JPH10180102A - Dehydrogenation catalyst - Google Patents

Dehydrogenation catalyst

Info

Publication number
JPH10180102A
JPH10180102A JP8343156A JP34315696A JPH10180102A JP H10180102 A JPH10180102 A JP H10180102A JP 8343156 A JP8343156 A JP 8343156A JP 34315696 A JP34315696 A JP 34315696A JP H10180102 A JPH10180102 A JP H10180102A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
carrier
supported
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8343156A
Other languages
Japanese (ja)
Other versions
JP3908314B2 (en
Inventor
Yoshimi Okada
佳巳 岡田
Kenichi Imagawa
健一 今川
Susumu Yamamoto
進 山本
Sachio Asaoka
佐知夫 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP34315696A priority Critical patent/JP3908314B2/en
Publication of JPH10180102A publication Critical patent/JPH10180102A/en
Application granted granted Critical
Publication of JP3908314B2 publication Critical patent/JP3908314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group

Abstract

PROBLEM TO BE SOLVED: To provide a dehydrogenation catalyst which is stable with reduced deterioration at high temperatures and used for the production of alkene by dehydrogenating alkane. SOLUTION: This dehydrogenation catalyst has a surface area of at least 150m<2> /g, pore volume of at least 0.55cm<3> /g, and an average pore diameter of 90-200 angstrom. A catalyst composition in which platinum and tin are carried on a composite carrier in which zinc oxide is carried on a γ-alumina carrier in which pores of 90-200 angstrom in diameter occupy 60% or more of the total pore volume is subjected to a high temperature reduction treatment at 500-700 deg.C in the presence of a reducing gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は脱水素触媒に関し、
より具体的にはアルカンの脱水素反応によりアルケンを
製造するのに用いる脱水素触媒に関する。
The present invention relates to a dehydrogenation catalyst,
More specifically, it relates to a dehydrogenation catalyst used for producing an alkene by a dehydrogenation reaction of an alkane.

【0002】[0002]

【従来の技術】近年、プロピレンやイソブチレンに代表
されるアルケンの需要が増えている。これは、プロピレ
ンを原料とするポリプロピレンの需要が包装材料や自動
車部品用樹脂として増大しており、また、イソブチレン
を原料として製造するガソリンの高オクタン価燃料用添
加剤メチル−t−ブチルエーテル(MTBE)の需要が
増大していること等によるものである。これらプロピレ
ンやイソブチレンは、ガソリン製造のための流動床式接
触分解(FCC)により得られ、あるいはエチレン製造
のための熱分解の副生物として得られるが、そのような
方法により得られる量には限度があり、他の製造方法の
確立が望まれている。このような状況下において、燃料
としての利用にとどまっているC3、C4類等のアルカン
を原料としてプロピレンやイソブチレン、あるいはn−
ブテン等のアルケンを製造することが各種試みられてい
る。このようにアルカンを原料としてアルケンを製造す
る方法としては、触媒存在下での接触脱水素反応による
方法が従来から有効な方法として知られている(例えば
特開平3−288548号公報参照)。そして、そのた
めの脱水素触媒としては、シリカ、アルミナ、ゼオライ
ト、活性炭などの担体上に金属や金属酸化物などの活性
物質を担持させたものが従来から用いられ、特に酸化ク
ロム/アルミナ触媒がよく用いられている(例えば米国
特許第4581339号参照)。
2. Description of the Related Art In recent years, demand for alkenes represented by propylene and isobutylene has been increasing. This is because the demand for polypropylene using propylene as a raw material is increasing as a resin for packaging materials and automobile parts, and the addition of methyl-t-butyl ether (MTBE), a high octane fuel additive for gasoline produced from isobutylene as a raw material. This is because demand is increasing. These propylene and isobutylene are obtained by fluidized bed catalytic cracking (FCC) for gasoline production or as a by-product of pyrolysis for ethylene production, but the amount obtained by such a method is limited. Therefore, establishment of another manufacturing method is desired. Under these circumstances, alkane such as C 3 and C 4 , which is used only as a fuel, is used as a raw material to produce propylene, isobutylene, or n-
Various attempts have been made to produce alkenes such as butenes. As a method for producing an alkene using an alkane as a raw material, a method based on a catalytic dehydrogenation reaction in the presence of a catalyst has been conventionally known as an effective method (see, for example, JP-A-3-288548). As a dehydrogenation catalyst for this purpose, a catalyst in which an active substance such as a metal or a metal oxide is supported on a carrier such as silica, alumina, zeolite, or activated carbon is conventionally used. In particular, a chromium oxide / alumina catalyst is often used. (See, for example, US Pat. No. 4,581,339).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、脱水素
反応は吸熱反応であることから一般に反応は高温で行わ
れる。このためそのような高温においてより安定な触媒
が望まれている。すなわち本発明は、アルカンの脱水素
によるアルケンの製造に用いられる脱水素触媒であっ
て、高温での劣化の少ないより安定した脱水素触媒を提
供するものである。
However, since the dehydrogenation reaction is an endothermic reaction, the reaction is generally carried out at a high temperature. Therefore, a catalyst that is more stable at such a high temperature is desired. That is, the present invention provides a dehydrogenation catalyst for use in the production of alkenes by dehydrogenation of alkanes, which is less degraded at high temperatures and more stable.

【0004】[0004]

【課題を解決するための手段】本発明は、表面積150
2/g以上、細孔容積0.55cm3/g以上、平均細孔
径90〜200オングストロームであり、かつ細孔径9
0〜200オングストロームの細孔が全細孔容積の60
%以上を占めるγ−アルミナ担体に酸化亜鉛を担持して
なる複合担体に、白金およびスズが担持された触媒組成
物を、還元性ガスの存在下で高温還元処理することを特
徴とする脱水素触媒を提供することにより、上記課題を
解決する。
SUMMARY OF THE INVENTION The present invention is directed to a method for fabricating a surface having a surface area of 150.
m 2 / g or more, pore volume 0.55 cm 3 / g or more, average pore diameter 90 to 200 Å, and pore diameter 9
The pores of 0 to 200 angstroms have a total pore volume of 60
% Of a catalyst composition in which platinum and tin are supported on a composite carrier comprising zinc oxide supported on a γ-alumina carrier occupying not less than 10% by mass in the presence of a reducing gas. The problem is solved by providing a catalyst.

【0005】[0005]

【発明の実施の形態】固体触媒を用いたアルカンの脱水
素反応は本質的に気固系接触操作であるため、活性を高
めるためには活性金属の選択とともに触媒表面積を大き
くすることが重要である。また、選択性を高め、かつ活
性劣化を抑制するためには、異性化反応あるいは分解反
応を抑制して目的化合物を優先的に形成し、かつコーク
スの沈着を抑制するような表面特性を与えることが重要
である。したがって、活性や選択性の低下を防止するた
めには、上記表面積や表面特性の変化が小さいことが重
要となる。本発明では、特定のγ−アルミナ担体に特定
量の酸化亜鉛を担持してなる複合担体を用い、これに白
金およびスズを担持し、これを還元性ガスの存在下で高
温還元処理することによって、上記要請を実現するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Since the dehydrogenation of alkanes using a solid catalyst is essentially a gas-solid contact operation, it is important to increase the surface area of the catalyst together with the selection of the active metal in order to increase the activity. is there. In order to increase selectivity and suppress activity deterioration, it is necessary to suppress the isomerization reaction or decomposition reaction and to form the target compound preferentially, and to provide surface characteristics that suppress coke deposition. is important. Therefore, in order to prevent a decrease in activity and selectivity, it is important that changes in the surface area and surface characteristics are small. In the present invention, a specific carrier is used in which a specific amount of zinc oxide is supported on a specific γ-alumina carrier, platinum and tin are supported on the composite carrier, and this is subjected to a high-temperature reduction treatment in the presence of a reducing gas. This fulfills the above requirements.

【0006】上記特定の多孔性γ−アルミナ担体は、表
面積が150m2/g以上、細孔容積が0.55cm3/g
以上、平均細孔径が90〜200オングストロームであ
り、かつ細孔径90〜200オングストロームの細孔が
全細孔容積の60%以上を占めるものである。平均細孔
径が90オングストロームより小さいとアルカン分子や
アルケン分子の細孔内拡散が律速になり、全触媒表面積
を有効に利用することができない。一方、平均細孔径が
200オングストロームより大きいと表面積が大きくと
れなくなる。上記条件を満足するγ−アルミナ担体は、
アルミニウム塩の中和により生成した水酸化アルミニウ
ムのスラリーを濾過洗浄し、これを脱水乾燥した後、4
00〜800℃で1〜6時間程度焼成することにより得
られる。
The specific porous γ-alumina support has a surface area of 150 m 2 / g or more and a pore volume of 0.55 cm 3 / g.
As described above, the average pore diameter is 90 to 200 angstroms, and the pores having a pore diameter of 90 to 200 angstroms occupy 60% or more of the total pore volume. If the average pore diameter is smaller than 90 angstroms, diffusion of alkane molecules and alkene molecules in the pores is rate-determining, and the entire catalyst surface area cannot be used effectively. On the other hand, if the average pore diameter is larger than 200 angstroms, the surface area cannot be increased. A γ-alumina support satisfying the above conditions is:
The slurry of aluminum hydroxide produced by the neutralization of the aluminum salt was filtered and washed, and dehydrated and dried.
It is obtained by baking at 00 to 800 ° C. for about 1 to 6 hours.

【0007】上記特定の多孔性γ−アルミナ担体には、
酸化亜鉛[ZnO]を好ましくは5〜50重量%担持さ
せる。この酸化亜鉛はアルミナ表面にアルミナとの複合
体を形成し、好ましい表面特性を与える役割を果たすと
思われる。担持量が5重量%以下ではγ−アルミナ担体
表面をアルミナと酸化亜鉛の複合体が均一に覆うことが
できないため十分な効果が得られず、一方、担持量が5
0重量%を超えるとアルミナと酸化亜鉛との複合体の表
面特性が変化するとともに表面積の減少が著しいものと
なる。γ−アルミナ担体上に酸化亜鉛を担持させるに
は、硝酸亜鉛などの亜鉛化合物の水溶液を担体に含浸さ
せた後、乾燥して焼成すればよい。
The above specific porous γ-alumina carrier includes:
Zinc oxide [ZnO] is preferably supported at 5 to 50% by weight. It is believed that this zinc oxide forms a complex with alumina on the alumina surface and plays a role in providing favorable surface properties. If the loading amount is less than 5% by weight, the surface of the γ-alumina carrier cannot be uniformly covered with the composite of alumina and zinc oxide, so that a sufficient effect cannot be obtained.
If the content exceeds 0% by weight, the surface characteristics of the composite of alumina and zinc oxide will change, and the surface area will decrease significantly. In order to carry zinc oxide on the γ-alumina carrier, the carrier may be impregnated with an aqueous solution of a zinc compound such as zinc nitrate, dried and fired.

【0008】上記複合体上には白金を好ましくは0.0
5〜1.5重量%担持させる。ここで用いる白金化合物
としては、塩化白金酸、白金酸アンモニウム塩、臭化白
金酸、二塩化白金、四塩化白金水和物、二塩化カルボニ
ル白金二塩化物、ジニトロジアミン白金酸塩等が挙げら
れる。白金の担持は、当該複合担体に塩化白金酸等の白
金化合物の水溶液を含浸させ、次いでこれを焼成した
後、水素ガス中にて高温で還元する工程が通常用いられ
るが、本発明では必ずしも水素還元ではなく他の還元方
法を用いても良い。
[0008] Platinum, preferably 0.0
5 to 1.5% by weight is supported. Examples of the platinum compound used herein include chloroplatinic acid, ammonium platinate, platinum bromide, platinum dichloride, platinum tetrachloride hydrate, carbonyl platinum dichloride dichloride, dinitrodiamine platinum salt, and the like. . For supporting platinum, a step of impregnating the composite carrier with an aqueous solution of a platinum compound such as chloroplatinic acid, followed by calcining and then reducing at a high temperature in hydrogen gas is usually used. Other reduction methods may be used instead of reduction.

【0009】上記複合担体上には白金とともにスズを担
持させる。スズの担持量は0.5〜10重量%が好まし
い。ここで用いるスズ化合物としては、水溶性のもの及
び/又はアセトン等の有機溶媒に可溶のものが好まし
い。このようなスズ化合物としては、臭化第一スズ、酢
酸スズ、塩化第一スズ、塩化第二スズ、及びそれらの水
和物や、塩化第二スズアセチルアセトナート錯体、テト
ラメチルスズ、テトラエチルスズ、テトラブチルスズ、
テトラフェニルスズ等が挙げられる。スズの担持は、上
記還元工程後の当該担体にスズ化合物の水溶液及び/又
は有機溶媒溶液等を含浸させて水又は有機溶媒を乾燥除
去した後、水素ガス中にて高温で還元する方法が通常用
いられるが、本発明では必ずしも水素還元でなく他の還
元方法を用いてもよい。
[0009] Tin is supported together with platinum on the composite carrier. The supported amount of tin is preferably 0.5 to 10% by weight. The tin compound used here is preferably a water-soluble compound and / or a compound soluble in an organic solvent such as acetone. Examples of such tin compounds include stannous bromide, tin acetate, stannous chloride, stannic chloride, and hydrates thereof, stannic chloride acetylacetonate complex, tetramethyltin, tetraethyltin , Tetrabutyltin,
And tetraphenyltin. The supporting of tin is usually carried out by impregnating the carrier after the above-mentioned reduction step with an aqueous solution of a tin compound and / or an organic solvent solution to dry and remove water or an organic solvent, and then reducing at high temperature in hydrogen gas. However, in the present invention, other reduction methods may be used instead of hydrogen reduction.

【0010】上記のようにして得られた触媒組成物は最
終的に還元性ガスの存在下で高温還元処理される。ここ
で用いる還元性ガスとしては水素または水素を含む混合
ガスが好ましく、水素ガスを単独で用いるのがより好ま
しい。通常、高温還元処理は500〜700℃、好まし
くは550〜650℃の温度で、1〜20時間程度行
う。なお、この高温還元処理は、必ずしも触媒を反応管
に充填する前に予め行う必要はなく、触媒を反応管に充
填した後、原料アルカンを導入して脱水素反応を行う前
に水素ガスを反応管に流通させればよい。
[0010] The catalyst composition obtained as described above is finally subjected to a high-temperature reduction treatment in the presence of a reducing gas. As the reducing gas used here, hydrogen or a mixed gas containing hydrogen is preferable, and it is more preferable to use hydrogen gas alone. Usually, the high temperature reduction treatment is performed at a temperature of 500 to 700 ° C, preferably 550 to 650 ° C, for about 1 to 20 hours. Note that this high-temperature reduction treatment does not necessarily need to be performed before the catalyst is filled in the reaction tube, and after the catalyst is filled in the reaction tube, the hydrogen gas is reacted before introducing the raw material alkane and performing the dehydrogenation reaction. What is necessary is just to distribute to a pipe.

【0011】[0011]

【実施例】以下において、最終的な高温還元処理をした
本発明の脱水素触媒と、最終的な高温還元処理をしてい
ない従来の脱水素触媒を用いて、脱水素反応を行った例
を示す。なお以下において、%の値はすべて重量%であ
る。 (1)γ−アルミナ担体の製造 特公平6−72005号公報中の実施例1に記載される
ようにして、γ−アルミナ担体を製造した。この方法の
あらましを述べると、熱希硫酸中に激しく攪拌しながら
瞬時にアルミン酸ソーダ水溶液を加えることにより水酸
化アルミニウムスラリーの懸濁液(pH10)を得、こ
れを種子水酸化アルミニウムとして、攪拌を続けながら
熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間お
いて加える操作を繰り返して濾過洗浄ケーキを得、これ
を押し出し成形して乾燥した後、500℃で3時間焼成
するというものである。こうして得られるγ−アルミナ
の性状は典型的には下記の表1の通りである。
The following is an example of performing a dehydrogenation reaction using a dehydrogenation catalyst of the present invention that has been subjected to a final high-temperature reduction treatment and a conventional dehydrogenation catalyst that has not been subjected to a final high-temperature reduction treatment. Show. In the following, all values of% are% by weight. (1) Production of γ-alumina support A γ-alumina support was produced as described in Example 1 in JP-B-6-72005. In brief, this method was used to obtain a suspension of an aluminum hydroxide slurry (pH 10) by instantly adding an aqueous sodium aluminate solution while stirring vigorously in hot dilute sulfuric acid. Is repeated by alternately adding hot dilute sulfuric acid and aqueous sodium aluminate solution for a certain period of time to obtain a filter washing cake, extruding and drying it, and then baking it at 500 ° C. for 3 hours. . The properties of γ-alumina thus obtained are typically as shown in Table 1 below.

【表1】 [Table 1]

【0012】(2)白金/スズ担持触媒の製造 上記γ−アルミナ担体27.5gをとり、これにZnO
/Al23比が30/70になるように30%硝酸亜鉛
[Zn(NO32]水溶液を含浸させ、水分除去後、4
00℃で3時間焼成して複合担体を調製した。この複合
担体にPt担持量が0.3%になるように2.0%塩化
白金酸[H2PtCl6]水溶液を含浸させ、乾燥後40
0℃で3時間焼成し、さらに水素気流中400℃で3時
間還元した。次いで、この還元後の白金担持複合担体に
Sn担持量が3.5%になるように3%塩化第一スズ
[SnCl2 ]水溶液を含浸させ、乾燥後に400℃で
30分間水素還元を行って白金/スズ担持触媒を得た。
(2) Production of a platinum / tin supported catalyst 27.5 g of the above-mentioned γ-alumina carrier was taken, and ZnO was added thereto.
30% zinc nitrate [Zn (NO 3 ) 2 ] aqueous solution so that the / Al 2 O 3 ratio becomes 30/70.
The composite support was prepared by firing at 00 ° C. for 3 hours. The composite carrier is impregnated with 2.0% aqueous solution of chloroplatinic acid [H 2 PtCl 6 ] so that the amount of Pt carried is 0.3%, and after impregnation, the carrier is dried.
It was calcined at 0 ° C. for 3 hours, and further reduced at 400 ° C. for 3 hours in a hydrogen stream. Next, the platinum-supported composite carrier after the reduction was impregnated with a 3% aqueous solution of stannous chloride [SnCl 2 ] so that the amount of supported Sn became 3.5%. After drying, hydrogen reduction was performed at 400 ° C. for 30 minutes. A platinum / tin supported catalyst was obtained.

【0013】(3)脱水素反応試験 [実施例] 上記で得られた白金/スズ担持触媒を直径
18mmの石英製反応管に充填し、水素流通下に600
℃で3時間の処理を行った後、窒素で十分なパージを行
った。次いで、イソブタンを原料として、温度560
℃、空間速度GHSV500hr-1で脱水素反応試験を
30時間行い、反応器出口ガスをガスクロマトグラフに
より分析した。結果を表2に示す。 [比較例] 600℃、3時間の水素流通処理を行わな
かった他は上記と同一の条件で脱水素反応試験を行っ
た。結果を表2に示す。
(3) Dehydrogenation reaction test [Example] The platinum / tin-supported catalyst obtained above was filled in a quartz reaction tube having a diameter of 18 mm, and the catalyst was placed under a hydrogen flow of 600 mm.
After performing the treatment at 3 ° C. for 3 hours, a sufficient purge was performed with nitrogen. Then, using isobutane as a raw material, at a temperature of 560
A dehydrogenation reaction test was performed at a temperature of 500 ° C. and a space velocity of 500 hr -1 for 30 hours, and the gas at the reactor outlet was analyzed by gas chromatography. Table 2 shows the results. [Comparative Example] A dehydrogenation reaction test was performed under the same conditions as above except that the hydrogen circulation treatment was not performed for 3 hours at 600 ° C. Table 2 shows the results.

【表2】 表2から明らかなように、最終的に高温還元処理を行っ
た触媒によって脱水素反応を行ったところ、触媒活性及
び選択性の低下が著しく緩和された。
[Table 2] As is clear from Table 2, when the dehydrogenation reaction was finally performed using the catalyst that had been subjected to the high-temperature reduction treatment, the reduction in the catalytic activity and the selectivity was remarkably alleviated.

【0014】[0014]

【発明の効果】以上のように、本発明の脱水素触媒を用
いれば、アルカンの脱水素反応によってアルケンを製造
する際に、触媒の高温での劣化が著しく緩和される。
As described above, when the dehydrogenation catalyst of the present invention is used, when an alkene is produced by a dehydrogenation reaction of an alkane, deterioration of the catalyst at a high temperature is remarkably alleviated.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 11/02 C07C 11/02 // C07B 61/00 300 C07B 61/00 300 (72)発明者 山本 進 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 浅岡 佐知夫 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI C07C 11/02 C07C 11/02 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Susumu Yamamoto Tsurumi, Yokohama City, Kanagawa Prefecture 2-1-1, Tsurumi-Chuo-ku, Chiyoda Chemical Works Construction Co., Ltd. (72) Inventor Sachio Asaoka 2-1-1, Tsurumi-Chuo 2-chome, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Chiyoda Chemical Works, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面積150m2/g以上、細孔容積0.
55cm3/g以上、平均細孔径90〜200オングスト
ロームであり、かつ細孔径90〜200オングストロー
ムの細孔が全細孔容積の60%以上を占めるγ−アルミ
ナ担体に酸化亜鉛を担持してなる複合担体に、白金およ
びスズが担持された触媒組成物を、還元性ガスの存在下
で高温還元処理してなることを特徴とする脱水素触媒。
1. A surface area of 150 m 2 / g or more and a pore volume of 0.1 m 2 / g.
Composite comprising zinc oxide supported on a γ-alumina carrier having a pore size of 55 cm 3 / g or more, an average pore size of 90 to 200 Å and pores having a pore size of 90 to 200 Å occupying 60% or more of the total pore volume. A dehydrogenation catalyst obtained by subjecting a catalyst composition having platinum and tin supported on a support to a high-temperature reduction treatment in the presence of a reducing gas.
【請求項2】 前記複合担体における酸化亜鉛の担持量
が5〜50重量%である請求項1記載の触媒。
2. The catalyst according to claim 1, wherein the amount of zinc oxide carried on the composite carrier is 5 to 50% by weight.
【請求項3】 前記複合担体上の白金の担持量が0.0
5〜1.5重量%である請求項1または2記載の触媒。
3. The amount of platinum supported on the composite carrier is 0.0
3. The catalyst according to claim 1, wherein the amount is 5 to 1.5% by weight.
【請求項4】 前記複合担体上のスズの担持量が0.5
〜10重量%である請求項1〜3のいずれか記載の触
媒。
4. The amount of tin carried on the composite carrier is 0.5
The catalyst according to any one of claims 1 to 3, which is 10 to 10% by weight.
【請求項5】 前記触媒組成物の高温還元処理が500
〜700℃の温度で行われる請求項1〜4のいずれか記
載の触媒。
5. The high-temperature reduction treatment of the catalyst composition is 500
The catalyst according to any one of claims 1 to 4, which is carried out at a temperature of -700C.
【請求項6】 前記還元性ガスが水素である請求項1〜
5のいずれか記載の触媒。
6. The method according to claim 1, wherein the reducing gas is hydrogen.
5. The catalyst according to any one of the above items 5.
JP34315696A 1996-12-24 1996-12-24 Dehydrogenation catalyst Expired - Lifetime JP3908314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34315696A JP3908314B2 (en) 1996-12-24 1996-12-24 Dehydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34315696A JP3908314B2 (en) 1996-12-24 1996-12-24 Dehydrogenation catalyst

Publications (2)

Publication Number Publication Date
JPH10180102A true JPH10180102A (en) 1998-07-07
JP3908314B2 JP3908314B2 (en) 2007-04-25

Family

ID=18359354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34315696A Expired - Lifetime JP3908314B2 (en) 1996-12-24 1996-12-24 Dehydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP3908314B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor
JP2012500720A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ ソシエタス・ヨーロピア Continuous production method of catalyst
KR101306815B1 (en) * 2011-06-01 2013-10-15 금호석유화학 주식회사 Preparing Method of Butenes from n-Butane
JP2017197535A (en) * 2016-04-22 2017-11-02 Jxtgエネルギー株式会社 Method for producing conjugated diene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332406B1 (en) 2020-03-10 2021-11-26 에스케이가스 주식회사 Dehydrogenating catalyst for manufacturing olefin from alkane gas, and a method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211845A (en) * 2004-01-30 2005-08-11 Chiyoda Corp Dehydrogenation catalyst for hydrogenated aromatic compounds and manufacturing method therefor
JP4652695B2 (en) * 2004-01-30 2011-03-16 千代田化工建設株式会社 Hydrogenated aromatic dehydrogenation catalyst and method for producing the same
JP2012500720A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ ソシエタス・ヨーロピア Continuous production method of catalyst
KR101306815B1 (en) * 2011-06-01 2013-10-15 금호석유화학 주식회사 Preparing Method of Butenes from n-Butane
JP2017197535A (en) * 2016-04-22 2017-11-02 Jxtgエネルギー株式会社 Method for producing conjugated diene

Also Published As

Publication number Publication date
JP3908314B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP3831821B2 (en) Catalytic hydrogenation process and catalyst usable in this process
KR101233017B1 (en) Reforming process using high density catalyst
US20170120222A1 (en) Transition metal-noble metal complex oxide catalyst for dehydrogenation prepared by one-pot synthesis and use thereof
RU2547466C1 (en) Catalyst and method of reforming
CN101190413B (en) Petroleum naphtha reforming catalyst and preparation method thereof
JP3908313B2 (en) Dehydrogenation catalyst
JP4652695B2 (en) Hydrogenated aromatic dehydrogenation catalyst and method for producing the same
US6498280B1 (en) Catalyst comprising an element from groups 8, 9 or 10 with good accessibility, and its use in a paraffin dehydrogenation process
JPH09173843A (en) Selective hydrogenation catalyst and method using this catalyst
WO2017003319A1 (en) Catalyst for isomerisation of paraffin hydrocarbons and method of preparation thereof
JPH10182505A (en) Dehydrogenation
JP4054116B2 (en) Dehydrogenation catalyst
TW201608013A (en) Naphtha Reforming Catalyst and Preparation Method Thereof
WO2021110083A1 (en) Catalyst suitable for hydrocarbon conversion reaction, preparation method therefor and application thereof
KR102046771B1 (en) Dehydrogenation catalyst
JP3908314B2 (en) Dehydrogenation catalyst
JP4166333B2 (en) Dehydrogenation catalyst
US8536082B2 (en) Dehydrogenation catalyst preparation by dry impregnation
KR102162079B1 (en) Method of preparing catalyst support and dehydrogenation catalysts
JP2000037629A (en) Dehydrogenation catalyst
JP2000037628A (en) Dehydrogenation catalyst
JP3730792B2 (en) Hydrocarbon isomerization process
KR20170052461A (en) Transition Metal-Noble Metal Complex Oxide Catalysts Prepared by One-Pot for Dehydrogenation and Use Thereof
US4217205A (en) Catalysts for hydrocarbon conversion
JP3112821B2 (en) Catalyst containing catalytic metal and non-acidic promoter dispersed on substrate and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term