JPH10180100A - Catalyst for hydrogen treatment of hydrocarbon oil and hydrogen treating method of gas oil - Google Patents
Catalyst for hydrogen treatment of hydrocarbon oil and hydrogen treating method of gas oilInfo
- Publication number
- JPH10180100A JPH10180100A JP35563796A JP35563796A JPH10180100A JP H10180100 A JPH10180100 A JP H10180100A JP 35563796 A JP35563796 A JP 35563796A JP 35563796 A JP35563796 A JP 35563796A JP H10180100 A JPH10180100 A JP H10180100A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- gas oil
- oil
- alumina
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭化水素油の水素
化反応に使用し、炭化水素油の芳香族化合物含有率及び
硫黄含有率を低減させる触媒と、その触媒を使用した軽
油の水素化処理方法とに関し、更に詳細には、芳香族化
合物に対する高い水素化活性と、高い耐硫黄性とを合わ
せ持ち、かつ高い脱硫性能をも有する触媒と、その触媒
を使用して低い硫黄含有率及び低い芳香族化合物含有率
の軽油ブレンド基材を製造する方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst used in a hydrogenation reaction of a hydrocarbon oil to reduce the aromatic compound content and the sulfur content of the hydrocarbon oil, and to hydrogenate light oil using the catalyst. Regarding the treatment method, more specifically, a catalyst having high hydrogenation activity for aromatic compounds and high sulfur resistance, and also having high desulfurization performance, and using the catalyst, low sulfur content and The present invention relates to a method for producing a gas oil blend base material having a low aromatic compound content.
【0002】[0002]
【技術背景】内燃機関として多用されているディーゼル
エンジンは、原油の常圧蒸留によって得られる特定の沸
点範囲の直留軽油留分、又はその直留軽油留分に水素化
処理を施して得られる軽油留分、或いはそれら軽油留分
を主基材とし、それに他のソースから得た軽油留分をブ
レンドして得られる軽油を燃料としている。BACKGROUND ART A diesel engine frequently used as an internal combustion engine is obtained by subjecting a straight gas oil fraction having a specific boiling point obtained by atmospheric distillation of crude oil or a hydrogen gas treatment to the straight gas oil fraction. The fuel is a gas oil fraction or a gas oil obtained by blending the gas oil fraction obtained from another source with the gas oil fraction as a main base material.
【0003】ディーゼルエンジンに適する軽油直留留分
は、原油単位量当たり限られた量しか原油に含まれてお
らず、しかも入手できる原油が年々重質化しているた
め、原油中の軽油直留留分の含有量が益々少なくなる傾
向にある。そこで、軽油留分の必要量を確保するため
に、重質油を分解して、軽油基材に転化することも行わ
れている。[0003] Gas oil straight cuts suitable for diesel engines contain only a limited amount of crude oil per unit amount of crude oil, and the available crude oil is becoming heavier every year. The content of the fraction tends to be further reduced. Therefore, in order to secure a necessary amount of the gas oil fraction, heavy oil is decomposed and converted into a gas oil base material.
【0004】一方、軽油の需要は、ディーゼルエンジン
車の増加に伴う軽油の需要増大といった要因もあって、
益々増大する傾向になり、近い将来、軽油の供給量が大
幅に不足することが予想される。[0004] On the other hand, demand for light oil is partly due to an increase in demand for light oil accompanying an increase in diesel engine vehicles.
It is expected to increase further, and it is expected that the supply of gas oil will be significantly short in the near future.
【0005】原油から直留留分として得られる軽油留分
の不足に対処する方法、言い換えれば軽油の需要増大に
対応する一つの方法は、直留軽油留分にブレンドするブ
レンド基材の生産量を増やすことである。[0005] One method for dealing with the shortage of the gas oil fraction obtained as a straight cut from crude oil, in other words, for responding to an increase in demand for gas oil, is the production of a blend base material blended with the straight gas oil fraction. It is to increase.
【0006】そこで、接触分解装置から得られる特定の
沸点範囲の軽質分解系軽油(Light Cycle
Oil、以下、LCOと略記する)が、軽油用の新たな
ブレンド基材ための原料油として注目されている。それ
は、LCOは、軽油留分とは逆に、上述した原油の重質
化により余剰傾向にあり、留分の需給バランスから言っ
て、ブレンド基材に転用するのが望ましい留分だからで
ある。[0006] Therefore, a light cracking gas oil (Light Cycle) having a specific boiling point range obtained from a catalytic cracking unit.
Oil (hereinafter abbreviated as LCO) has attracted attention as a feedstock oil for a new blend base material for light oil. This is because, contrary to the light oil fraction, LCO tends to be excessive due to the above-mentioned heavy crude oil, and it is desirable to divert the LCO to the blend base material in view of the supply and demand balance of the fraction.
【0007】しかし、LCOは多量の芳香族成分を含有
しているため、LCOをそのままの性状で直留軽油留分
にブレンドすると、芳香族化合物の含有率が増大して、
そのブレンド軽油のセタン価を低下させ、軽油としての
品質低下が懸念される。また、芳香族化合物の含有率が
高いため、ブレンド軽油をディーゼルエンジンの燃料と
して使用した際、パティキュレートの発生量が著しく増
加することも懸念される。パティキュレートは、芳香族
化合物の一部が不完全燃焼することによって発生する微
細粒子状の大気汚染物質であって、大気中への大量のパ
ティキュレートの排出は、環境保全上、重大な問題を引
き起こすことになる。その上、LCOは、独特の着色を
呈しており、これをそのまま軽油のブレンド基材として
用いると、製品軽油の色相面での品質が問題となる。[0007] However, since LCO contains a large amount of aromatic components, if LCO is blended as it is with a straight gas oil fraction, the content of aromatic compounds increases,
There is concern that the cetane number of the blended light oil will be reduced and the quality of the light oil will be reduced. In addition, since the content of the aromatic compound is high, there is a concern that when the blended light oil is used as a fuel for a diesel engine, the amount of generated particulates is significantly increased. Particulates are fine particulate air pollutants generated by incomplete combustion of some aromatic compounds, and the emission of large amounts of particulates into the atmosphere poses a serious environmental conservation problem. Will cause. In addition, LCO has a unique coloring, and if it is used as it is as a blend base material for light oil, the quality of the product light oil in terms of hue becomes a problem.
【0008】このような懸念等を解消し、LCOを良好
なブレンド基材として使用するために、LCOに接触水
素化処理を施し、LCO中の芳香族化合物の含有量を低
減する試みがなされている。In order to solve such concerns and to use LCO as a good blend substrate, attempts have been made to subject LCO to catalytic hydrogenation to reduce the content of aromatic compounds in LCO. I have.
【0009】しかし、従来の方法によってLCOを水素
化処理しようとすると、以下のような問題点が生じる。 (1)LCOに比較的多量に含有されている硫黄化合物
や、それらが水素化処理されて生成する硫化水素が、芳
香族化合物の水素化反応を阻害すると共に、触媒上の活
性点を被毒し、活性劣化を引き起こす原因になる。 (2)LCOは、直留軽油留分に比べて、全硫黄化合物
含量は少ないものの、高沸点の難脱硫性硫黄化合物(例
えば、4,6−ジメチルジベンゾチオフェン)を高い含
有率で含有するために、LCOに脱硫処理を施そうとし
ても、過酷な条件の深度脱硫を必要とし、経済的に引き
合わない。 (3)直留軽油に比べて全硫黄分は少ないものの、LC
O中には、難脱硫性硫黄化合物が全硫黄化合物に対して
高い組成比率で存在している。このため、原料油の性状
や、生成油に要求される規格によっては、生成油中の硫
黄分を所定レベルまで更に引き下げる必要があり、この
ような場合、触媒には、この難脱硫性硫黄化合物を水素
化処理して除去できる、効率的、効果的な水素化(脱
硫)性能が要求される。[0009] However, when the LCO is hydrogenated by the conventional method, the following problems occur. (1) Sulfur compounds contained in LCO in a relatively large amount and hydrogen sulfide generated by hydrotreating them inhibit the hydrogenation reaction of aromatic compounds and poison active sites on the catalyst. And cause deterioration of activity. (2) LCO has a high content of a high boiling point hardly desulfurizable sulfur compound (eg, 4,6-dimethyldibenzothiophene), although the total sulfur compound content is smaller than that of a straight-run gas oil fraction. Even if LCO is desulfurized, it requires deep desulfurization under severe conditions, which is not economically feasible. (3) Although the total sulfur content is lower than that of straight-run gas oil, LC
In O, the non-desulfurizable sulfur compound exists in a high composition ratio with respect to all the sulfur compounds. For this reason, depending on the properties of the feed oil and the standards required for the product oil, it is necessary to further reduce the sulfur content in the product oil to a predetermined level. There is a need for efficient and effective hydrogenation (desulfurization) performance that can be removed by hydrogenation.
【0010】従って、LCOを水素化処理して芳香族化
合物を低減し、LCOを軽油留分の良好なブレンド基材
として使用するために必要となる、LCOの水素化処理
用触媒に要求される条件は、芳香族化合物に対する高い
水素化活性と、高い耐硫黄性を合わせ持ち、しかも難脱
硫性硫黄化合物をも水素化処理して除去できる高い脱硫
性能をも有することである。[0010] Accordingly, there is a need for a hydrotreating catalyst for LCO, which is necessary for hydrotreating LCO to reduce aromatic compounds and for using LCO as a good blend base material for a gas oil fraction. The condition is to have both high hydrogenation activity for aromatic compounds and high sulfur resistance, and also to have high desulfurization performance capable of hydrogenating and removing hardly desulfurizable sulfur compounds.
【0011】ところで、LCOの水素化処理用触媒とし
て試みられてきた従来の触媒は、2種類に大別され、そ
の一つは主として軽質油の水素化処理に使用される水素
化処理用触媒であり、他の一つは周期律表の第VIA族
金属−第VIII族金属系触媒、例えば、アルミナ担体
を使用したCoMo系やNiW系等の脱硫用触媒であ
る。Conventional catalysts which have been tried as LCO hydrotreating catalysts are roughly classified into two types, one of which is a hydrotreating catalyst mainly used for hydrotreating light oil. The other one is a group VIA metal-group VIII metal catalyst of the periodic table, for example, a desulfurization catalyst such as a CoMo or NiW catalyst using an alumina carrier.
【0012】しかし、上記の水素化処理用触媒は、ニッ
ケル、パラジウム、白金等の耐硫黄性が乏しい金属種を
触媒の活性成分として含んでいるため、原料油中に含ま
れる硫黄化合物分が数ppm以下という低硫黄雰囲気下
でしか有効に機能しない。このため、硫黄化合物含有量
がそれより高いLCOの水素化処理に、上記の水素化処
理用触媒を使用することは技術的に難しい。However, the above hydrotreating catalyst contains a metal species having poor sulfur resistance, such as nickel, palladium, and platinum, as an active component of the catalyst. It works effectively only in a low sulfur atmosphere of less than ppm. For this reason, it is technically difficult to use the above hydrotreating catalyst for hydrotreating LCO having a higher sulfur compound content.
【0013】また、上記の脱硫用触媒は、石油精製プロ
セスにおいて使用される代表的な水素化脱硫触媒であっ
て、本来、水素化脱硫を目的とした触媒であるから、耐
硫黄性は十分にあるものの、芳香族化合物の水素化性能
は十分とは言えない。このため、上記の脱硫用触媒をL
COの水素化処理用触媒として使用し、芳香族化合物を
水素化してナフテン類に転化するには、10MPa程度
の高い水素分圧下で、原料油の性状や反応温度など他の
条件によってはそれ以上の高い水素分圧下で、水素化処
理を行うことが必要になり、設備費や運転費が嵩む。水
素分圧を高くする代わりに、反応温度を上げることによ
って反応速度を速くし、芳香族化合物の転化を促進する
こともできるが、反応温度を高くすることは、発熱反応
である水素化反応にとって反応平衡上不利になるばかり
でなく、分解反応や縮重合反応等の副反応も著しく進行
するため、水素化生成物の収率が低下し、経済的でな
い。しかも、高温反応であるため、生成油の色相問題が
改善されず、更には、装置の設備費及び運転費が嵩むと
言う問題も生じる。The above desulfurization catalyst is a typical hydrodesulfurization catalyst used in a petroleum refining process, and is originally a catalyst intended for hydrodesulfurization. However, the hydrogenation performance of aromatic compounds is not sufficient. For this reason, the above desulfurization catalyst is
To use as a catalyst for CO hydrotreating and hydrogenate aromatic compounds to convert them into naphthenes, under a high hydrogen partial pressure of about 10 MPa, depending on other conditions such as the properties of the feedstock and the reaction temperature, it may be higher. It is necessary to carry out the hydrogenation treatment under a high hydrogen partial pressure, which increases equipment costs and operating costs. Instead of increasing the hydrogen partial pressure, the reaction rate can be increased by increasing the reaction temperature to promote the conversion of the aromatic compound.However, increasing the reaction temperature is not suitable for the exothermic hydrogenation reaction. Not only is it disadvantageous in terms of reaction equilibrium, but also side reactions such as a decomposition reaction and a polycondensation reaction remarkably proceed, so that the yield of a hydrogenated product is reduced, which is not economical. In addition, since the reaction is a high temperature reaction, the problem of the hue of the produced oil is not improved, and further, there is a problem that the equipment cost and the operating cost of the device are increased.
【0014】以上のように、従来の触媒は、芳香族化合
物に対する高い水素化活性と、高い耐硫黄性の双方を合
わせ持ち、しかも難脱硫性硫黄化合物に対しても優れた
脱硫性能を有する触媒と言う要求を満足せず、LCOの
水素化反応に使用し、LCOの芳香族化合物含有率を低
減させる処理には適していなかった。As described above, conventional catalysts have both high hydrogenation activity for aromatic compounds and high sulfur resistance, and have excellent desulfurization performance even for hardly desulfurizable sulfur compounds. Therefore, it was not suitable for the treatment used in the hydrogenation reaction of LCO to reduce the aromatic compound content of LCO.
【0015】[0015]
【発明の目的】そこで、本発明の目的は、第1には、炭
化水素油、特に軽油留分を水素化処理して、芳香族化合
物含有率を低減させるのに適する触媒を提供することで
あり、第2には、その触媒を使用して軽油留分を水素化
処理する方法を提供することである。Accordingly, an object of the present invention is, firstly, to provide a catalyst suitable for reducing the aromatic compound content by hydrotreating a hydrocarbon oil, particularly a gas oil fraction. The second is to provide a method for hydrotreating a gas oil fraction using the catalyst.
【0016】[0016]
【発明の概要】本発明者らは、上記の目的を解決するた
めに、検討を重ねた結果、先ず、(a)核水素化により
芳香族化合物を減少させるには、白金族金属系の触媒が
有望であること、の知見を得た。但し、前述のように、
白金族金属系触媒は耐硫黄性が低いため、これを高める
ための検討を、更に重ねた結果、(b)意外にも、白金
族金属と共にゲルマニウムを担持させれば、白金族金属
が高い分散性で担持され、しかも白金族金属のシンタリ
ングが抑制されるため、下の(e)にも記載するよう
に、耐硫黄性が顕著に向上するばかりか、芳香族化合物
の核水素化作用も顕著に向上すること、(c)しかも、
触媒の酸性質が所定の値を有していれば、上記の耐硫黄
性及び芳香族化合物の核水素化作用の顕著な向上が確実
となること、(d)担体がアルミナ又はアルミナを主成
分とする無機酸化物で、活性金属が白金族金属で、しか
もゲルマニウムを特定量含む触媒の酸性質は、容易に調
整することができること、(e)この触媒によれば、比
較的低コストで実施できる高い水素/オイル比で、かつ
従来の水素化処理とほぼ同様な水素分圧及び反応温度等
の条件下において、硫黄化合物等による活性劣化が抑制
され、またNiW系やCoMo系等の従来の脱硫用触
媒、及び白金系水素化触媒に比べて、芳香族化合物に対
して高い水素化活性を示すこと、の知見を得た。SUMMARY OF THE INVENTION The present inventors have conducted various studies to solve the above-mentioned problems. As a result, first, (a) in order to reduce aromatic compounds by nuclear hydrogenation, a platinum group metal-based catalyst was used. Is promising. However, as mentioned above,
Since the platinum group metal-based catalyst has low sulfur resistance, studies for increasing the sulfur group were repeated. As a result, (b) surprisingly, if germanium is supported together with the platinum group metal, the platinum group metal has a high dispersion. As described in (e) below, not only the sulfur resistance is remarkably improved, but also the nuclear hydrogenation action of the aromatic compound is suppressed. (C) significantly improved.
If the acid property of the catalyst has a predetermined value, the sulfur resistance and the nuclear hydrogenation of the aromatic compound are remarkably improved. (D) The carrier is composed of alumina or alumina as a main component. The acid properties of a catalyst which is an inorganic oxide whose active metal is a platinum group metal and which contains a specific amount of germanium can be easily adjusted. (E) According to this catalyst, it can be carried out at a relatively low cost. Under the conditions of a high hydrogen / oil ratio and a hydrogen partial pressure and a reaction temperature substantially similar to those of the conventional hydrogenation, the deterioration of the activity due to sulfur compounds and the like is suppressed. It has been found that the catalyst exhibits higher hydrogenation activity for aromatic compounds than a desulfurization catalyst and a platinum-based hydrogenation catalyst.
【0017】本発明は、以上のような知見に基づくもの
で、〔1〕アルミナ又はアルミナを主成分とした無機酸
化物からなる担体に、触媒基準で、金属換算で、0.1
〜8質量%の白金族金属、及び0.01〜5質量%のゲ
ルマニウムを含有させてなることを特徴とする炭化水素
油の水素化処理用触媒、及び〔2〕上記の触媒の存在下
で、3〜8MPaの水素分圧、200〜370℃の温
度、及び0.3〜5hr−1の液空間速度で、芳香族化
合物を含む軽油留分の接触反応を行うことを特徴とする
軽油の水素化処理方法を要旨とする。The present invention is based on the above findings. [1] A carrier made of alumina or an inorganic oxide containing alumina as a main component is coated on a catalyst basis in an amount of 0.1% in terms of metal.
A catalyst for hydrotreating hydrocarbon oils, characterized in that the catalyst contains a platinum group metal of from 8 to 8 mass% and germanium of from 0.01 to 5 mass%, and [2] in the presence of the above-mentioned catalyst. Carrying out a catalytic reaction of a gas oil fraction containing an aromatic compound at a hydrogen partial pressure of 3 to 8 MPa, a temperature of 200 to 370 ° C., and a liquid hourly space velocity of 0.3 to 5 hr −1 . The gist of the hydrotreating method is as follows.
【0018】本発明の触媒は、炭化水素油、特に軽油留
分の水素化処理、例えば接触分解軽油、直留軽油、熱分
解軽油、水素化処理軽油、脱硫処理軽油等の水素化処理
に適している。これら原料油の代表的な性状例として、
沸点範囲:150〜450℃、硫黄分:2000質量p
pm以下、好ましくは500質量ppm以下、芳香族化
合物分:5〜90容量%の範囲のものが挙げられる。The catalyst of the present invention is suitable for hydrotreating hydrocarbon oils, especially gas oil fractions, for example, catalytic cracking gas oil, straight run gas oil, pyrolysis gas oil, hydrotreated gas oil, desulfurized gas oil, etc. ing. As typical properties of these feedstocks,
Boiling range: 150 to 450 ° C, sulfur content: 2000 mass p
pm or less, preferably 500 ppm by mass or less, and aromatic compounds: in the range of 5 to 90% by volume.
【0019】本発明の触媒の担体は、アルミナ、又はア
ルミナを主成分とし更にアルミナ以外の種類の無機酸化
物を混合したものである。このアルミナは、α−アルミ
ナ、β−アルミナ、γ−アルミナ、δ−アルミナ等の種
々のアルミナを使用することができるが、多孔質で高比
表面積であるアルミナが好ましく、中でもγ−アルミナ
が適している。なお、アルミナは、不可避不純物を含ん
でいるが、この不可避不純物は、上記の無機酸化物とは
区別されるものである。The carrier of the catalyst of the present invention is alumina or a mixture of alumina as a main component and an inorganic oxide other than alumina. As this alumina, various aluminas such as α-alumina, β-alumina, γ-alumina and δ-alumina can be used, but porous alumina having a high specific surface area is preferable, and γ-alumina is particularly suitable. ing. Alumina contains unavoidable impurities, and these unavoidable impurities are distinguished from the above-mentioned inorganic oxides.
【0020】アルミナ以外の無機酸化物(以下、担体副
成分と言う)は、第1の群として、例えば、シリカ、ボ
リア、チタニア、ジルコニア、マグネシア、ハフニア、
セリア、イットリア、ニオビア、クロミア、トリア等が
挙げられ、これらは単独で又は2種以上を組合せて使用
する。Inorganic oxides other than alumina (hereinafter referred to as carrier subcomponents) include, as a first group, silica, boria, titania, zirconia, magnesia, hafnia,
Ceria, yttria, niobia, chromia, thoria and the like can be mentioned, and these are used alone or in combination of two or more.
【0021】第2の担体副成分の群は、ゼオライト、モ
レキュラシーブ等の結晶性無機酸化物、あるいはモンモ
リロナイト、カオリン、ベントナイト、サポナイト等の
粘土鉱物等であり、これらは単独で又は2種以上を組合
せて使用する。The group of the second carrier subcomponents is a crystalline inorganic oxide such as zeolite and molecular sieve, or a clay mineral such as montmorillonite, kaolin, bentonite, saponite and the like. These may be used alone or in combination of two or more. To use.
【0022】第3の担体副成分の群は、ジルコニア、チ
タニア等の特定の金属酸化物を硫酸イオンで賦活した無
機酸化物、例えば、SO4/ZrO2、SO4/TiO
2等であり、これらは単独で又は2種以上を組合せて使
用する。The third group of carrier subcomponents includes inorganic oxides obtained by activating specific metal oxides such as zirconia and titania with sulfate ions, for example, SO 4 / ZrO 2 , SO 4 / TiO 2
And these are used alone or in combination of two or more.
【0023】また、上記第1〜第3の担体副成分の群か
ら、2種以上を任意に選択して使用する(例えば、第1
の群のシリカと第3の群のSO4/ZrO2とを併用す
る)こともできる。In addition, two or more of the first to third carrier subcomponents are arbitrarily selected and used (for example, the first to third carrier subcomponents).
And the third group of SO 4 / ZrO 2 may be used in combination.
【0024】担体副成分の担体中の含有率は、担体基準
で、酸化物換算で、5〜50質量%、好ましくは10〜
40質量%である。The content of the carrier subcomponent in the carrier is 5 to 50% by mass, preferably 10 to 10% by mass, based on the carrier, in terms of oxide.
40% by mass.
【0025】以上のアルミナと担体副成分とで構成され
る担体の比表面積、細孔容積及び平均細孔径は、特に制
限されるものではないが、耐硫黄性に優れ、炭化水素油
に対する水素化活性及び脱硫活性が高い触媒にするため
には、比表面積は100〜600m2/g、好ましくは
200〜400m2/gの範囲にあり、細孔容積は0.
4〜1.2ml/gの範囲にあり、平均細孔径は50〜
200Å、好ましくは50〜150Åの範囲にあるもの
が適している。また、この担体はDアンモニア−TPD
法で測定される酸量が0.6〜3.5mmol/gであ
ることが好ましいThe specific surface area, pore volume, and average pore diameter of the carrier composed of the above alumina and the carrier auxiliary component are not particularly limited, but they are excellent in sulfur resistance and are suitable for hydrogenation of hydrocarbon oils. In order to obtain a catalyst having a high activity and desulfurization activity, the specific surface area is in the range of 100 to 600 m 2 / g, preferably 200 to 400 m 2 / g, and the pore volume is in the range of 0.
It is in the range of 4 to 1.2 ml / g, and the average pore size is 50 to
Those in the range of 200 °, preferably 50-150 °, are suitable. The carrier is D ammonia-TPD
It is preferable that the acid amount measured by the method is 0.6 to 3.5 mmol / g.
【0026】担体に担持させる活性成分の白金族金属
は、白金、パラジウム、ロジウム、ルテニウム、オスミ
ウム、イリジウムのいずれも単独で又は2種以上を組合
せて使用できるが、好ましくは白金である。白金族金属
は化合物の形で担持させるが、この化合物の具体例とし
ては、塩化金属酸塩、塩化物、硝酸塩、硫酸塩、酢酸
塩、燐酸塩、有機酸塩が挙げられ、好ましくは塩化金属
酸塩、塩化物、硝酸塩である。これらの白金族金属、あ
るいはこれらの化合物は、単独で担持させてもよいし、
2種以上を組合せて担持させることもできる。The platinum group metal of the active ingredient to be supported on the carrier can be platinum, palladium, rhodium, ruthenium, osmium, or iridium, either alone or in combination of two or more, preferably platinum. The platinum group metal is supported in the form of a compound, and specific examples of the compound include metal chlorides, chlorides, nitrates, sulfates, acetates, phosphates, and organic acid salts. Acid salts, chlorides and nitrates. These platinum group metals or these compounds may be supported alone,
Two or more types can be supported in combination.
【0027】白金族金属の含有量は、触媒基準で、金属
換算で、0.1〜8質量%、好ましくは0.2〜2質量
%である。白金族金属が、0.1質量%未満では、白金
族金属に帰属する活性点が十分に得られず、8質量%を
超えると、白金族金属化合物の凝集等によって活性金属
の分散性が悪くなるばかりでなく、効率的に分散させる
活性金属含有量の限度を超えてしまうため、コスト的に
も高くなる。The content of the platinum group metal is 0.1 to 8% by mass, preferably 0.2 to 2% by mass in terms of metal on a catalyst basis. If the platinum group metal is less than 0.1% by mass, the active sites attributed to the platinum group metal cannot be sufficiently obtained, and if it exceeds 8% by mass, the dispersibility of the active metal is poor due to aggregation of the platinum group metal compound and the like. Not only does this increase the content of the active metal but also increases the cost because it exceeds the limit of the content of the active metal to be dispersed efficiently.
【0028】上記の白金族金属化合物と共に担持させる
ゲルマニウムの化合物の具体例としては、四塩化ゲルマ
ニウム、二フッ化ゲルマニウム、四フッ化ゲルマニウ
ム、二ヨウ化ゲルマニウム、一硫化ゲルマニウム、これ
らの類似化合物が挙げられ、これらは、単独で担持させ
てもよいし、2種以上を組合せて担持させることもでき
る。Specific examples of the germanium compound supported together with the platinum group metal compound include germanium tetrachloride, germanium difluoride, germanium tetrafluoride, germanium diiodide, germanium monosulfide, and similar compounds thereof. These may be supported alone or in combination of two or more.
【0029】ゲルマニウムの含有量は、触媒基準で、酸
化物換算で、0.01〜5質量%、好ましくは0.1〜
2質量%、より好ましくは0.1〜1質量%である。ゲ
ルマニウムは、白金族金属の分散性を向上させ、白金族
金属のシンタリングを抑制すると共に、白金族金属への
コーク析出及び硫黄析出を抑制する作用をなす。ゲルマ
ニウムが、0.01質量%未満では、これらの作用を発
現させるには不十分であり、5質量%を超えると、白金
族金属のみならず、担体上に存在する反応活性点をも被
覆してしまい、触媒活性の向上がみられなくなる。The germanium content is 0.01 to 5% by mass, preferably 0.1 to 5% by mass in terms of oxide on a catalyst basis.
It is 2% by mass, more preferably 0.1 to 1% by mass. Germanium improves the dispersibility of the platinum group metal, suppresses sintering of the platinum group metal, and suppresses coke deposition and sulfur deposition on the platinum group metal. If the content of germanium is less than 0.01% by mass, it is insufficient to exert these effects. If the content exceeds 5% by mass, not only the platinum group metal but also the reactive active sites present on the carrier are covered. As a result, no improvement in catalytic activity is observed.
【0030】また、本発明では、上記の白金族金属及び
ゲルマニウムと共に、触媒の酸性質をより好適な値とす
るためにハロゲンを含有させてもよい。このハロゲンと
しては、上記の白金族金属及びゲルマニウムの化合物と
して塩化金属酸塩や塩化物等のハロゲン化物を使用する
場合、あるいは後述する触媒調製の際に溶媒成分等とし
て塩酸等のハロゲン化物を使用する場合には、これらの
化合物に由来するものであってもよいし、ハロゲン化物
以外の化合物を使用する場合や、ハロゲン化物に由来す
るハロゲンのみでは不足する場合には、この化合物と共
に他のハロゲン源、例えば、塩素、塩酸、過塩素酸、フ
ッ酸、二酸化塩素、安定化二酸化塩素液、フッ素、フッ
化水素酸、酸性フッ化アンモニウム、臭素、臭化アンモ
ニウム、ヨウ素、ヨウ化水素酸等を使用すればよい。In the present invention, a halogen may be contained together with the platinum group metal and germanium in order to make the acidity of the catalyst more suitable. As the halogen, when a halide such as a metal chloride or chloride is used as the compound of the platinum group metal and germanium, or a halide such as hydrochloric acid is used as a solvent component or the like in preparing a catalyst described later. In this case, the compound may be derived from these compounds, or when a compound other than a halide is used, or when only a halogen derived from a halide is insufficient, another halogen may be added together with this compound. Sources, for example, chlorine, hydrochloric acid, perchloric acid, hydrofluoric acid, chlorine dioxide, stabilized chlorine dioxide solution, fluorine, hydrofluoric acid, ammonium acid fluoride, bromine, ammonium bromide, iodine, hydroiodic acid, etc. Just use it.
【0031】ハロゲンは、触媒の酸性質をより一層向上
させる作用をなすもので、触媒が好適な酸性質の値を示
す場合には、活性成分の分散性が向上し、かつ担体上の
酸点の量が最適値を示して、芳香族化合物の吸着を促進
し、芳香族化合物の水素化活性を向上させる。なお、ハ
ロゲンが多すぎて触媒の酸性質が高くなりすぎると、芳
香族化合物の過分解等のような好ましくない副反応を引
き起こす。このように、ハロゲンを含有させる場合、そ
の含有量は、触媒の酸性質を好適な値にするために、触
媒基準で、元素換算で、0.05〜3質量%、好ましく
は0.1〜1質量%である。Halogen acts to further improve the acidity of the catalyst. When the catalyst exhibits a suitable acidity, the dispersibility of the active ingredient is improved and the acid point on the carrier is improved. Shows an optimum value to promote the adsorption of the aromatic compound and improve the hydrogenation activity of the aromatic compound. If the acidity of the catalyst is too high due to too much halogen, undesired side reactions such as over-decomposition of aromatic compounds are caused. As described above, when halogen is contained, the content thereof is 0.05 to 3% by mass, preferably 0.1 to 3% by mass, in terms of element, based on the catalyst in order to make the acidity of the catalyst a suitable value. 1% by mass.
【0032】以上の各成分からなる本発明の触媒は、ア
ンモニア−TPD法で測定した酸量が、0.4〜3mm
ol/gであることが好ましい。ここで、アンモニア−
TPD(Temperature Programme
d Desorption)法とは、試料(すなわち、
担体や触媒)の所定量を吸着管に充填し、前処理として
不活性ガス流中で所定温度まで所定時間で昇温し、同気
流中で同温度で所定時間保持し、室温まで所定時間で降
温し、室温、常圧にて所定時間のアンモニア吸着を行っ
た後、上記の不活性ガスを流した状態で、所定の減圧下
で所定温度で所定時間の脱気処理を行い、この試料につ
いて、所定の昇温速度で、上記の不活性ガス流中で、ア
ンモニア脱離スペクトルを観測し、このスペクトルから
得られるアンモニア量により酸量を特定する方法を言
う。The catalyst of the present invention comprising the above components has an acid content of 0.4 to 3 mm as measured by the ammonia-TPD method.
ol / g is preferred. Where ammonia-
TPD (Temperature Program)
The d Desorption method refers to the sample (ie,
A predetermined amount of a carrier or a catalyst is filled in an adsorption tube, and as a pretreatment, the temperature is raised to a predetermined temperature in an inert gas flow for a predetermined time, kept at the same temperature in the same gas flow for a predetermined time, and cooled to room temperature for a predetermined time. After lowering the temperature and performing ammonia adsorption for a predetermined time at room temperature and normal pressure, in a state where the above inert gas is flown, perform deaeration for a predetermined time at a predetermined temperature under a predetermined reduced pressure. A method in which an ammonia desorption spectrum is observed in the above-mentioned inert gas stream at a predetermined heating rate, and the amount of acid is specified by the amount of ammonia obtained from this spectrum.
【0033】酸量が、0.4mmol/g未満である
と、白金族金属の高い分散性が確保できず、また白金族
金属の電子密度を減少させることが困難になるため、芳
香族化合物の核水素化の向上効果及び耐硫黄性の向上効
果を十分に得ることができず、3mmol/gより多い
と、原料油留分の過分解等の好ましくない副反応を引き
起こす。なお、本発明の触媒においては、酸量が0.4
〜3mmol/gの範囲内にあり、かつ各成分の含有率
が上記した本発明の所定の範囲内にある場合に、本発明
の目的(芳香族化合物の核水素化や難脱硫性硫黄化合物
の低減等)をより効果的に達成することができる。When the acid amount is less than 0.4 mmol / g, high dispersibility of the platinum group metal cannot be secured, and it becomes difficult to reduce the electron density of the platinum group metal. The effect of improving nuclear hydrogenation and the effect of improving sulfur resistance cannot be sufficiently obtained. When the amount is more than 3 mmol / g, undesired side reactions such as overcracking of a feed oil fraction are caused. Incidentally, in the catalyst of the present invention, the acid amount is 0.4
When the content of each component is within the above-mentioned predetermined range of the present invention, the object of the present invention (nuclear hydrogenation of an aromatic compound or sulfur-desulfurizing sulfur compound) Reduction, etc.) can be achieved more effectively.
【0034】本発明の触媒は、既知の方法により調製す
ることができる。例えば、酸、水、アルコール類等の溶
媒に上記活性成分の化合物、場合によってハロゲン源を
溶解させて調製した溶液に、上記担体を含浸させる含浸
処理を1回以上行い、担体に活性成分及びハロゲンを担
持させる含浸法が挙げられる。このときの溶媒として、
例えば、塩酸、硝酸、硫酸等の酸性溶媒を使用すること
ができる。含浸処理後に、乾燥、焼成が行われるが、含
浸処理の回数が複数になる場合には、含浸処理毎に、乾
燥、焼成を行ってもよい。The catalyst of the present invention can be prepared by a known method. For example, a solution prepared by dissolving a compound of the active ingredient and, in some cases, a halogen source in a solvent such as an acid, water, or an alcohol is subjected to one or more impregnation treatments of impregnating the carrier with the active ingredient and a halogen. Is carried out. As a solvent at this time,
For example, an acidic solvent such as hydrochloric acid, nitric acid, and sulfuric acid can be used. After the impregnation, drying and baking are performed. If the number of times of the impregnation is plural, drying and baking may be performed for each impregnation.
【0035】なお、白金族金属化合物とゲルマニウム化
合物、あるいはハロゲン源を含浸させる順序について
は、特に制限はなく、ハロゲンを含有させる場合におい
ても白金族金属化合物、ゲルマニウム化合物、ハロゲン
源を順番は問わないが順々に含浸させてもよいし、同時
に含浸させてもよい。酸性質や細孔の性状等の製品触媒
の特性の面、あるいは操作性の面からは、同時に含浸さ
せることが好ましい。The order in which the platinum group metal compound and the germanium compound or the halogen source is impregnated is not particularly limited, and the order of the platinum group metal compound, the germanium compound and the halogen source is not limited even when the halogen is contained. May be impregnated sequentially or simultaneously. It is preferable to impregnate simultaneously from the viewpoint of the properties of the product catalyst such as acidity and pore properties, or the operability.
【0036】他の方法としては、担体として成形する前
の担体材料に、活性成分の一部あるいは全部、場合によ
ってハロゲン源の一部あるいは全部を混合し、一体的に
成形する混練法、あるいは共沈法等が挙げられる。As another method, a kneading method in which a part or all of an active ingredient and, in some cases, a part or all of a halogen source are mixed with a carrier material before molding as a carrier and integrally molded, A precipitation method is exemplified.
【0037】以上に挙げた触媒の調製方法によって調製
された本発明の触媒は、触媒としての機能が発現する限
り、その比表面積、細孔容積及び平均細孔径が制限され
るものではないが、前述した担体と同様に、炭化水素油
に対する水素化活性及び脱硫活性を高めるためには、次
のような値を有するものが好適である。The specific surface area, pore volume and average pore diameter of the catalyst of the present invention prepared by the above-mentioned catalyst preparation method are not limited as long as the function as a catalyst is exhibited. In order to increase the hydrogenation activity and desulfurization activity for hydrocarbon oils as in the case of the above-mentioned carriers, those having the following values are suitable.
【0038】比表面積は、100〜600m2/gが好
ましく、200〜400m2/gがより好ましい。細孔
容積は、0.4〜1.2ml/gが好ましく、0.5〜
0.9ml/gがより好ましい。平均細孔径は、50〜
200Åが好ましく、50〜150Åがより好ましい。
平均細孔径が50Å未満であると、反応物質が細孔内に
拡散し難くなるため、芳香族化合物及び難脱硫性硫黄化
合物の水素化反応が効率的に進行しなくなる。200Å
より大きいと、細孔内の拡散性は良いものの、細孔内表
面積が減少するため、触媒の有効比表面積が減少し、活
性が低くなる。[0038] The specific surface area is preferably 100~600m 2 / g, 200~400m 2 / g is more preferable. The pore volume is preferably 0.4 to 1.2 ml / g,
0.9 ml / g is more preferred. Average pore size is 50 ~
200 ° is preferable, and 50 to 150 ° is more preferable.
If the average pore diameter is less than 50 °, the reactants are difficult to diffuse into the pores, and the hydrogenation reaction of the aromatic compound and the hardly desulfurizable sulfur compound does not proceed efficiently. 200Å
If it is larger, the diffusivity in the pores is good, but the surface area in the pores decreases, so that the effective specific surface area of the catalyst decreases and the activity decreases.
【0039】また、上記の細孔条件を満たす細孔の有効
数を多くするために、触媒の細孔径分布(即ち、平均細
孔径±15Åの細孔径を有する細孔の割合)は、70%
以上が好ましく、より好ましくは80%以上である。In order to increase the effective number of pores satisfying the above pore conditions, the pore size distribution of the catalyst (that is, the ratio of the pores having a mean pore diameter of ± 15 °) is 70%.
Or more, more preferably 80% or more.
【0040】以上の触媒を使用する本発明の軽油の水素
化処理方法は、3〜8MPaの水素分圧、200〜37
0℃の温度、及び0.3〜5hr−1の液空間速度の条
件で、以上の触媒と芳香族化合物を含む軽油留分とを接
触させて、芳香族化合物の核水素化を行って芳香族分を
減少し、また難脱硫性等の硫黄化合物分を減少する方法
である。なお、この芳香族化合物を含む軽油留分の代表
的な性状は、前述の本発明の触媒が適用できる原料油の
性状例として挙げたものと同じである。The method for hydrotreating light oil of the present invention using the above-mentioned catalyst can be carried out under a hydrogen partial pressure of 3 to 8 MPa, 200 to 37 MPa.
At a temperature of 0 ° C. and a liquid hourly space velocity of 0.3 to 5 hr −1 , the catalyst is brought into contact with a light oil fraction containing an aromatic compound, and the aromatic compound is subjected to nuclear hydrogenation to produce an aromatic compound. This is a method for reducing the content of sulfur and the content of sulfur compounds such as non-desulfurization. The typical properties of the gas oil fraction containing the aromatic compound are the same as those described above as examples of the properties of the feedstock oil to which the catalyst of the present invention can be applied.
【0041】本発明の水素化処理方法を、商業規模で行
うには、本発明の触媒の固定床、移動床、あるいは流動
床式の触媒層を反応器内に形成し、この反応器内に原料
油を導入し、上記の条件下で水素化反応を行えばよい。
最も一般的には、固定床式触媒層を反応器内に形成し、
原料油を反応器の上部に導入し、固定床を上から下に通
過させ、反応器の下部から生成物を流出させるものか、
反対に原料油を反応器の下部に導入し、固定床を下から
上に通過させ、反応器の上部から生成物を流出させるも
のである。In order to carry out the hydrotreating method of the present invention on a commercial scale, a fixed bed, a moving bed or a fluidized bed type catalyst layer of the catalyst of the present invention is formed in a reactor, and the catalyst is formed in the reactor. The feedstock may be introduced and the hydrogenation reaction may be performed under the above conditions.
Most commonly, a fixed bed catalyst bed is formed in a reactor,
Feeding the feedstock to the top of the reactor, passing it through the fixed bed from top to bottom, and allowing the product to flow out of the bottom of the reactor,
Conversely, feedstock is introduced into the lower part of the reactor, passes through the fixed bed from bottom to top, and the product flows out from the upper part of the reactor.
【0042】本発明の触媒は、単独の反応器に充填して
一段の水素化処理を行う場合にも使用することができる
し、幾つかの反応器に充填して多段の連続した水素化処
理を行う場合にも使用することができる。特に、原料油
が比較的重質の場合には、多段の水素化処理を行うのが
好ましい。The catalyst of the present invention can be used in the case where a single reactor is charged to perform a single-stage hydrotreating, or the catalyst of the present invention is charged in several reactors and a multi-stage continuous hydrotreating is performed. It can also be used when performing In particular, when the feedstock is relatively heavy, it is preferable to perform multi-stage hydrotreating.
【0043】[0043]
〔触媒の調製〕以下の実施例及び比較例で調製した触媒
及び調製前の担体についてのアンモニア−TPD法の測
定要領は、次の通りとした。日本ベル株式会社製のアン
モニア−TPD装置を使用し、試料(担体及び触媒)
0.1gを吸着管に充填し、前処理としてHe気流中で
500℃まで50分間かけて昇温し、同気流中で500
℃で1時間保持し、室温まで11分30秒間で降温し、
室温、常圧にて15分間アンモニアを吸着させた後、H
eを流した状態で、150Torrの減圧下で100℃
で12分30秒間、脱気処理を行った。この脱気後の試
料について、昇温速度10℃/分で、He気流中で、ア
ンモニア脱離スペクトルを観測し、全アンモニア脱離量
を求め、酸量とした。[Preparation of Catalyst] The measurement procedure of the catalyst prepared in the following Examples and Comparative Examples and the carrier before preparation by the ammonia-TPD method was as follows. Sample (carrier and catalyst) using ammonia-TPD device manufactured by Bell Japan
0.1 g was charged into an adsorption tube, and the temperature was raised to 500 ° C. in a He gas stream over 50 minutes as a pretreatment, and 500
C. for 1 hour, and cooled to room temperature in 11 minutes and 30 seconds.
After adsorbing ammonia for 15 minutes at room temperature and normal pressure,
e at 100 ° C. under reduced pressure of 150 Torr
For 12 minutes and 30 seconds. With respect to the degassed sample, an ammonia desorption spectrum was observed in a He gas flow at a temperature rising rate of 10 ° C./min, and the total ammonia desorption amount was obtained and defined as an acid amount.
【0044】実施例1 ナス型フラスコ中に、細孔容積0.71ml/g,表面
積363m2/gのシリカ−アルミナ(シリカ/アルミ
ナ重量比=20/80、直径1/16インチの柱状成形
物、酸量0.66mmol/g)39.02gを投入
し、そこへ0.1規定塩酸水溶液32.38gに塩化白
金酸6水和物0.5219gと四塩化ゲルマニウム0.
2380gを溶解させた溶液をピペットを用いて添加し
た。約25℃で2時間浸漬後、風乾し、マッフル炉で浸
漬混合物の温度を120℃に上げ、約1時間乾燥させ
た。次いで、500℃で4時間焼成し、触媒Aを得た。EXAMPLE 1 A silica-alumina having a pore volume of 0.71 ml / g and a surface area of 363 m 2 / g (a silica / alumina weight ratio = 20/80, a columnar molded product having a diameter of 1/16 inch) was placed in an eggplant-shaped flask. , Acid amount 0.66 mmol / g), into which 39.02 g was added. To the solution were added 32.38 g of a 0.1 N aqueous hydrochloric acid solution, 0.5219 g of chloroplatinic acid hexahydrate, and germanium tetrachloride 0.1%.
A solution in which 2380 g was dissolved was added using a pipette. After immersion at about 25 ° C. for 2 hours, it was air-dried, and the temperature of the immersion mixture was raised to 120 ° C. in a muffle furnace and dried for about 1 hour. Next, the mixture was calcined at 500 ° C. for 4 hours to obtain a catalyst A.
【0045】触媒Aの組成は、Pt(0.56質量%)
−Ge(0.28質量%)−Cl(0.16質量%)/
SiO2−Al2O3(99.0質量%)であった。触
媒Aの物理性状は、表面積311m2/g、細孔容積
0.71ml/g、平均細孔径66Åであった。触媒A
の酸量は、0.60mmol/gであった。The composition of the catalyst A was Pt (0.56% by mass).
-Ge (0.28% by mass) -Cl (0.16% by mass) /
It was SiO 2 —Al 2 O 3 (99.0% by mass). The physical properties of the catalyst A were a surface area of 311 m 2 / g, a pore volume of 0.71 ml / g, and an average pore diameter of 66 °. Catalyst A
Was 0.60 mmol / g.
【0046】実施例2 ナス型フラスコ中に、実施例1で用いたものと同じシリ
カ−アルミナ39.2gを投入し、そこへイオン交換水
32.38gに塩化白金酸6水和物0.5000gと水
溶性二酸化ゲルマニウム0.1161gを溶解させた溶
液をピペットを用いて添加し、実施例1と同じ条件で含
浸、乾燥、焼成を行い、触媒Bを得た。Example 2 39.2 g of the same silica-alumina as used in Example 1 was charged into an eggplant-shaped flask, and 0.5000 g of chloroplatinic acid hexahydrate was added to 32.38 g of ion-exchanged water. And a solution in which 0.1161 g of water-soluble germanium dioxide was dissolved was added using a pipette, and impregnation, drying, and calcining were performed under the same conditions as in Example 1 to obtain Catalyst B.
【0047】触媒Bの組成は、Pt(0.51質量%)
−Ge(0.27質量%)/SiO2−Al2O3(9
9.22質量%)であった。触媒Bの物理性状は、表面
積309m2/g、細孔容積0.72ml/g、平均細
孔径66Åであった。触媒Bの酸量は、0.51mmo
l/gであった。The composition of the catalyst B was Pt (0.51% by mass).
-Ge (0.27% by mass) / SiO 2 -Al 2 O 3 (9
9.22% by mass). The physical properties of the catalyst B were a surface area of 309 m 2 / g, a pore volume of 0.72 ml / g, and an average pore diameter of 66 °. The acid amount of the catalyst B is 0.51 mmol
1 / g.
【0048】比較例1 ナス型フラスコ中に、細孔容積0.73ml/g,表面
積380m2/gのアルミナ(直径1/16インチの柱
状成形物、酸量0.56mmol/g)47.67gを
投入し、そこへ39.57gのイオン交換水に塩化白金
酸6水和物0.6360gを溶解させた水溶液をピペッ
トを用いて添加し、実施例1と同じ条件で含浸、乾燥、
焼成を行い、触媒Cを得た。Comparative Example 1 47.67 g of alumina having a pore volume of 0.73 ml / g and a surface area of 380 m 2 / g (a columnar molded product having a diameter of 1/16 inch, an acid amount of 0.56 mmol / g) was placed in an eggplant-shaped flask. Was added thereto, and an aqueous solution obtained by dissolving 0.6360 g of chloroplatinic acid hexahydrate in 39.57 g of ion-exchanged water was added using a pipette, and impregnated under the same conditions as in Example 1, dried, and dried.
Calcination was performed to obtain Catalyst C.
【0049】触媒Cの組成は、Pt(0.53質量%)
−Cl(0.46質量%)/Al2O3(99.01質
量%)であった。触媒Cの物理性状は、表面積315m
2/g、細孔容積0.68ml/g、平均細孔径66Å
であった。触媒Cの酸量は、0.44mmolであっ
た。The composition of the catalyst C was Pt (0.53% by mass).
—Cl (0.46% by mass) / Al 2 O 3 (99.01% by mass). The physical property of the catalyst C was 315 m in surface area.
2 / g, pore volume 0.68 ml / g, average pore diameter 66 °
Met. The acid amount of the catalyst C was 0.44 mmol.
【0050】比較例2 ナス型フラスコ中に、実施例1で使用したものと同じシ
リカ−アルミナ48.25gを投入し、そこへ34.2
5gのイオン交換水に塩化白金酸6水和物0.6437
gを溶解させた水溶液をピペットを用いて添加し、実施
例1と同じ条件で含浸、乾燥、焼成を行い、触媒Dを得
た。Comparative Example 2 Into an eggplant-shaped flask, 48.25 g of the same silica-alumina as used in Example 1 was charged, and 34.2 g of the same were added thereto.
0.6437 chloroplatinic acid hexahydrate in 5 g of ion-exchanged water
The aqueous solution in which g was dissolved was added using a pipette, and impregnation, drying, and calcination were performed under the same conditions as in Example 1 to obtain Catalyst D.
【0051】触媒Dの組成は、Pt(0.50質量%)
−Cl(0.17質量%)/SiO2−Al2O3(9
9.33質量%)であった。触媒Dの物理性状は、表面
積306m2/g、細孔容積0.72ml/g、平均細
孔径65Åであった。また、触媒Dの酸量は、0.53
mmolであった。The composition of the catalyst D was Pt (0.50% by mass).
—Cl (0.17% by mass) / SiO 2 —Al 2 O 3 (9
9.33% by mass). The physical properties of the catalyst D were a surface area of 306 m 2 / g, a pore volume of 0.72 ml / g, and an average pore diameter of 65 °. The acid amount of the catalyst D is 0.53
mmol.
【0052】〔脱硫処理分解系軽油の水素化処理反応〕 実施例3〜6、比較例3〜6 上記の実施例及び比較例で調製した触媒A〜Dを用い、
以下の要領にて、下記性状の脱硫処理分解系軽油の水素
化処理を行った。すなわち、先ず、触媒を高圧流通式反
応装置の反応器に充填して固定床式触媒層を形成し、下
記の前処理条件で前処理した。次に、反応温度に加熱し
た原料油と水素含有ガスとの混合流体を、反応器の上部
より導入して、下記の条件で水素化反応を進行させ、生
成した生成油とガスの混合流体を反応器の下部より流出
させ、気液分離器で生成油を分離した。[Hydrogenation Reaction of Desulfurization Decomposition Gas Oil] Examples 3 to 6, Comparative Examples 3 to 6 Using the catalysts A to D prepared in the above Examples and Comparative Examples,
In the following manner, the hydrotreating of the desulfurized cracked gas oil having the following properties was performed. That is, first, the catalyst was charged into a reactor of a high-pressure flow reactor to form a fixed-bed catalyst layer, which was pretreated under the following pretreatment conditions. Next, a mixed fluid of the feedstock oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reactor, and the hydrogenation reaction proceeds under the following conditions. The oil was discharged from the lower part of the reactor, and the produced oil was separated by a gas-liquid separator.
【0053】触媒の前処理条件 圧力(水素分圧);4.9MPa 雰囲気 ;水素ガス流通下 温度 ;150℃にて1.5hr維持、次い
で300℃にて2hr維持のステップ昇温 水素化反応条件 反応温度 ;300又は350℃ 圧力(水素分圧);4.9MPa 液空間速度 ;1.5hr−1 水素/オイル比 ;560m3/m3 原料油の性状 油種 ;脱硫処理分解系軽油 比重(15/4℃);0.9078 蒸留性状 ;初留点が177.0℃、50%点
が276.0℃、90%点が341.1℃、終点が35
5.5℃ 硫黄分 ;180質量ppm 飽和炭化水素成分 ;30.9容量% オレフィン成分 ;0.0容量% 一環芳香族成分 ;45.3容量% 二環芳香族成分 ;19.8容量% 三環芳香族成分 ;4.0容量% 全芳香族成分 ;69.1容量% セーボルト色 ;−16以下Catalyst pretreatment conditions Pressure (hydrogen partial pressure); 4.9 MPa atmosphere; hydrogen gas flow temperature; 150 ° C. for 1.5 hr, then 300 ° C. for 2 hr. Reaction temperature: 300 or 350 ° C. Pressure (hydrogen partial pressure): 4.9 MPa Liquid space velocity: 1.5 hr −1 hydrogen / oil ratio: 560 m 3 / m 3 Properties of feed oil Oil type: Desulfurization cracked gas oil Specific gravity ( 0.9078 distillation property; initial boiling point: 177.0 ° C, 50% point: 276.0 ° C, 90% point: 341.1 ° C, end point: 35
5.5 ° C. Sulfur content; 180 mass ppm Saturated hydrocarbon component; 30.9% by volume Olefin component: 0.0% by volume Single aromatic component: 45.3% by volume Bicyclic aromatic component: 19.8% by volume Ring aromatic component: 4.0% by volume Total aromatic component: 69.1% by volume Saybolt color: -16 or less
【0054】反応結果については、以下の方法で解析し
た。300℃又は350℃の反応温度で反応装置をそれ
ぞれ運転し、6日経過した時点でそれぞれの生成油試料
を採取し、その性状を分析した。そして、脱芳香族率
は、水素化反応によって原料油中の芳香族分が低減した
割合と定義し、原料油及び生成油中の芳香族分の分析値
から、数1に示す式により算出した。また、原料油及び
生成油中の芳香族分の分析値と液空間速度とから、数1
に示す式により反応速度定数を算出し、水素化反応の進
行のし易さを評価した。なお、反応速度定数が高い程、
触媒活性が優れていることを示している。これらの結果
は、表1の通りであった。The reaction results were analyzed by the following method. The reactor was operated at a reaction temperature of 300 ° C. or 350 ° C., respectively, and after 6 days, each produced oil sample was collected and analyzed for its properties. The dearomatization rate was defined as the rate at which the aromatic component in the feed oil was reduced by the hydrogenation reaction, and was calculated from the analysis value of the aromatic component in the feed oil and product oil by the formula shown in Equation 1. . Further, based on the analysis value of the aromatic content in the feed oil and the produced oil and the liquid hourly space velocity,
The reaction rate constant was calculated by the formula shown in (1) to evaluate the easiness of the progress of the hydrogenation reaction. In addition, the higher the reaction rate constant,
It shows that the catalyst activity is excellent. These results were as shown in Table 1.
【0055】[0055]
【数1】脱芳香族率(%)=〔(AF−AP) /
AF〕×100 AF:原料油中の芳香族分(容量%) AP:反応生成油中の芳香族分(容量%) 脱芳香族反応速度定数=ln(AF/AP) ×LHS
V LHSV:液空間速度(hr−1)## EQU1 ## Dearomatization rate (%) = [(A F -A P ) /
A F] × 100 A F: feedstock aromatic content of (volume%) A P: aromatics in the reaction product oil (% by volume) dearomatization rate constant = ln (A F / A P ) × LHS
VLHSV: liquid hourly space velocity (hr -1 )
【0056】[0056]
【表1の1】 [Table 1-1]
【0057】[0057]
【表1の2】 [Table 1-2]
【0058】表1から判るように、本発明の触媒A,B
は、同一反応条件下で、比較触媒C,Dに比して、生成
油中の芳香族化合物の含有率が少ない。これは、本発明
の触媒が、560m3/m3と言う高い水素/オイル比
で、しかも従来の水素化処理の際とほぼ同じの水素分圧
及び反応温度の下で、芳香族化合物の水素化反応に対し
て有効であること示している。As can be seen from Table 1, the catalysts A and B of the present invention
Has a lower content of aromatic compounds in the product oil than the comparative catalysts C and D under the same reaction conditions. This is because the catalyst of the present invention has a high hydrogen / oil ratio of 560 m 3 / m 3 and a hydrogen partial pressure and a reaction temperature which are almost the same as those of the conventional hydrotreating. It shows that it is effective for the chemical reaction.
【0059】[0059]
【発明の効果】以上詳述したように、本発明によれば、
次のような効果を奏することができる。 (1)芳香族化合物の高い核水素化活性を有し、しかも
高い耐硫黄性をも兼備するため、炭化水素油中の芳香族
化合物の含有率を、大幅に低減させることができる。 (2)従来の水素化処理条件と同様の条件で、硫黄分が
数100質量ppmの原料油中の芳香族化合物の水素化
処理を効率的に行うことができる。 (3)多量の芳香族化合物を含有するLCO等の炭化水
素油であっても、水素化処理によって芳香族化合物や硫
黄化合物を効率的に減少させることができる。 (4)排気ガス中のパティキュレートの発生を抑制する
ことができる軽油基材であって、しかも硫黄含有量の少
ない軽油基材を、低コストで供給することができる。 (5)反応条件を従来の水素化処理の際の反応条件とほ
ぼ同じとすることがきるため、従来の装置を大幅改造す
ることなく転用できる。As described in detail above, according to the present invention,
The following effects can be obtained. (1) The aromatic compound has high nuclear hydrogenation activity and also has high sulfur resistance, so that the content of the aromatic compound in the hydrocarbon oil can be significantly reduced. (2) Under the same conditions as conventional hydrotreating conditions, the hydrotreating of an aromatic compound in a feedstock having a sulfur content of several hundred ppm by mass can be efficiently performed. (3) Even hydrocarbon oils such as LCO containing a large amount of aromatic compounds can efficiently reduce aromatic compounds and sulfur compounds by hydrogenation. (4) A light oil base material capable of suppressing the generation of particulates in exhaust gas and having a low sulfur content can be supplied at low cost. (5) Since the reaction conditions can be made substantially the same as the reaction conditions in the conventional hydrotreating, the conventional apparatus can be diverted without significant modification.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤川 貴志 埼玉県草加市花栗4−20−2−402 (72)発明者 柴田 行雄 埼玉県草加市花栗4−20−4−403 ──────────────────────────────────────────────────続 き Continued on the front page (72) Takashi Fujikawa, Inventor 4-20-2-402, Hanaguri, Soka City, Saitama Prefecture (72) Inventor, Yukio Shibata 4-20-4-403, Hanaguri, Soka City, Saitama Prefecture
Claims (2)
機酸化物からなる担体に、触媒基準で、元素換算で、
0.1〜8質量%の白金族金属、及び0.01〜5質量
%のゲルマニウムを含有させてなることを特徴とする炭
化水素油の水素化処理用触媒。1. A carrier comprising alumina or an inorganic oxide containing alumina as a main component, on a catalyst basis, in terms of elements,
A catalyst for hydrotreating hydrocarbon oils, comprising 0.1 to 8% by mass of a platinum group metal and 0.01 to 5% by mass of germanium.
MPaの水素分圧、200〜370℃の温度、及び0.
3〜5hr−1の液空間速度の条件で、芳香族化合物を
含む軽油留分の接触反応を行うことを特徴とする軽油の
水素化処理方法。2. In the presence of the catalyst according to claim 1, 3 to 8
Hydrogen partial pressure of MPa, temperature of 200-370 ° C, and 0.
A method for hydrotreating gas oil, comprising conducting a contact reaction of a gas oil fraction containing an aromatic compound under the conditions of a liquid hourly space velocity of 3 to 5 hr -1 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35563796A JPH10180100A (en) | 1996-12-24 | 1996-12-24 | Catalyst for hydrogen treatment of hydrocarbon oil and hydrogen treating method of gas oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35563796A JPH10180100A (en) | 1996-12-24 | 1996-12-24 | Catalyst for hydrogen treatment of hydrocarbon oil and hydrogen treating method of gas oil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10180100A true JPH10180100A (en) | 1998-07-07 |
Family
ID=18444998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35563796A Pending JPH10180100A (en) | 1996-12-24 | 1996-12-24 | Catalyst for hydrogen treatment of hydrocarbon oil and hydrogen treating method of gas oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10180100A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4543348B2 (en) * | 1998-05-07 | 2010-09-15 | イエフペ | Catalysts based on Group VIII noble metals containing silicon and optionally boron, and their use in the hydrotreatment of hydrocarbon feeds |
-
1996
- 1996-12-24 JP JP35563796A patent/JPH10180100A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4543348B2 (en) * | 1998-05-07 | 2010-09-15 | イエフペ | Catalysts based on Group VIII noble metals containing silicon and optionally boron, and their use in the hydrotreatment of hydrocarbon feeds |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6517631B2 (en) | Method of producing lubricating base oil | |
JP3786007B2 (en) | Catalyst for hydrotreating aromatic compounds in hydrocarbon oils | |
EP2554259B1 (en) | Hydroisomerization catalyst, method for producing same, method for dewaxing hydrocarbon oil, method for producing hydrocarbon, and method for producing lubricant base oil | |
TWI466995B (en) | Integrated hydrocracking and dewaxing of hydrocarbons | |
KR100837195B1 (en) | Catalyst comprising a silica-alumina and its use in hydrocarbon feedstock hydrocracking | |
JP6228013B2 (en) | Method for producing lubricating base oil | |
US4218308A (en) | Hydrogenation catalyst | |
EP2384815A1 (en) | Hydrogenation isomerization catalyst, method for producing same, method for dewaxing hydrocarbon oil, and method for producing lubricant base oil | |
US7993513B2 (en) | Two-step process for desulphurizing olefinic gasolines comprising arsenic | |
WO2001015805A1 (en) | Catalyst for hydrotreating of gas oil and method for hydrotreating of gas oil | |
JP2000051695A (en) | Catalyst based on precious metals of viii group including silicon, and boron depending on occasion and usage of the catalyst in hydrogenation treatment of charge stock hydrocarbons | |
JP4736337B2 (en) | Catalyst for improving the pour point of hydrocarbon feedstock and use thereof | |
US9273255B2 (en) | Production of middle distillates from an effluent originating from fischer-tropsch synthesis comprising a step of reducing the content of oxygenated compounds | |
CN106552646B (en) | Supported catalyst, preparation method and application thereof, and method for catalyzing ring opening of naphthenic hydrocarbon by hydrogenolysis | |
JP3959121B2 (en) | Process for the hydrogenation, hydroisomerization and / or hydrodesulfurization of a feed containing sulfur pollutants | |
JP3512317B2 (en) | Catalyst for hydrotreating hydrocarbon oil and method for hydrotreating light oil | |
JP3537979B2 (en) | Catalyst for hydrotreating hydrocarbon oil and method for hydrotreating light oil | |
JP2001179105A (en) | Catalyst for hydrodesulfurization and isomerization of light hydrocarbon oil and method of producing the same | |
JP3770679B2 (en) | Hydrocarbon hydrotreating catalyst and gas oil hydrotreating method | |
JPH10180100A (en) | Catalyst for hydrogen treatment of hydrocarbon oil and hydrogen treating method of gas oil | |
WO2008085517A1 (en) | Selective hydrocracking process using beta zeolite | |
JP5220456B2 (en) | Decomposition method of atmospheric distillation residue oil | |
JP3512326B2 (en) | Hydroprocessing of gas oil | |
JP4418977B2 (en) | Catalysts usable in the hydrogenation of aromatic compounds in hydrocarbon feeds containing sulfur compounds. | |
JP4236170B2 (en) | Method for producing gasoline base material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060627 |