electrostatic field treatment. The details of the composition and each component are omitted because they are only different. In this high specific heat composition, the base material and the active component are subjected to an electrostatic field treatment, and the active component is easily dissolved in the base material as in the high specific heat composition according to any one of claims 1 to 3; Can enter the molecular level of the base material, It is thought that the specific heat increase due to the minute progresses more effectively, and as a result, a higher level of high specific heat effect can be obtained. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a dipole in a substrate. FIG. 2 is a schematic diagram showing a state of a dipole in a base material when energy is applied. FIG. 3 is a schematic diagram showing a state of a dipole in a base material when an active ingredient is blended. FIG. 4 is a schematic diagram showing an electrostatic field treatment device. Figure 5 shows the high specific heat compositions of EG alone, the high specific heat composition of EG mixed with CBS, and the high specific heat composition of EG mixed with CBS treated with electrostatic field. 4 is a graph showing specific heat at ° C. Example An EG is subjected to an electrostatic field treatment using the electrostatic field treatment device shown in FIG. The electrostatic field treatment device 21 includes a container 23 placed on a support base 22 made of an insulator and in an ungrounded state, and one electrode (for example, a carbon electrode) disposed in the container 23. Consists of four. The other electrode 25 is disposed in the atmosphere. Then, EG is put into the container 23, and an electric field is formed by applying a static voltage (for example, 1.7 kv) from the high voltage power source 26, and the electric field is left as it is. CBS was added at a ratio of 1 part by weight to 100 parts by weight of the EG subjected to the electrostatic field treatment. A high specific heat composition (Example) was obtained. For comparison, EG not subjected to electrostatic field treatment was used, and 100 parts by weight of this EG was mixed with 1 part by weight of CBS, and a high specific heat composition (Comparative Example 1) and no CBS were added. A high specific heat composition (Comparative Example 2) consisting only of EG not subjected to the electrostatic field treatment was prepared, and the specific heat at 50 ° C (ca) of each of the high specific heat compositions of Examples and Comparative Examples 1 and 2 was obtained. \ / s / ° C) over time (daily). Figure 5 shows the results. From FIG. 5, the specific heat (ca 1 / g / ° C) of the high specific heat composition of Comparative Example 2 is about 0.58, while the high specific heat composition of Comparative Example 1 Until the day, it was in the range of about 0.58 to 0.78, after which it remained stable at about 0.67. The specific heat of the high specific heat composition of the example immediately rises from about 0.8 to 0.83 after the adjustment, does not immediately drop, and maintains a stable level at about 0.78. It was much higher than those of 1 and 2, and it was confirmed to have an excellent high specific heat effect.

Claims

言青求の範固 Speculation of Word
1 . 静電場処理された水、 グリコール類、 あるいはこれらの混合物からな る基材中に、 前記基材における双極子モーメント量を増加させる活性成分が配合 されていることを特徴とする高比熱組成物。 1. A high specific heat composition, wherein an active ingredient that increases the amount of dipole moment in the base material is mixed in a base material made of water, glycols, or a mixture thereof that has been subjected to an electrostatic field treatment. object.
2 . 前記活性成分が前記基材 1 0 0重量部に対して 0 . 1〜: L 0 0重量部 の割合で含まれていることを特徴とする請求項 1記載の高比熱組成物。 2. The high specific heat composition according to claim 1, wherein the active ingredient is contained in a ratio of 0.1 to 100 parts by weight of L to 100 parts by weight of the base material.
3 . 前記活性成分が、 ベンゾチアジル基を持つ化合物、 ベンゾトリァゾー ル基を持つ化合物、 ジフ ニルアタリレート基を持つ化合物、 あるいはベンゾフ ュノン基を持つ化合物の中から選ばれた 1種若しくは 2種以上であることを特徴 とする請求項 1または 2記載の高比熱組成物。 3. The active ingredient is one or more compounds selected from a compound having a benzothiazyl group, a compound having a benzotriazole group, a compound having a diphenylatarylate group, and a compound having a benzofunone group. The high specific heat composition according to claim 1 or 2, wherein
4 . 水、 グリコール類、 あるいはこれらの混合物からなる基材中に、 前記 基材における双極子モーメント量を増加させる活性成分が配合され、 かつ静電場 処理がなされていることを特徴とする高比熱組成物。 4. A high specific heat characterized in that an active ingredient for increasing the amount of dipole moment in the base material is blended in a base material made of water, glycols, or a mixture thereof, and is subjected to an electrostatic field treatment. Composition.
5 . 前記活性成分が前記基材 1 0 0重量部に対して 0 . 1〜: 1 0 0重量部 の割合で含まれていることを特徴とする請求項 4記載の高比熱組成物。 5. The high specific heat composition according to claim 4, wherein the active ingredient is contained in a ratio of 0.1 to 100 parts by weight based on 100 parts by weight of the base material.
6 . 前記活性成分が、 ベンゾチアジル基を持つ化合物、 ベンゾトリァゾー ル基を持つ化合物、 ジフ ニルアタリレート基を持つ化合物、 あるいはベンゾフ エノン基を持つ化合物の中から選ばれた 1種若しくは 2種以上であることを特徴 とする請求項 4または 5記載の高比熱組成物。 6. The active ingredient is one or more compounds selected from a compound having a benzothiazyl group, a compound having a benzotriazole group, a compound having a diphenylatarylate group, and a compound having a benzophenone group. The high specific heat composition according to claim 4 or 5, wherein
PCT/JP1999/001463 1999-03-23 1999-03-23 Composition having high specific heat WO2000056832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001463 WO2000056832A1 (en) 1999-03-23 1999-03-23 Composition having high specific heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001463 WO2000056832A1 (en) 1999-03-23 1999-03-23 Composition having high specific heat

Publications (1)

Publication Number Publication Date
WO2000056832A1 true WO2000056832A1 (en) 2000-09-28

Family

ID=14235259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001463 WO2000056832A1 (en) 1999-03-23 1999-03-23 Composition having high specific heat

Country Status (1)

Country Link
WO (1) WO2000056832A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973832A (en) * 1972-11-21 1974-07-17
JPH10180263A (en) * 1996-12-25 1998-07-07 Asahi Chem Ind Co Ltd Structure-controlled water, its preparation and its utilization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973832A (en) * 1972-11-21 1974-07-17
JPH10180263A (en) * 1996-12-25 1998-07-07 Asahi Chem Ind Co Ltd Structure-controlled water, its preparation and its utilization

Similar Documents

Publication Publication Date Title
JP4478449B2 (en) Refrigerant for cooling system in fuel cell drive, containing azole derivative
CN111218259B (en) New energy automobile power battery cooling liquid and preparation method thereof
TW574356B (en) Coolant concentrate composition for coolant systems where low electrical conductivity required
JP4944381B2 (en) Refrigerant based on 1,3-propanediol containing azole derivatives for fuel cell-cooling systems
WO2019140871A1 (en) Immersion-type heat-dissipation cooling liquid for power lithium battery and preparation method therefor
AU2002346913A1 (en) Corrosion inhibiting compositions and methods for fuel cell coolant systems
JP2012072929A (en) Heat storage device and air conditioner equipped with the same
JP2006321949A (en) Paraffin-based latent heat-storing material composition
WO2003094271A1 (en) Cooling liquid composition for fuel cell
US6627106B1 (en) Salt mixtures for storing thermal energy in the form of heat of phase transformation
WO2005008819A3 (en) Evaporative coolants having low dielectric constant for use in fuel cells & other electrochemical reactor stacks
CZ20002518A3 (en) Frostproof heating or cooling liquid
WO2005091413A1 (en) Cooling fluid composition for fuel cell
WO2000056832A1 (en) Composition having high specific heat
EP2586844B1 (en) Coolant composition for fuel cell
JP3978532B2 (en) High specific heat composition
US20020175313A1 (en) Nonazeotropic working fluid media for use in thermodynamic cycle applications
CA2128629C (en) Improved nonazeotropic working fluid media for use in thermodynamic cycle applications
US7270766B2 (en) Feed water composition for boilers
JP7111588B2 (en) coolant composition
JPH11140435A (en) Cooling liquid composition
CN101949015A (en) Protective agent for water-cooled engine cooling system
JPH10183109A (en) Brine composition
JP2012072930A (en) Heat storage device and air conditioner equipped with the same
JP3428032B2 (en) Coolant composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)