JPH10180097A - Catalyst for hydrogen treatment of hydrocarbon oil and hydrogen treating method of gas oil - Google Patents

Catalyst for hydrogen treatment of hydrocarbon oil and hydrogen treating method of gas oil

Info

Publication number
JPH10180097A
JPH10180097A JP35563896A JP35563896A JPH10180097A JP H10180097 A JPH10180097 A JP H10180097A JP 35563896 A JP35563896 A JP 35563896A JP 35563896 A JP35563896 A JP 35563896A JP H10180097 A JPH10180097 A JP H10180097A
Authority
JP
Japan
Prior art keywords
catalyst
mass
oil
gas oil
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35563896A
Other languages
Japanese (ja)
Other versions
JP3770679B2 (en
Inventor
Katsuhiro Kato
勝博 加藤
Etsuo Suzuki
悦夫 鈴木
Katsumi Oki
勝美 大木
Takashi Fujikawa
貴志 藤川
Yukio Shibata
行雄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP35563896A priority Critical patent/JP3770679B2/en
Publication of JPH10180097A publication Critical patent/JPH10180097A/en
Application granted granted Critical
Publication of JP3770679B2 publication Critical patent/JP3770679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a catalyst for a hydrogen treatment of a hydrocarbon oil having a high hydrogenation activity to an arom. compd. together with a high resistance to sulfur and also having a high desulfurizing performance and to provide a production method of a gas oil blend base material having low sulfur content and low arom. compd. content by executing a contact reaction of the gas oil containing the arom. compd. by using the catalyst. SOLUTION: In the catalyst, 0.1-8 mass % at least one kind platinum group metal based on the catalyst and expressed in terms of metal or 0.1-2 mass % germanium based on the catalyst and expressed in terms of metal is incorporated together with at least one kind platinum group metal as an active component for hydrogenation in the carrier containing 2-50 mass % silica, 2-20 mass % ziroconia and 30-96 mass % alumina. The gas oil is subjected to the hydrogen treatment by executing the contact reaction of a gas oil fraction containing the arom. compd. at 3-8MPa hydrogen partial pressure, at 200-370 deg.C and at 0.3-5hr<-1> liq. space velocity by using this catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素油の水素
化反応に使用し、炭化水素油の芳香族化合物含有率及び
硫黄含有率を低減させる触媒と、その触媒を使用した軽
油の水素化処理方法とに関し、更に詳細には、芳香族化
合物に対する高い水素化活性と、高い耐硫黄性とを合わ
せ持ち、かつ高い脱硫性能をも有する触媒と、その触媒
を使用して低い硫黄含有率及び低い芳香族化合物含有率
の軽油ブレンド基材を製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst used in a hydrogenation reaction of a hydrocarbon oil to reduce the aromatic compound content and the sulfur content of the hydrocarbon oil, and to hydrogenate light oil using the catalyst. Regarding the treatment method, more specifically, a catalyst having high hydrogenation activity for aromatic compounds and high sulfur resistance, and also having high desulfurization performance, and using the catalyst, low sulfur content and The present invention relates to a method for producing a gas oil blend base material having a low aromatic compound content.

【0002】[0002]

【技術背景】内燃機関として多用されているディーゼル
エンジンは、原油の常圧蒸留によって得られる特定の沸
点範囲の直留軽油留分、又はその直留軽油留分に水素化
処理を施して得られる軽油留分、或いはそれら軽油留分
を主基材とし、それに他のソースから得られる軽油留分
をブレンドして得られる軽油を燃料としている。
BACKGROUND ART A diesel engine frequently used as an internal combustion engine is obtained by subjecting a straight gas oil fraction having a specific boiling point obtained by atmospheric distillation of crude oil or a hydrogen gas treatment to the straight gas oil fraction. The fuel is a gas oil fraction or a gas oil obtained by blending the gas oil fraction obtained from another source with the gas oil fraction as a main base material.

【0003】ディーゼルエンジンに適する軽油直留留分
は、原油単位量当たり限られた量しか原油に含まれてお
らず、しかも入手できる原油が年々重質化しているた
め、原油中の軽油直留留分の含有量が益々少なくなる傾
向にある。そこで、軽油留分の必要量を確保するため
に、重質油を分解して、軽油基材に転化することも行わ
れている。
[0003] Gas oil straight cuts suitable for diesel engines contain only a limited amount of crude oil per unit amount of crude oil, and the available crude oil is becoming heavier every year. The content of the fraction tends to be further reduced. Therefore, in order to secure a necessary amount of the gas oil fraction, heavy oil is decomposed and converted into a gas oil base material.

【0004】一方、軽油の需要は、ディーゼルエンジン
車の増加に伴う軽油の需要増大といった要因もあって、
益々増大する傾向にあり、近い将来、軽油の供給量が大
幅に不足することが予想される。
[0004] On the other hand, demand for light oil is partly due to an increase in demand for light oil accompanying an increase in diesel engine vehicles.
It is increasing, and it is expected that the supply of gas oil will be significantly short in the near future.

【0005】原油から直留留分として得られる軽油留分
の不足に対処する方法、言い換えれば軽油の需要増大に
対応する方法の一つは、直留軽油留分にブレンドするブ
レンド基材の生産量を増やすことである。
[0005] One of the methods to cope with the shortage of the gas oil fraction obtained as a straight fraction from crude oil, in other words, to cope with the increased demand for gas oil, is to produce a blend base material to be blended with the straight gas oil fraction. It is to increase the amount.

【0006】そこで、接触分解装置から得られる特定の
沸点範囲の軽質分解系軽油(Light Cycle
Oil、以下、LCOと略記する)が、軽油用の新たな
ブレンド基材のための原料油として注目されている。そ
れは、LCOは、軽油留分とは逆に、上述した原油の重
質化により余剰傾向にあり、留分の需給バランスから言
って、ブレンド基材に転用するのが望ましい留分だから
である。
[0006] Therefore, a light cracking gas oil (Light Cycle) having a specific boiling point range obtained from a catalytic cracking unit.
Oil (hereinafter abbreviated as LCO) has attracted attention as a feedstock for a new blend base material for light oil. This is because, contrary to the light oil fraction, LCO tends to be excessive due to the above-mentioned heavy crude oil, and it is desirable to divert the LCO to the blend base material in view of the supply and demand balance of the fraction.

【0007】しかし、LCOは多量の芳香族成分を含有
しているため、LCOをそのままの性状で直留軽油留分
にブレンドすると、芳香族化合物の含有率が増大して、
そのブレンド軽油のセタン価を低下させ、軽油としての
品質低下が懸念される。また、芳香族化合物の含有率が
高いため、ブレンド軽油をディーゼルエンジンの燃料と
して使用した際、パティキュレートの発生量が著しく増
加することも懸念される。パティキュレートは、芳香族
化合物の一部が不完全燃焼することによって発生する微
細粒子状の大気汚染物質であって、大気中への大量のパ
ティキュレートの排出は、環境保全上、重大な問題を引
き起こすことになる。その上、LCOは、独特の着色を
呈しており、これをそのまま軽油のブレンド基材として
用いると、製品軽油の色相面での品質が問題となる。
[0007] However, since LCO contains a large amount of aromatic components, if LCO is blended as it is with a straight gas oil fraction, the content of aromatic compounds increases,
There is concern that the cetane number of the blended light oil will be reduced and the quality of the light oil will be reduced. In addition, since the content of the aromatic compound is high, there is a concern that when the blended light oil is used as a fuel for a diesel engine, the amount of generated particulates is significantly increased. Particulates are fine particulate air pollutants generated by incomplete combustion of some aromatic compounds, and the emission of large amounts of particulates into the atmosphere poses a serious environmental conservation problem. Will cause. In addition, LCO has a unique coloring, and if it is used as it is as a blend base material for light oil, the quality of the product light oil in terms of hue becomes a problem.

【0008】このような懸念等を解消し、LCOを良好
なブレンド基材として使用するために、LCOに接触水
素化処理を施し、LCO中の芳香族化合物の含有量を低
減する試みがなされている。
In order to solve such concerns and to use LCO as a good blend substrate, attempts have been made to subject LCO to catalytic hydrogenation to reduce the content of aromatic compounds in LCO. I have.

【0009】しかし、従来の方法によってLCOを水素
化処理しようとすると、以下のような問題点が生じる。 (1)LCOに比較的多量に含有されている硫黄化合物
や、それらが水素化処理されて生成する硫化水素が、芳
香族化合物の水素化反応を阻害すると共に、触媒上の活
性点を被毒し、活性劣化を引き起こす原因になる。 (2)LCOは、直留軽油留分に比べて、全硫黄化合物
含量は少ないものの、高沸点の難脱硫性硫黄化合物(例
えば、4,6−ジメチルジベンゾチオフェン)を高い含
有率で含有するために、LCOに脱硫処理を施そうとし
ても、過酷な条件の深度脱硫を必要とし、経済的に引き
合わない。 (3)直留軽油に比べて全硫黄分は少ないものの、LC
O中には、難脱硫性硫黄化合物が全硫黄化合物に対して
高い組成比率で存在している。このため、原料油の性状
や、生成油に要求される規格によっては、生成油中の硫
黄分を所定レベルまで更に引き下げる必要があり、この
ような場合、触媒には、この難脱硫性硫黄化合物を水素
化処理して除去できる、効率的、効果的な水素化(脱
硫)性能が要求される。
[0009] However, when the LCO is hydrogenated by the conventional method, the following problems occur. (1) Sulfur compounds contained in LCO in a relatively large amount and hydrogen sulfide generated by hydrotreating them inhibit the hydrogenation reaction of aromatic compounds and poison active sites on the catalyst. And cause deterioration of activity. (2) LCO has a high content of a high boiling point hardly desulfurizable sulfur compound (eg, 4,6-dimethyldibenzothiophene), although the total sulfur compound content is smaller than that of a straight-run gas oil fraction. Even if LCO is desulfurized, it requires deep desulfurization under severe conditions, which is not economically feasible. (3) Although the total sulfur content is lower than that of straight-run gas oil, LC
In O, the non-desulfurizable sulfur compound exists in a high composition ratio with respect to all the sulfur compounds. For this reason, depending on the properties of the feed oil and the standards required for the product oil, it is necessary to further reduce the sulfur content in the product oil to a predetermined level. There is a need for efficient and effective hydrogenation (desulfurization) performance that can be removed by hydrogenation.

【0010】従って、LCOを水素化処理して芳香族化
合物を低減し、LCOを軽油留分の良好なブレンド基材
として使用するために必要となる、LCOの水素化処理
用触媒に要求される条件は、芳香族化合物に対する高い
水素化活性と、高い耐硫黄性とを合わせ持ち、しかも難
脱硫性硫黄化合物をも水素化処理して除去できる高い脱
硫性能をも有することである。
[0010] Accordingly, there is a need for a hydrotreating catalyst for LCO, which is necessary for hydrotreating LCO to reduce aromatic compounds and for using LCO as a good blend base material for a gas oil fraction. The condition is to have both high hydrogenation activity for aromatic compounds and high sulfur resistance, and also have high desulfurization performance capable of hydrogenating and removing hardly desulfurizable sulfur compounds.

【0011】ところで、LCOの水素化処理用触媒とし
て試みられてきた従来の触媒は、2種類に大別され、そ
の一つは主として軽質油の水素化処理に使用される水素
化処理用触媒であり、他の一つは周期律表の第VIA族
金属−第VIII族金属系触媒、例えば、アルミナ担体
を使用したCoMo系やNiW系等の脱硫用触媒であ
る。
Conventional catalysts which have been tried as LCO hydrotreating catalysts are roughly classified into two types, one of which is a hydrotreating catalyst mainly used for hydrotreating light oil. The other one is a group VIA metal-group VIII metal catalyst of the periodic table, for example, a desulfurization catalyst such as a CoMo or NiW catalyst using an alumina carrier.

【0012】しかし、上記の水素化処理用触媒は、ニッ
ケル、パラジウム、白金等の耐硫黄性が乏しい金属種を
触媒の活性成分として含んでいるため、原料油中に含ま
れる硫黄化合物分が数ppm以下という低硫黄雰囲気下
でしか有効に機能しない。このため、硫黄化合物含有量
がそれより高いLCOの水素化処理に、上記の水素化処
理用触媒を使用することは技術的に難しい。
However, the above hydrotreating catalyst contains a metal species having poor sulfur resistance, such as nickel, palladium, and platinum, as an active component of the catalyst. It works effectively only in a low sulfur atmosphere of less than ppm. For this reason, it is technically difficult to use the above hydrotreating catalyst for hydrotreating LCO having a higher sulfur compound content.

【0013】また、上記の脱硫用触媒は、石油精製プロ
セスにおいて使用される代表的な水素化脱硫触媒であっ
て、本来、水素化脱硫を目的とした触媒であるから、耐
硫黄性は十分にあるものの、芳香族化合物の水素化性能
は十分とは言えない。このため、上記の脱硫用触媒をL
COの水素化処理用触媒として使用し、芳香族化合物を
水素化してナフテン類に転化するには、10MPa程度
の高い水素分圧下で、原料油の性状や反応温度等の他の
条件によってはそれ以上の高い水素分圧下で、水素化処
理を行うことが必要になり、設備費や運転費が嵩む。水
素分圧を高くする代わりに、反応温度を上げることによ
って反応速度を速くし、芳香族化合物の転化を促進する
こともできるが、反応温度を高くすることは、発熱反応
である水素化反応にとって反応平衡上不利になるばかり
でなく、分解反応や縮重合反応等の副反応も著しく進行
するため、水素化生成物の収率が低下し、経済的でな
い。しかも、高温反応であるため、生成油の色相問題が
改善されず、更には、装置の設備費及び運転費が嵩むと
言う問題も生じる。
The above desulfurization catalyst is a typical hydrodesulfurization catalyst used in a petroleum refining process, and is originally a catalyst intended for hydrodesulfurization. However, the hydrogenation performance of aromatic compounds is not sufficient. For this reason, the above desulfurization catalyst is
In order to hydrogenate aromatic compounds and convert them to naphthenes, which are used as catalysts for CO hydrotreating, depending on other conditions such as the properties of the feedstock and the reaction temperature under a high hydrogen partial pressure of about 10 MPa. It is necessary to carry out the hydrotreating under the above high hydrogen partial pressure, which increases the equipment cost and the operating cost. Instead of increasing the hydrogen partial pressure, the reaction rate can be increased by increasing the reaction temperature to promote the conversion of the aromatic compound.However, increasing the reaction temperature is not suitable for the exothermic hydrogenation reaction. Not only is it disadvantageous in terms of reaction equilibrium, but also side reactions such as a decomposition reaction and a polycondensation reaction remarkably proceed, so that the yield of a hydrogenated product is reduced, which is not economical. In addition, since the reaction is a high temperature reaction, the problem of the hue of the produced oil is not improved, and further, there is a problem that the equipment cost and the operating cost of the device are increased.

【0014】以上のように、従来の触媒は、芳香族化合
物に対する高い水素化活性と、高い耐硫黄性の双方を合
わせ持ち、しかも難脱硫性硫黄化合物に対しても優れた
脱硫性能を有する触媒と言う要求を満足せず、LCOの
水素化反応に使用し、LCOの芳香族化合物含有率を低
減させる処理には適していなかった。
As described above, conventional catalysts have both high hydrogenation activity for aromatic compounds and high sulfur resistance, and have excellent desulfurization performance even for hardly desulfurizable sulfur compounds. Therefore, it was not suitable for the treatment used in the hydrogenation reaction of LCO to reduce the aromatic compound content of LCO.

【0015】[0015]

【発明の目的】そこで、本発明の目的は、第1には、炭
化水素油、特に軽油留分を水素化処理して、芳香族化合
物含有率を低減させるのに適する触媒を提供することで
あり、第2には、その触媒を使用して軽油留分を水素化
処理する方法を提供することである。
Accordingly, an object of the present invention is, firstly, to provide a catalyst suitable for reducing the aromatic compound content by hydrotreating a hydrocarbon oil, particularly a gas oil fraction. The second is to provide a method for hydrotreating a gas oil fraction using the catalyst.

【0016】[0016]

【発明の概要】本発明者らは、上記の目的を解決するた
めに、検討を重ねた結果、先ず、(a)核水素化により
芳香族化合物を減少させるには、白金族金属系の触媒が
有望であること、の知見を得た。但し、前述のように、
白金族金属系触媒は耐硫黄性が低いため、これを高める
ための検討を、更に重ねた結果、(b)触媒の酸性質が
所定の値を有していれば、白金族金属が高い分散性で担
持でき、下の(e)にも記載するように、耐硫黄性が顕
著に向上するばかりか、芳香族化合物の核水素化作用も
顕著に向上すること、(c)活性金属として白金族金属
を使用する触媒の酸性質は、意外にも、シリカ−ジルコ
ニア−アルミナを主成分とした無機酸化物からなる担体
を用いることにより、好適な値に容易に調整することが
できること、(d)また、意外にも、白金族金属と共に
ゲルマニウムを担持させれば、白金族金属が高い分散性
で担持され、しかも白金族金属のシンタリングが抑制さ
れるため、上記の耐硫黄性及び芳香族化合物の核水素化
作用の顕著な向上が確実となること、(e)上記の触媒
によれば、比較的低コストで実施できる高い水素/オイ
ル比で、かつ従来の水素化処理とほぼ同様な水素分圧及
び反応温度等の条件下において、硫黄化合物等による活
性劣化が抑制され、またNiW系やCoMo系等の従来
の脱硫用触媒、及び白金系水素化触媒に比べて、芳香族
化合物に対して高い水素化活性を示すこと、の知見を得
た。
SUMMARY OF THE INVENTION The present inventors have conducted various studies to solve the above-mentioned problems. As a result, first, (a) in order to reduce aromatic compounds by nuclear hydrogenation, a platinum group metal-based catalyst was used. Is promising. However, as mentioned above,
Since the platinum group metal-based catalyst has low sulfur resistance, studies for increasing the sulfur group were further repeated. As a result, (b) if the acid property of the catalyst has a predetermined value, the platinum group metal has a high dispersion. As described in (e) below, not only the sulfur resistance is remarkably improved, but also the hydrogenation action of the aromatic compound is remarkably improved, and (c) platinum as an active metal. Surprisingly, the acid property of the catalyst using a group metal can be easily adjusted to a suitable value by using a carrier composed of an inorganic oxide containing silica-zirconia-alumina as a main component, (d Also, surprisingly, if germanium is supported together with the platinum group metal, the platinum group metal is supported with high dispersibility, and sintering of the platinum group metal is suppressed. Significant improvement in nuclear hydrogenation of compounds (E) According to the above-mentioned catalyst, under the conditions of a high hydrogen / oil ratio which can be carried out at a relatively low cost, and a hydrogen partial pressure and a reaction temperature which are almost similar to those of the conventional hydrotreating. In addition, the activity degradation due to sulfur compounds and the like is suppressed, and a higher hydrogenation activity for aromatic compounds is obtained as compared with conventional desulfurization catalysts such as NiW-based or CoMo-based and platinum-based hydrogenation catalysts. Obtained knowledge.

【0017】本発明は、以上のような知見に基づくもの
で、〔1〕シリカ2〜50質量%、ジルコニア2〜20
質量%、アルミナ30〜96質量%を含む担体に、水素
化活性成分として、白金族金属の少なくとも1種を、触
媒基準で、金属換算で、0.1〜8質量%含有するか、
又はこの白金族金属と共に、ゲルマニウムを、触媒基準
で、金属換算で、0.1〜2質量%含有させてなること
を特徴とする炭化水素油の水素化処理用触媒、及び
〔2〕上記触媒の存在下で、3〜8MPaの水素分圧、
200〜370℃の温度、及び0.3〜5hr−1の液
空間速度で、芳香族化合物を含む軽油留分の接触反応を
行うことを特徴とする軽油の水素化処理方法を要旨とす
る。
The present invention has been made based on the above findings. [1] Silica 2 to 50% by mass, zirconia 2 to 20%
The carrier containing 30 to 96% by mass of alumina and 30 to 96% by mass of alumina contains at least one platinum group metal as a hydrogenation active component in an amount of 0.1 to 8% by mass in terms of metal on a catalyst basis;
Or a catalyst for hydrotreating a hydrocarbon oil, characterized by containing 0.1 to 2% by mass of germanium, in terms of metal, on a catalyst basis, together with the platinum group metal, and [2] the above catalyst A hydrogen partial pressure of 3-8 MPa in the presence of
The gist of the present invention is a gas oil hydrotreating method characterized by performing a catalytic reaction of a gas oil fraction containing an aromatic compound at a temperature of 200 to 370 ° C. and a liquid hourly space velocity of 0.3 to 5 hr −1 .

【0018】本発明の触媒は、炭化水素油、特に軽油留
分の水素化処理、例えば接触分解軽油、直留軽油、熱分
解軽油、水素化処理軽油、脱硫処理軽油等の水素化処理
に適している。これら原料油の代表的な性状例として、
沸点範囲:150〜450℃、硫黄分:2000質量p
pm以下、好ましくは500質量ppm以下、芳香族化
合物分:5〜90容量%の範囲のものが挙げられる。
The catalyst of the present invention is suitable for hydrotreating hydrocarbon oils, especially gas oil fractions, for example, catalytic cracking gas oil, straight run gas oil, pyrolysis gas oil, hydrotreated gas oil, desulfurized gas oil, etc. ing. As typical properties of these feedstocks,
Boiling range: 150 to 450 ° C, sulfur content: 2000 mass p
pm or less, preferably 500 ppm by mass or less, and aromatic compounds: in the range of 5 to 90% by volume.

【0019】本発明の触媒の担体は、シリカ、ジルコニ
ア、及びアルミナを、担体基準で、シリカ:ジルコニ
ア:アルミナ=2〜50:2〜20:30〜96(質量
%)の割合で含むものであり、シリカがこの範囲から外
れると、触媒の酸性質を好適な値に調整することが不可
能ないしは極めて困難となり、ジルコニアがこの範囲か
ら外れると、ジルコニア特有の塩基性が発現せず、コー
ク析出抑制等の作用が良好に発現しない。好ましくは、
シリカ含有量が2〜30質量%、ジルコニア含有量が2
〜15質量%であり、より好ましくはシリカ含有量が2
〜20質量%、ジルコニア含有量が2〜10質量%であ
る。アルミナは、α−アルミナ、β−アルミナ、γ−ア
ルミナ、δ−アルミナ等の種々のアルミナを使用するこ
とができるが、多孔質で高比表面積であるアルミナが好
ましく、中でもγ−アルミナが適している。
The carrier of the catalyst of the present invention contains silica, zirconia and alumina in a ratio of silica: zirconia: alumina = 2 to 50: 2 to 20:30 to 96 (% by mass) on the basis of the carrier. If the silica is out of this range, it becomes impossible or extremely difficult to adjust the acidity of the catalyst to a suitable value.If the zirconia is out of this range, the basicity unique to zirconia does not appear, and coke precipitation occurs. Actions such as suppression are not well exhibited. Preferably,
Silica content 2-30% by mass, zirconia content 2
To 15% by mass, more preferably the silica content is 2%.
-20% by mass, and the zirconia content is 2-10% by mass. Alumina can use various aluminas such as α-alumina, β-alumina, γ-alumina, δ-alumina, and porous alumina having a high specific surface area is preferred, and γ-alumina is particularly suitable. I have.

【0020】なお、ジルコニアは、上記の塩基の他に酸
の性質をも有している。ところで、1つの触媒が、酸性
と塩基性との両性質を有する場合、これら性質が協力し
て反応を促進する作用(酸塩基両機能触媒作用)が生じ
る(田部浩三著「増補改訂触媒のはたらき」化学同人
社、1988)ことが知られている。本発明では、ジル
コニアを、シリカと共に、アルミナに併用することによ
り、触媒の酸性質をアップさせて水素化反応を促進し、
このときジルコニアの塩基性により、上記のように活性
低下の原因となるコーク析出を抑える作用が生じる。そ
して、これら酸性質と塩基性が調和されて、触媒の酸性
質を好適な値にし、触媒の耐硫黄性を向上させる。これ
らの作用は、アルミナ、シリカ、ジルコニアの含有率が
上記範囲内にある場合において良好に発現し、上記範囲
を外れる場合には、良好に発現することがない。
Note that zirconia has acid properties in addition to the above-mentioned base. By the way, when one catalyst has both acidic and basic properties, the properties cooperate to promote the reaction (both acid-base catalysis). Chemical Dojinsha, 1988). In the present invention, by using zirconia, together with silica, in combination with alumina, the acidity of the catalyst is increased to promote the hydrogenation reaction,
At this time, due to the basicity of zirconia, the action of suppressing coke precipitation, which causes a decrease in activity, occurs as described above. Then, the acid properties and the basicity are harmonized, and the acid properties of the catalyst are adjusted to suitable values, and the sulfur resistance of the catalyst is improved. These effects are favorably exhibited when the content of alumina, silica, and zirconia is within the above range, and is not favorably exhibited when the content is out of the range.

【0021】また、上記のシリカ、ジルコニア、アルミ
ナを含む担体の比表面積、細孔容積、平均細孔径は、特
に制限されるものではないが、耐硫黄性に優れ、炭化水
素油、特に芳香族化合物に対する水素化活性及び脱硫活
性を高めた触媒にするためには、比表面積は100〜6
00m/g、好ましくは200〜400m/g、細
孔容積は0.4〜1.2ml/g、平均細孔径は50〜
200Å、好ましくは50〜150Åの範囲にあるもの
が適している。さらに、この担体は、アンモニア−TP
D法で測定される酸量が0.6〜3.5mmol/gで
あることが好ましい
The specific surface area, pore volume, and average pore diameter of the carrier containing silica, zirconia, and alumina are not particularly limited, but are excellent in sulfur resistance, and are preferably hydrocarbon oils, particularly aromatic oils. In order to obtain a catalyst having an enhanced hydrogenation activity and desulfurization activity for the compound, the specific surface area should be 100 to 6
00 m 2 / g, preferably 200 to 400 m 2 / g, pore volume 0.4 to 1.2 ml / g, average pore size 50 to
Those in the range of 200 °, preferably 50-150 °, are suitable. In addition, the carrier has an ammonia-TP
It is preferable that the acid amount measured by the method D is 0.6 to 3.5 mmol / g.

【0022】担体に担持させる活性成分は、白金族金属
の少なくとも1種であり、白金、パラジウム、ロジウ
ム、ルテニウム、オスミウム、イリジウムのいずれの白
金族金属であってもよく、単独で又は2種以上を組合せ
て使用することができる。これらの白金族金属は化合物
の形で担持させるが、この化合物の具体例としては、塩
化金属酸塩、塩化物、硝酸塩、硫酸塩、酢酸塩、燐酸
塩、有機酸塩が挙げられ、好ましくは塩化金属酸塩、塩
化物、硝酸塩である。これらの化合物は、単独で又は2
種以上を組合せて使用することができる。
The active ingredient to be supported on the carrier is at least one kind of platinum group metal, and may be any one of platinum group metals such as platinum, palladium, rhodium, ruthenium, osmium and iridium. Can be used in combination. These platinum group metals are supported in the form of a compound, and specific examples of the compound include metal chlorides, chlorides, nitrates, sulfates, acetates, phosphates, and organic acid salts. Metal chlorides, chlorides and nitrates. These compounds can be used alone or
More than one species can be used in combination.

【0023】上記の白金族金属化合物と共にゲルマニウ
ムを担持させることもできる。ゲルマニウム化合物の具
体例としては、四塩化ゲルマニウム、二フッ化ゲルマニ
ウム、四フッ化ゲルマニウム、二ヨウ化ゲルマニウム、
一硫化ゲルマニウム、これらの類似化合物が挙げられ、
これらは、単独で又は2種以上を組合せて担持させるこ
ともできる。
Germanium can be supported together with the platinum group metal compound. Specific examples of germanium compounds include germanium tetrachloride, germanium difluoride, germanium tetrafluoride, germanium diiodide,
Germanium monosulfide, their analogous compounds,
These can be carried alone or in combination of two or more.

【0024】これらの活性成分のうち、白金族金属の含
有量は、触媒基準で、金属換算で、0.1〜8質量%、
好ましくは0.2〜2質量%である。白金族金属が、
0.1質量%未満では、白金族金属に帰属する活性点が
十分に得られず、8質量%を超えると、白金族金属化合
物の凝集等によって活性金属の分散性が悪くなるばかり
でなく、効率的に分散させる活性金属含有量の限度を超
えてしまうため、コスト的にも高くなる。
Among these active ingredients, the content of the platinum group metal is 0.1 to 8% by mass in terms of metal on a catalyst basis.
Preferably it is 0.2 to 2% by mass. The platinum group metal
If the amount is less than 0.1% by mass, the active sites attributed to the platinum group metal cannot be sufficiently obtained. If the amount exceeds 8% by mass, not only the dispersibility of the active metal deteriorates due to aggregation of the platinum group metal compound, but also, Since the active metal content exceeding the limit of the efficiently dispersed metal is exceeded, the cost is also increased.

【0025】白金族金属に加えてゲルマニウムを含有さ
せる場合には、ゲルマニウムの含有量は、触媒基準で、
酸化物換算で、0.1〜2質量%である。ゲルマニウム
は、白金族金属の分散性を向上させ、白金族金属のシン
タリングを抑制すると共に、白金族金属へのコーク析出
及び硫黄析出を抑制する作用をなす。ゲルマニウムが、
0.1質量%未満では、これらの作用を発現させるには
不十分であり、2質量%を超えると、白金族金属のみな
らず、担体上に存在する反応活性点をも被覆してしま
い、触媒活性の向上がみられなくなる。
When germanium is contained in addition to the platinum group metal, the content of germanium is based on the catalyst,
It is 0.1 to 2% by mass in terms of oxide. Germanium improves the dispersibility of the platinum group metal, suppresses sintering of the platinum group metal, and suppresses coke deposition and sulfur deposition on the platinum group metal. Germanium,
If the amount is less than 0.1% by mass, it is insufficient to exert these effects. If the amount exceeds 2% by mass, not only the platinum group metal but also the reactive active sites present on the carrier are covered, No improvement in catalyst activity is observed.

【0026】また、本発明の触媒においては、以上の各
成分の他に、触媒の酸性質を好適な値とするために、ハ
ロゲンを含んでいてもよい。ハロゲンの含有量は、触媒
基準で、元素換算で、0.05〜3質量%、好ましくは
0.1〜1質量%である。
The catalyst of the present invention may contain a halogen in addition to the above-mentioned components in order to make the acidity of the catalyst a suitable value. The content of the halogen is 0.05 to 3% by mass, preferably 0.1 to 1% by mass in terms of an element on a catalyst basis.

【0027】以上の各成分からなる本発明の触媒は、ア
ンモニア−TPD法で測定した酸量が、0.4〜3mm
ol/gであることが好ましい。ここで、アンモニア−
TPD(Temperature Programme
d Desorption)法とは、試料(すなわち、
担体や触媒)の所定量を吸着管に充填し、前処理として
不活性ガス流中で所定温度まで所定時間で昇温し、同気
流中で同温度で所定時間保持し、室温まで所定時間で降
温し、室温、常圧にて所定時間のアンモニア吸着を行っ
た後、上記の不活性ガスを流した状態で、所定の減圧下
で所定温度で所定時間の脱気処理を行い、この試料につ
いて、所定の昇温速度で、上記の不活性ガス流中で、ア
ンモニア脱離スペクトルを観測し、このスペクトルから
得られるアンモニア量により酸量を特定する方法を言
う。
The catalyst of the present invention comprising the above components has an acid content of 0.4 to 3 mm as measured by the ammonia-TPD method.
ol / g is preferred. Where ammonia-
TPD (Temperature Program)
The d Desorption method refers to the sample (ie,
A predetermined amount of a carrier or a catalyst is filled in an adsorption tube, and as a pretreatment, the temperature is raised to a predetermined temperature in an inert gas flow for a predetermined time, kept at the same temperature in the same gas flow for a predetermined time, and cooled to room temperature for a predetermined time. After lowering the temperature and performing ammonia adsorption for a predetermined time at room temperature and normal pressure, in a state where the above inert gas is flown, perform deaeration for a predetermined time at a predetermined temperature under a predetermined reduced pressure. A method in which an ammonia desorption spectrum is observed in the above-mentioned inert gas stream at a predetermined heating rate, and the amount of acid is specified by the amount of ammonia obtained from this spectrum.

【0028】酸量が、0.4mmol/g未満である
と、白金族金属の高い分散性が確保できず、また白金族
金属の電子密度を減少させることが困難になるため、芳
香族化合物の核水素化の向上効果及び耐硫黄性の向上効
果を十分に得ることができず、3mmol/gより多い
と、原料油留分の過分解等の好ましくない副反応を引き
起こす。なお、本発明の触媒においては、酸量が0.4
〜3mmol/gの範囲内にあり、かつ各成分の含有率
が上記した本発明の所定の範囲内にある場合に、本発明
の目的(芳香族化合物の核水素化や難脱硫性硫黄化合物
の低減等)をより効果的に達成することができる。
When the acid amount is less than 0.4 mmol / g, high dispersibility of the platinum group metal cannot be secured, and it becomes difficult to reduce the electron density of the platinum group metal. The effect of improving nuclear hydrogenation and the effect of improving sulfur resistance cannot be sufficiently obtained. When the amount is more than 3 mmol / g, undesired side reactions such as overcracking of a feed oil fraction are caused. Incidentally, in the catalyst of the present invention, the acid amount is 0.4
When the content of each component is within the above-mentioned predetermined range of the present invention, the object of the present invention (nuclear hydrogenation of an aromatic compound or sulfur-desulfurizing sulfur compound) Reduction, etc.) can be achieved more effectively.

【0029】本発明の触媒は、以下のような方法で調製
することができる。先ず、シリカ−ジルコニア−アルミ
ナ担体の製造方法としては、(i)シリカ、ジルコニ
ア、アルミナのゲルを各々予め製造しておき、これらを
混合する方法、(ii)シリカゲル、ジルコニアゲルを
アルミニウム化合物の溶液に浸漬した後に塩基性物質を
適当量添加する、アルミナゲルをシリカゲル、ジルコニ
アゲルに沈着する方法、(iii)アルミナゲル、シリ
カゲルを水溶性ジルコニウム化合物の溶液に浸漬した後
に塩基性物質を適当量添加する、ジルコニアゲルをシリ
カゲル、アルミナゲルに沈着する方法、(iv)アルミ
ナゲル、ジルコニアゲルを水溶性ケイ素化合物の溶液に
浸漬した後に塩基性物質を適当量添加する、シリカゲル
をジルコニアゲル、アルミナゲルに沈着する方法、
(v)シリカゲルを水溶性アルミニウム化合物、水溶性
ジルコニウム化合物の溶液に浸漬した後に塩基性物質を
適当量添加する、アルミナゲル、ジルコニアゲルをシリ
カゲルに沈着する方法、(vi)ジルコニアゲルを水溶
性アルミニウム化合物、水溶性ケイ素化合物の溶液に浸
漬した後に塩基性物質を適当量添加する、アルミナゲ
ル、シリカゲルをジルコニアゲルに沈着する方法、(v
ii)アルミナゲルを水溶性ケイ素化合物、水溶性ジル
コニウム化合物の溶液に浸漬した後に塩基性物質を適当
量添加する、シリカゲル、ジルコニアゲルをアルミナゲ
ルに沈着する方法、(viii)水溶性アルミニウム化
合物、水溶性ケイ素化合物、水溶性ジルコニウム化合物
の均一混合溶液に塩基性物質を添加して両者を共沈させ
る方法、等を採用することができる。
The catalyst of the present invention can be prepared by the following method. First, the silica-zirconia-alumina carrier is manufactured by (i) a method in which silica, zirconia, and alumina gels are each manufactured in advance and then mixing them; (ii) a method in which silica gel and zirconia gel are mixed with an aluminum compound solution. A method of adding an appropriate amount of a basic substance after immersion in a silica gel or a zirconia gel; (iii) adding an appropriate amount of a basic substance after immersing the alumina gel or silica gel in a solution of a water-soluble zirconium compound (Iv) immersing the alumina gel or zirconia gel in a solution of a water-soluble silicon compound and then adding an appropriate amount of a basic substance; How to deposit,
(V) a method of immersing silica gel in a solution of a water-soluble aluminum compound and a water-soluble zirconium compound and then adding an appropriate amount of a basic substance, and depositing an alumina gel and a zirconia gel on the silica gel; A method of depositing an alumina gel or silica gel on a zirconia gel by adding an appropriate amount of a basic substance after immersion in a solution of a compound and a water-soluble silicon compound, (v
ii) a method of immersing the alumina gel in a solution of a water-soluble silicon compound and a water-soluble zirconium compound and then adding an appropriate amount of a basic substance, depositing silica gel and zirconia gel on the alumina gel, (viii) water-soluble aluminum compound, water-soluble A method of adding a basic substance to a homogeneous mixed solution of a water-soluble silicon compound and a water-soluble zirconium compound to coprecipitate both can be adopted.

【0030】具体例の1つを示せば、酸性アルミニウム
化合物(例えば硫酸アルミニウム)と酸性ジルコニウム
化合物(例えば硫酸ジルコニウム)の水溶液に、塩基性
アルミニウム化合物(例えばアルミン酸ナトリウム)と
塩基性ケイ素化合物(水ガラス)を添加し、混合した
後、水酸化アルカリを添加してpHを調整してシリカ−
ジルコニア−アルミナヒドロゲルの懸濁液を生成させ
る。次いで、沈殿をフィルターでろ別し、炭酸アンモニ
ウム及び水で洗浄して不純物イオンを除去する。その
後、スプレードライヤー等を用いて乾燥する。このよう
にして得られたゲルを押し出し成型機により成型し、乾
燥し、約400〜700℃で約1〜10時間焼成して担
体を得る。
As one specific example, a basic aluminum compound (eg, sodium aluminate) and a basic silicon compound (water) are added to an aqueous solution of an acidic aluminum compound (eg, aluminum sulfate) and an acidic zirconium compound (eg, zirconium sulfate). Glass) was added and mixed, and then alkali hydroxide was added to adjust the pH and silica-
A suspension of zirconia-alumina hydrogel is formed. Next, the precipitate is filtered off with a filter and washed with ammonium carbonate and water to remove impurity ions. Then, it is dried using a spray drier or the like. The gel thus obtained is molded by an extrusion molding machine, dried, and calcined at about 400 to 700 ° C. for about 1 to 10 hours to obtain a carrier.

【0031】次に、以上のようにして調製した担体に活
性成分を既知の方法により担持させて、本発明の触媒を
調製する。第1の担持方法としては、酸、水、アルコー
ル類等の溶媒に活性成分を溶解させて調製した溶液に、
上記のようにして調製した担体を含浸させる含浸処理を
1回以上行い、担体に活性成分を担持させる含浸法が挙
げられる。このときの溶媒として、例えば、塩酸、硝
酸、硫酸等の酸性溶媒を使用することができる。含浸処
理後に、乾燥、焼成が行われるが、含浸処理の回数が複
数になる場合には、含浸処理毎に、乾燥、焼成を行って
もよい。
Next, the active component is supported on the carrier prepared as described above by a known method to prepare the catalyst of the present invention. As a first loading method, an acid, water, a solution prepared by dissolving the active ingredient in a solvent such as alcohols,
An impregnation method in which the carrier prepared as described above is impregnated once or more times to carry the active ingredient on the carrier is exemplified. As the solvent at this time, for example, an acidic solvent such as hydrochloric acid, nitric acid, and sulfuric acid can be used. After the impregnation, drying and baking are performed. If the number of times of the impregnation is plural, drying and baking may be performed for each impregnation.

【0032】なお、白金族金属化合物に加えてゲルマニ
ウム化合物を含浸させる場合、その含浸順序について
は、特に制限はなく、白金族金属化合物の含浸前又は含
浸後にゲルマニウム化合物を含浸させてもよいし、同時
に含浸させてもよい。酸性質や細孔の性状等の製品触媒
の特性の面、あるいは操作性の面からは、同時に含浸さ
せることが好ましい。
When the germanium compound is impregnated in addition to the platinum group metal compound, the order of impregnation is not particularly limited, and the germanium compound may be impregnated before or after the platinum group metal compound is impregnated. You may impregnate simultaneously. It is preferable to impregnate simultaneously from the viewpoint of the properties of the product catalyst such as acidity and pore properties, or the operability.

【0033】他の方法としては、担体として成形する前
の担体材料に、活性成分の一部あるいは全部を混合し、
一体的に成形する混練法、あるいは共沈法等が挙げられ
る。
As another method, a part or all of the active ingredient is mixed with a carrier material before being molded as a carrier,
A kneading method of integrally molding, a coprecipitation method, and the like can be given.

【0034】以上に挙げた触媒の調製方法によって調製
された本発明の触媒は、触媒としての機能が発現する限
り、その比表面積、細孔容積及び平均細孔径が制限され
るものではないが、前述した担体と同様に、炭化水素油
に対する水素化活性及び脱硫活性を高めるためには、次
のような値を有するものが好適である。
The specific surface area, pore volume and average pore diameter of the catalyst of the present invention prepared by the above-mentioned catalyst preparation method are not limited as long as the function as a catalyst is exhibited. In order to increase the hydrogenation activity and desulfurization activity for hydrocarbon oils as in the case of the above-mentioned carriers, those having the following values are suitable.

【0035】比表面積は、100〜600m/gが好
ましく、200〜400m/gがより好ましい。細孔
容積は、0.4〜1.2ml/gが好ましく、0.5〜
0.9ml/gがより好ましい。平均細孔径は、50〜
200Åが好ましく、50〜150Åがより好ましい。
平均細孔径が50Å未満であると、反応物質が細孔内に
拡散し難くなるため、芳香族化合物及び難脱硫性硫黄化
合物の水素化反応が効率的に進行しなくなる。200Å
より大きいと、細孔内の拡散性は良いものの、細孔内表
面積が減少するため、触媒の有効比表面積が減少し、活
性が低くなる。
[0035] The specific surface area is preferably 100~600m 2 / g, 200~400m 2 / g is more preferable. The pore volume is preferably 0.4 to 1.2 ml / g,
0.9 ml / g is more preferred. Average pore size is 50 ~
200 ° is preferable, and 50 to 150 ° is more preferable.
If the average pore diameter is less than 50 °, the reactants are difficult to diffuse into the pores, and the hydrogenation reaction of the aromatic compound and the hardly desulfurizable sulfur compound does not proceed efficiently. 200Å
If it is larger, the diffusivity in the pores is good, but the surface area in the pores decreases, so that the effective specific surface area of the catalyst decreases and the activity decreases.

【0036】また、上記の細孔条件を満たす細孔の有効
数を多くするために、触媒の細孔径分布(即ち、平均細
孔径±15Åの細孔径を有する細孔の割合)は、70%
以上が好ましく、より好ましくは80%以上である。
In order to increase the effective number of pores satisfying the above pore conditions, the pore diameter distribution of the catalyst (that is, the ratio of pores having a pore diameter of an average pore diameter ± 15 °) is 70%.
Or more, more preferably 80% or more.

【0037】以上の触媒を使用する本発明の軽油の水素
化処理方法は、3〜8MPaの水素分圧、200〜37
0℃の温度、及び0.3〜5hr−1の液空間速度の条
件で、以上の触媒と芳香族化合物を含む軽油留分とを接
触させて、芳香族化合物の核水素化を行って芳香族分を
減少し、また難脱硫性等の硫黄化合物分を減少する方法
である。なお、この芳香族化合物を含む軽油留分の代表
的な性状は、前述の本発明の触媒が適用できる原料油の
性状例として挙げたものと同じである。
The method for hydrotreating light oil of the present invention using the above-mentioned catalyst is carried out at a hydrogen partial pressure of 3 to 8 MPa, 200 to 37 MPa.
At a temperature of 0 ° C. and a liquid hourly space velocity of 0.3 to 5 hr −1 , the catalyst is brought into contact with a light oil fraction containing an aromatic compound, and the aromatic compound is subjected to nuclear hydrogenation to produce an aromatic compound. This is a method for reducing the content of sulfur and the content of sulfur compounds such as non-desulfurization. The typical properties of the gas oil fraction containing the aromatic compound are the same as those described above as examples of the properties of the feedstock oil to which the catalyst of the present invention can be applied.

【0038】本発明の水素化処理方法を、商業規模で行
うには、本発明の触媒の固定床、移動床、あるいは流動
床式の触媒層を反応器内に形成し、この反応器内に原料
油を導入し、上記の条件下で水素化反応を行えばよい。
最も一般的には、固定床式触媒層を反応器内に形成し、
原料油を反応器の上部に導入し、固定床を上から下に通
過させ、反応器の下部から生成物を流出させるものか、
反対に原料油を反応器の下部に導入し、固定床を下から
上に通過させ、反応器の上部から生成物を流出させるも
のである。
In order to carry out the hydrotreating method of the present invention on a commercial scale, a fixed bed, a moving bed or a fluidized bed type catalyst layer of the catalyst of the present invention is formed in a reactor, and the catalyst is formed in the reactor. The feedstock may be introduced and the hydrogenation reaction may be performed under the above conditions.
Most commonly, a fixed bed catalyst bed is formed in a reactor,
Feeding the feedstock to the top of the reactor, passing it through the fixed bed from top to bottom, and allowing the product to flow out of the bottom of the reactor,
Conversely, feedstock is introduced into the lower part of the reactor, passes through the fixed bed from bottom to top, and the product flows out from the upper part of the reactor.

【0039】本発明の触媒は、単独の反応器に充填して
一段の水素化処理を行う場合にも使用することができる
し、幾つかの反応器に充填して多段の連続した水素化処
理を行う場合にも使用することができる。特に、原料油
が比較的重質の場合には、多段の水素化処理を行うのが
好ましい。
The catalyst of the present invention can be used in the case of performing a single-stage hydrogenation treatment by charging it into a single reactor, or it can be used in the case of filling up several reactors and performing multi-stage continuous hydrogenation treatment. It can also be used when performing In particular, when the feedstock is relatively heavy, it is preferable to perform multi-stage hydrotreating.

【0040】[0040]

【実施例】【Example】

〔触媒の調製〕以下の実施例及び比較例で調製した触媒
及び調製前の担体についてのアンモニア−TPD法の測
定要領は、次の通りとした。日本ベル株式会社製のアン
モニア−TPD装置を使用し、試料(担体及び触媒)
0.1gを吸着管に充填し、前処理としてHe気流中で
500℃まで50分間かけて昇温し、同気流中で500
℃で1時間保持し、室温まで11分30秒間で降温し、
室温、常圧にて15分間アンモニアを吸着させた後、H
eを流した状態で、150Torrの減圧下で100℃
で12分30秒間、脱気処理を行った。この脱気後の試
料について、昇温速度10℃/分で、He気流中で、ア
ンモニア脱離スペクトルを観測し、全アンモニア脱離量
を求め、酸量とした。
[Preparation of Catalyst] The measurement procedure of the catalyst prepared in the following Examples and Comparative Examples and the carrier before preparation by the ammonia-TPD method was as follows. Sample (carrier and catalyst) using ammonia-TPD device manufactured by Bell Japan
0.1 g was charged into an adsorption tube, and the temperature was raised to 500 ° C. in a He gas stream over 50 minutes as a pretreatment, and 500
C. for 1 hour, and cooled to room temperature in 11 minutes and 30 seconds.
After adsorbing ammonia for 15 minutes at room temperature and normal pressure,
e at 100 ° C. under reduced pressure of 150 Torr
For 12 minutes and 30 seconds. With respect to the degassed sample, an ammonia desorption spectrum was observed in a He gas flow at a temperature rising rate of 10 ° C./min, and the total ammonia desorption amount was obtained and defined as an acid amount.

【0041】実施例1 ナス型フラスコ中に、細孔容積0.78ml/g,表面
積286m/gのシリカ−ジルコニア−アルミナ(シ
リカ/ジルコニア/アルミナ質量比=10/10/8
0、直径1/16インチの柱状成形物、酸量0.53m
mol/g)19.41gを投入し、そこへ15.14
gのイオン交換水に塩化白金酸6水和物0.5205g
を溶解させた水溶液をピペットを用いて添加した。約2
5℃で2時間浸漬後、風乾し、マッフル炉で浸漬混合物
の温度を120℃に上げ、約1時間乾燥させた。次い
で、500℃で4時間焼成し、触媒Aを得た。
Example 1 In an eggplant type flask, silica-zirconia-alumina having a pore volume of 0.78 ml / g and a surface area of 286 m 2 / g (mass ratio of silica / zirconia / alumina = 10/10/8)
0, 1/16 inch diameter columnar molded product, acid amount 0.53m
(mol / g) 19.41 g and 15.14 g there.
0.5205 g of chloroplatinic acid hexahydrate in 1 g of deionized water
Was dissolved using a pipette. About 2
After immersion at 5 ° C. for 2 hours, the mixture was air-dried, the temperature of the immersion mixture was increased to 120 ° C. in a muffle furnace, and the mixture was dried for about 1 hour. Next, the mixture was calcined at 500 ° C. for 4 hours to obtain a catalyst A.

【0042】触媒Aの組成は、Pt(1.14質量%)
−Cl(0.13質量%)/SiO (10.40質量
%)−ZrO(9.50質量%)−Al(7
8.83質量%)であった。触媒Aの物理性状は、表面
積275m/g、細孔容積0.67ml/g、平均細
孔径74Åであった。触媒Aの酸量は0.48mmol
/gであった。
The composition of the catalyst A was Pt (1.14% by mass).
-Cl (0.13% by mass) / SiO 2(10.40 mass
%)-ZrO2(9.50% by mass) -Al2O3(7
(8.83% by mass). The physical properties of catalyst A
Product 275m2/ G, pore volume 0.67 ml / g, average fineness
The hole diameter was 74 °. The acid amount of catalyst A is 0.48 mmol
/ G.

【0043】実施例2 ナス型フラスコ中に、実施例1で用いたものと同じシリ
カ−ジルコニア−アルミナ24.87gを投入し、そこ
へ19.40gのイオン交換水に塩化白金酸6水和物
0.3318gを溶解させた水溶液をピペットを用いて
添加し、実施例1と同じ条件で含浸、乾燥、焼成を行い
触媒Bを得た。
Example 2 Into an eggplant type flask, 24.87 g of the same silica-zirconia-alumina as used in Example 1 was charged, and 19.40 g of ion-exchanged water was added to chloroplatinic acid hexahydrate. An aqueous solution in which 0.3318 g was dissolved was added using a pipette, and impregnation, drying, and calcining were performed under the same conditions as in Example 1 to obtain Catalyst B.

【0044】触媒Bの組成は、Pt(0.60質量%)
/SiO(10.43質量%)−ZrO(8.10
質量%)−Al(80.87質量%)であった。
触媒Bの物理性状は、表面積267m/g、細孔容積
0.68ml/g、平均細孔径75Åであった。触媒B
の酸量は、0.48mmol/gであった。
The composition of the catalyst B was Pt (0.60% by mass).
/ SiO 2 (10.43 wt%) - ZrO 2 (8.10
Wt%) - it was Al 2 O 3 (80.87 wt%).
The physical properties of the catalyst B were a surface area of 267 m 2 / g, a pore volume of 0.68 ml / g, and an average pore diameter of 75 °. Catalyst B
Was 0.48 mmol / g.

【0045】実施例3 ナス型フラスコ中に、実施例1で用いたものと同じシリ
カ−ジルコニア−アルミナ24.87gを投入し、そこ
へ0.1規定塩酸水溶液32.38gに塩化白金酸6水
和物0.5219gと塩化ゲルマニウム0.2380g
を溶解させた溶液をピペットを用いて添加し、実施例1
と同じ条件で含浸、乾燥、焼成を行い触媒Cを得た。
Example 3 Into an eggplant-shaped flask, 24.87 g of the same silica-zirconia-alumina as used in Example 1 was charged, and 32.38 g of a 0.1 N hydrochloric acid aqueous solution was added to 32.38 g of chloroplatinic acid 6 water. 0.5219 g of Japanese product and 0.2380 g of germanium chloride
Example 1 was added using a pipette to add a solution in which
Impregnation, drying and calcination were carried out under the same conditions as in Example 1 to obtain Catalyst C.

【0046】触媒Cの組成は、Pt(0.52質量%)
−Ge(0.20質量%)−Cl(0.31質量%)/
SiO(10.43質量%)−ZrO(8.58質
量%)−Al(79.96質量%)であった。触
媒Cの物理性状は、表面積288m/g、細孔容積
0.67ml/g、平均細孔径66Åであった。触媒C
の酸量は、0.49mmol/gであった。
The composition of the catalyst C was Pt (0.52% by mass).
-Ge (0.20% by mass) -Cl (0.31% by mass) /
SiO 2 (10.43 wt%) - ZrO 2 (8.58 wt%) - was Al 2 O 3 (79.96 wt%). The physical properties of the catalyst C were a surface area of 288 m 2 / g, a pore volume of 0.67 ml / g, and an average pore diameter of 66 °. Catalyst C
Was 0.49 mmol / g.

【0047】比較例1 ナス型フラスコ中に、細孔容積0.73ml/g,表面
積380m2/gのアルミナ(直径1/16インチの柱
状成形物)23.23gを投入し、そこへ16.96g
のイオン交換水に塩化白金酸6水和物0.6230gを
溶解させた水溶液をピペットを用いて添加し、実施例1
と同じ条件で含浸、乾燥、焼成を行い触媒Dを得た。
Comparative Example 1 Into an eggplant-shaped flask, 23.23 g of alumina (columnar molded product having a diameter of 1/16 inch) having a pore volume of 0.73 ml / g and a surface area of 380 m2 / g was charged, and 16.96 g was added thereto.
An aqueous solution in which 0.6230 g of chloroplatinic acid hexahydrate was dissolved in the ion-exchanged water of Example 1 was added using a pipette.
Impregnation, drying and calcination were carried out under the same conditions as in Example 1 to obtain Catalyst D.

【0048】触媒Dの組成は、Pt(1.11質量%)
−Cl(0.64質量%)/Al(98.25質
量%)であった。触媒Dの物理性状は、表面積291m
/g、細孔容積0.63ml/g、平均細孔径66Å
であった。触媒Dの酸量は、0.39mmol/gであ
った。
The composition of the catalyst D was Pt (1.11% by mass).
—Cl (0.64% by mass) / Al 2 O 3 (98.25% by mass). The physical property of the catalyst D was 291 m in surface area.
2 / g, pore volume 0.63 ml / g, average pore diameter 66 °
Met. The acid amount of the catalyst D was 0.39 mmol / g.

【0049】比較例2 ナス型フラスコ中に、比較例1で用いたものと同じアル
ミナ47.67gを投入し、そこへ39.57gのイオ
ン交換水に塩化白金酸6水和物0.6360gを溶解さ
せた水溶液をピペットを用いて添加し、実施例1と同じ
条件で含浸、乾燥、焼成を行い触媒Eを得た。
Comparative Example 2 47.67 g of the same alumina as that used in Comparative Example 1 was put into an eggplant-shaped flask, and 0.6360 g of chloroplatinic acid hexahydrate was added to 39.57 g of ion-exchanged water. The dissolved aqueous solution was added using a pipette, impregnated, dried and calcined under the same conditions as in Example 1 to obtain Catalyst E.

【0050】触媒Eの組成は、Pt(0.53質量%)
−Cl(0.46質量%)/Al(99.01質
量%)であった。触媒Eの物理性状は、表面積315m
/g、細孔容積0.68ml/g、平均細孔径66Å
であった。触媒Eの酸量は、0.44mmol/gであ
った。
The composition of the catalyst E was Pt (0.53% by mass).
—Cl (0.46% by mass) / Al 2 O 3 (99.01% by mass). The physical properties of the catalyst E were 315 m in surface area.
2 / g, pore volume 0.68 ml / g, average pore diameter 66 °
Met. The acid amount of the catalyst E was 0.44 mmol / g.

【0051】〔脱硫処理分解系軽油の水素化処理反応〕 実施例4〜7、比較例3〜4 上記の実施例1〜3及び比較例1〜2で調製した触媒A
〜Eを用い、以下の要領にて、下記性状の脱硫処理分解
系軽油の水素化処理を行った。すなわち、先ず、触媒を
高圧流通式反応装置の反応器に充填して固定床式触媒層
を形成し、下記の前処理条件で前処理した。次に、反応
温度に加熱した原料油と水素含有ガスとの混合流体を、
反応器の上部より導入して、下記の条件で水素化反応を
進行させ、生成した生成油とガスの混合流体を反応器の
下部より流出させ、気液分離器で生成油を分離した。
[Hydrotreatment of Desulfurized Cracking Gas Oil] Examples 4-7, Comparative Examples 3-4 Catalyst A prepared in Examples 1-3 and Comparative Examples 1-2 above
Using E, a hydrotreatment of the desulfurization cracked gas oil having the following properties was performed in the following manner. That is, first, the catalyst was charged into a reactor of a high-pressure flow reactor to form a fixed-bed catalyst layer, which was pretreated under the following pretreatment conditions. Next, a mixed fluid of the feedstock oil heated to the reaction temperature and the hydrogen-containing gas,
The mixture was introduced from the upper part of the reactor, and a hydrogenation reaction was allowed to proceed under the following conditions. A mixed fluid of the generated oil and gas was discharged from the lower part of the reactor, and the generated oil was separated by a gas-liquid separator.

【0052】触媒の前処理条件 圧力(水素分圧);4.9MPa 雰囲気 ;水素ガス流通下 温度 ;150℃にて1.5hr維持、次い
で300℃にて2hr維持のステップ昇温 水素化反応条件 反応温度 ;300又は350℃ 圧力(水素分圧);4.9MPa 液空間速度 ;1.5hr−1 水素/オイル比 ;560m/m 原料油の性状 油種 ;脱硫処理分解系軽油 比重(15/4℃);0.9089 蒸留性状 ;初留点が177.0℃、50%点
が276.0℃、90%点が341.1℃、終点が35
5.5℃ 硫黄分 ;180質量ppm 飽和炭化水素成分 ;30.9容量% オレフィン成分 ;0.0容量% 一環芳香族成分 ;45.3容量% 二環芳香族成分 ;19.8容量% 三環芳香族成分 ;4.0容量% 全芳香族成分 ;69.1容量% セーボルト色 ;−16以下
Catalyst pretreatment conditions Pressure (hydrogen partial pressure); 4.9 MPa atmosphere; hydrogen gas flow temperature; 150 ° C. for 1.5 hours, then step temperature rise at 300 ° C. for 2 hours, hydrogenation reaction conditions Reaction temperature: 300 or 350 ° C. Pressure (hydrogen partial pressure): 4.9 MPa Liquid space velocity: 1.5 hr −1 hydrogen / oil ratio: 560 m 3 / m 3 Properties of feed oil Oil type: Desulfurization cracked gas oil Specific gravity ( 0.9089 Distillation properties: Initial boiling point: 177.0 ° C, 50% point: 276.0 ° C, 90% point: 341.1 ° C, end point: 35
5.5 ° C. Sulfur content; 180 mass ppm Saturated hydrocarbon component; 30.9% by volume Olefin component: 0.0% by volume Single aromatic component: 45.3% by volume Bicyclic aromatic component: 19.8% by volume Ring aromatic component: 4.0% by volume Total aromatic component: 69.1% by volume Saybolt color: -16 or less

【0053】反応結果については、以下の方法で解析し
た。300℃又は350℃の反応温度で反応装置をそれ
ぞれ運転し、6日経過した時点でそれぞれの生成油試料
を採取し、その性状を分析した。そして、脱芳香族率
は、水素化反応によって原料油中の芳香族分が低減した
割合と定義し、原料油及び生成油中の芳香族分の分析値
から、数1に示す式により算出した。また、原料油及び
生成油中の芳香族分又は硫黄分の分析値と液空間速度と
から、数1に示す式により脱芳香族反応速度定数及び脱
硫黄反応速度定数を算出し、水素化反応の進行のし易さ
を評価した。なお、反応速度定数が高い程、触媒活性が
優れていることを示している。これらの結果は、表1の
通りであった。
The reaction results were analyzed by the following method. The reactor was operated at a reaction temperature of 300 ° C. or 350 ° C., respectively, and after 6 days, each produced oil sample was collected and analyzed for its properties. The dearomatization rate was defined as the rate at which the aromatic component in the feed oil was reduced by the hydrogenation reaction, and was calculated from the analysis value of the aromatic component in the feed oil and product oil by the formula shown in Equation 1. . Further, from the analysis values of the aromatic or sulfur content in the feed oil and product oil and the liquid hourly space velocity, the dearomatic reaction rate constant and the desulfurization reaction rate constant were calculated by the equation shown in Equation 1, and the hydrogenation reaction was performed. Was evaluated for ease of progress. The higher the reaction rate constant, the better the catalytic activity. These results were as shown in Table 1.

【0054】[0054]

【数1】脱芳香族率(%)=〔(A−AP1)/
〕×100 A:原料油中の芳香族分(容量%) AP1:反応生成油中の芳香族分(容量%) 脱芳香族反応速度定数=ln(A/AP1)×LHS
V LHSV:液空間速度(hr−1
## EQU1 ## Dearomatization rate (%) = [(A F -A P1 ) /
A F ] × 100 A F : Aromatic component (% by volume) in feed oil A P1 : Aromatic component (% by volume) in reaction product oil Dearomatic reaction rate constant = ln (A F / A P1 ) × LHS
VLHSV: liquid hourly space velocity (hr -1 )

【0055】[0055]

【表1の1】 [Table 1-1]

【0056】[0056]

【表1の2】 [Table 1-2]

【0057】表1から判るように、本発明の触媒A、C
は、同一反応条件下で、比較触媒Dに比して、生成油中
の芳香族化合物の含有率が少ない。これは、本発明の触
媒が、560m/mと言う高い水素/オイル比で、
しかも従来の水素化処理の際とほぼ同じの水素分圧及び
反応温度の下で、芳香族化合物の水素化反応に対して有
効であること示している。
As can be seen from Table 1, the catalysts A and C of the present invention
Has a lower content of aromatic compounds in the product oil than the comparative catalyst D under the same reaction conditions. This is because the catalyst of the present invention has a high hydrogen / oil ratio of 560 m 3 / m 3 ,
In addition, it shows that it is effective for the hydrogenation reaction of aromatic compounds under substantially the same hydrogen partial pressure and reaction temperature as in the conventional hydrogenation treatment.

【0058】また、表1から判るように、本発明の触媒
A、Cで処理した生成油は、触媒Dで処理した生成油に
比して、その硫黄分の含有量が極めて低い。これは、本
発明の触媒が、数100質量ppm程度の硫黄含有率の
原料油を水素化処理して極く微量の硫黄分しか含まない
生成油を生産できることを示し、耐硫黄性と脱硫性能が
高いことを示している。
Further, as can be seen from Table 1, the product oil treated with the catalysts A and C of the present invention has an extremely low sulfur content as compared with the product oil treated with the catalyst D. This shows that the catalyst of the present invention can produce a product oil containing only a trace amount of sulfur by hydrotreating a feed oil having a sulfur content of about several hundred ppm by mass, and has a sulfur resistance and desulfurization performance. Is high.

【0059】〔脱硫処理LCO/LGO混合軽油の水素
化処理反応〕 実施例8〜9、比較例5〜6 実施例4〜7、比較例3〜4の脱硫処理分解軽油の水素
化処理反応の場合と同一の反応装置を用い、同一の要
領、同一の条件にて下記性状の脱硫処理LCO/LGO
混合軽油の水素化処理を行い、同一の方法で反応結果を
解析し、結果を表2に示した。
[Hydrogenation Reaction of Desulfurized LCO / LGO Mixed Gas Oil] Examples 8-9, Comparative Examples 5-6 The hydrogenation reactions of the desulfurized cracked gas oils of Examples 4-7 and Comparative Examples 3-4 Desulfurization treatment LCO / LGO with the following properties under the same conditions and under the same conditions using the same reactor
Hydrogenation of the mixed gas oil was performed, and the reaction results were analyzed by the same method. The results are shown in Table 2.

【0060】原料油 油種 ;直留軽油と分解軽油との混合油を
脱硫処理した軽油 比重(15/4℃);0.8440 粘度(@30℃) ;4.026mm/s 蒸留性状 ;初留点が172℃、50%点が2
89℃、終点が381℃ 硫黄分 ;172質量ppm 飽和炭化水素成分 ;65.7容量% オレフィン成分 ;0.0容量% 全芳香族成分 ;34.3容量% セーボルト色 ;−13.9以下
Raw oil Oil type; Light oil obtained by desulfurizing a mixed oil of straight-run gas oil and cracked gas oil Specific gravity (15/4 ° C); 0.8440 Viscosity (@ 30 ° C); 4.026 mm 2 / s Distillation properties; Initial boiling point is 172 ° C, 50% point is 2
89 ° C, end point: 381 ° C Sulfur content: 172 mass ppm Saturated hydrocarbon component: 65.7% by volume Olefin component: 0.0% by volume Whole aromatic component: 34.3% by volume Saybolt color: -13.9 or less

【0061】反応結果については、実施例4〜7、比較
例3〜4の脱硫処理分解軽油の水素化処理反応の場合と
同様にして解析した。結果は、表2の通りであった。
The results of the reaction were analyzed in the same manner as in the hydrotreating reaction of the desulfurized cracked gas oils of Examples 4 to 7 and Comparative Examples 3 and 4. The results were as shown in Table 2.

【0062】[0062]

【表2】 [Table 2]

【0063】表2から判るように、本発明の触媒Aは、
同一反応条件下で、比較触媒Dに比して、生成油中の芳
香族化合物の含有率が少ない。これは、本発明の触媒
が、560m/mと言う高い水素/オイル比で、し
かも従来の水素化処理の際とほぼ同じの水素分圧及び反
応温度の下で、芳香族化合物の水素化反応に対して有効
であること示している。
As can be seen from Table 2, the catalyst A of the present invention comprises:
Under the same reaction conditions, the content of the aromatic compound in the product oil is lower than that of Comparative Catalyst D. This is because the catalyst of the present invention has a high hydrogen / oil ratio of 560 m 3 / m 3 and a hydrogen partial pressure and a reaction temperature which are almost the same as those of the conventional hydrotreating. It shows that it is effective for the chemical reaction.

【0064】また、表2から判るように、本発明の触媒
Bで処理した生成油は、比較触媒Eで処理した生成油に
比較して、その硫黄分の含有量が低い。これは、本発明
の触媒が、数100質量ppm程度の硫黄含有率の原料
油を水素化処理して極く微量の硫黄分しか含まない生成
油を生産できることを示し、耐硫黄性と脱硫性能が高い
ことを示している。
As can be seen from Table 2, the product oil treated with the catalyst B of the present invention has a lower sulfur content than the product oil treated with the comparative catalyst E. This shows that the catalyst of the present invention can produce a product oil containing only a trace amount of sulfur by hydrotreating a feed oil having a sulfur content of about several hundred ppm by mass, and has a sulfur resistance and desulfurization performance. Is high.

【0065】[0065]

【発明の効果】以上詳述したように、本発明によれば、
次のような効果を奏することができる。 (1)1環芳香族化合物の高い核水素化活性を有し、し
かも高い耐硫黄性をも兼備するため、炭化水素油中の芳
香族化合物の含有率を、大幅に低減させることができ
る。 (2)従来の水素化処理条件と同様の条件で、硫黄分が
数100質量ppmの原料油中の芳香族化合物の水素化
処理を効率的に行うことができる。 (3)多量の芳香族化合物を含有するLCO等の炭化水
素油であっても、水素化処理によって芳香族化合物や硫
黄化合物を効率的に減少させることができる。 (4)排気ガス中のパティキュレートの発生を抑制する
ことができる軽油基材であって、しかも硫黄含有量の少
ない軽油基材を、低コストで供給することができる。 (5)反応条件を従来の水素化処理の際の反応条件とほ
ぼ同じとすることがきるため、従来の装置を大幅改造す
ることなく転用できる。
As described in detail above, according to the present invention,
The following effects can be obtained. (1) Since the monocyclic aromatic compound has a high nuclear hydrogenation activity and also has high sulfur resistance, the content of the aromatic compound in the hydrocarbon oil can be significantly reduced. (2) Under the same conditions as conventional hydrotreating conditions, the hydrotreating of an aromatic compound in a feedstock having a sulfur content of several hundred ppm by mass can be efficiently performed. (3) Even hydrocarbon oils such as LCO containing a large amount of aromatic compounds can efficiently reduce aromatic compounds and sulfur compounds by hydrogenation. (4) A light oil base material capable of suppressing the generation of particulates in exhaust gas and having a low sulfur content can be supplied at low cost. (5) Since the reaction conditions can be made substantially the same as the reaction conditions in the conventional hydrotreating, the conventional apparatus can be diverted without significant modification.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤川 貴志 埼玉県草加市花栗4−20−2−402 (72)発明者 柴田 行雄 埼玉県草加市花栗4−20−4−403 ──────────────────────────────────────────────────続 き Continued on the front page (72) Takashi Fujikawa, Inventor 4-20-2-402, Hanaguri, Soka City, Saitama Prefecture (72) Inventor, Yukio Shibata 4-20-4-403, Hanaguri, Soka City, Saitama Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリカ2〜50質量%、ジルコニア2〜
20質量%、アルミナ30〜96質量%を含む担体に、
白金族金属の少なくとも1種を、触媒基準で、金属換算
で、0.1〜8質量%含有させてなることを特徴とする
炭化水素油の水素化処理用触媒。
1. Silica 2-50% by mass, zirconia 2-2
On a carrier containing 20% by mass and 30 to 96% by mass of alumina,
A catalyst for hydrotreating hydrocarbon oils, comprising at least one platinum group metal in an amount of 0.1 to 8% by mass in terms of metal on a catalyst basis.
【請求項2】 水素化活性成分として、白金族金属の少
なくとも1種と共に、ゲルマニウムを、触媒基準で、金
属換算で、0.1〜2質量%含有させてなることを特徴
とする請求項1記載の炭化水素油の水素化処理用触媒。
2. The method according to claim 1, wherein germanium is contained as a hydrogenation active component in an amount of 0.1 to 2% by mass in terms of metal on a catalyst basis together with at least one platinum group metal. A catalyst for hydrotreating a hydrocarbon oil according to the above.
【請求項3】 請求項1〜2記載の触媒の存在下で、3
〜8MPaの水素分圧、200〜370℃の温度、及び
0.3〜5hr−1の液空間速度で、芳香族化合物を含
む軽油留分の接触反応を行うことを特徴とする軽油の水
素化処理方法。
3. In the presence of the catalyst according to claim 1, 3
Hydrogenation of gas oil characterized by performing a catalytic reaction of a gas oil fraction containing an aromatic compound at a hydrogen partial pressure of 88 MPa, a temperature of 200 to 370 ° C., and a liquid hourly space velocity of 0.3 to 5 hr −1 . Processing method.
JP35563896A 1996-12-24 1996-12-24 Hydrocarbon hydrotreating catalyst and gas oil hydrotreating method Expired - Fee Related JP3770679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35563896A JP3770679B2 (en) 1996-12-24 1996-12-24 Hydrocarbon hydrotreating catalyst and gas oil hydrotreating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35563896A JP3770679B2 (en) 1996-12-24 1996-12-24 Hydrocarbon hydrotreating catalyst and gas oil hydrotreating method

Publications (2)

Publication Number Publication Date
JPH10180097A true JPH10180097A (en) 1998-07-07
JP3770679B2 JP3770679B2 (en) 2006-04-26

Family

ID=18445003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35563896A Expired - Fee Related JP3770679B2 (en) 1996-12-24 1996-12-24 Hydrocarbon hydrotreating catalyst and gas oil hydrotreating method

Country Status (1)

Country Link
JP (1) JP3770679B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783252A1 (en) * 1998-08-28 2000-03-17 Rech Scient I De Rech Sur La C Hydrodeazotization and hydrogenation of aromatic compounds from petroleum cuts comprises use of catalyst containing platinum, supported on zirconium oxide
WO2007149799A1 (en) * 2006-06-20 2007-12-27 Shell Oil Company A sulfur tolerant noble metal containing aromatics hydrogenation catalyst and a method of making and using such catalyst
KR101971360B1 (en) * 2017-10-30 2019-04-22 한화토탈 주식회사 Method of manufacturing a naphthene-rich dearomatized hydrocarbon fluids

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783252A1 (en) * 1998-08-28 2000-03-17 Rech Scient I De Rech Sur La C Hydrodeazotization and hydrogenation of aromatic compounds from petroleum cuts comprises use of catalyst containing platinum, supported on zirconium oxide
WO2007149799A1 (en) * 2006-06-20 2007-12-27 Shell Oil Company A sulfur tolerant noble metal containing aromatics hydrogenation catalyst and a method of making and using such catalyst
US7737074B2 (en) 2006-06-20 2010-06-15 Shell Oil Company Sulfur tolerant noble metal containing aromatics hydrogenation catalyst and a method of making and using such catalyst
US8309777B2 (en) 2006-06-20 2012-11-13 Shell Oil Company Sulfur tolerant noble metal containing aromatics hydrogenation catalyst and a method of making and using such catalyst
KR101971360B1 (en) * 2017-10-30 2019-04-22 한화토탈 주식회사 Method of manufacturing a naphthene-rich dearomatized hydrocarbon fluids

Also Published As

Publication number Publication date
JP3770679B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP3786007B2 (en) Catalyst for hydrotreating aromatic compounds in hydrocarbon oils
CA1249570A (en) Hydrotreating catalyst and process of manufacture
US10507458B2 (en) Hydrotreating catalyst and process for preparing the same
JP4839311B2 (en) Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
US4218308A (en) Hydrogenation catalyst
EP2656911A1 (en) Process for the catalyitic hydrodesulfurization of naphtha
WO2003000410A1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
EP1145763A1 (en) Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
WO2001015805A1 (en) Catalyst for hydrotreating of gas oil and method for hydrotreating of gas oil
CA2655100A1 (en) A sulfur tolerant noble metal containing aromatics hydrogenation catalyst and a method of making and using such catalyst
CN1056784C (en) Catalyst treated by distillate added with hydrogen and preparation method thereof
JP2006512430A (en) Hydrotreating hydrocarbons using a mixture of catalysts
JP2000051695A (en) Catalyst based on precious metals of viii group including silicon, and boron depending on occasion and usage of the catalyst in hydrogenation treatment of charge stock hydrocarbons
JP2007009159A (en) Method for producing hydrogenation-purified gas oil, hydrogenation-purified gas oil and gas oil composition
CN106552646B (en) Supported catalyst, preparation method and application thereof, and method for catalyzing ring opening of naphthenic hydrocarbon by hydrogenolysis
US5494875A (en) Alumina-containing carrier and hydrofining catalyst for hydrocarbon oils
JP3770679B2 (en) Hydrocarbon hydrotreating catalyst and gas oil hydrotreating method
JP3537979B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for hydrotreating light oil
JP2001179105A (en) Catalyst for hydrodesulfurization and isomerization of light hydrocarbon oil and method of producing the same
JP3512317B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for hydrotreating light oil
JP3990676B2 (en) Hydrodesulfurization method of light oil
JP3512326B2 (en) Hydroprocessing of gas oil
CN108654636B (en) Supported trimetal catalyst, preparation method thereof and method for catalyzing ring opening of naphthenic hydrocarbon by hydrogenolysis
JPH10180100A (en) Catalyst for hydrogen treatment of hydrocarbon oil and hydrogen treating method of gas oil
JP2000233132A (en) Catalyst for hydrodesulfurization/isomerization of light hydrocarbon oil and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060207

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees