JPH10180077A - Automatic diluting feeder for raw liquid to be utilized as agricultural chemicals - Google Patents

Automatic diluting feeder for raw liquid to be utilized as agricultural chemicals

Info

Publication number
JPH10180077A
JPH10180077A JP8342037A JP34203796A JPH10180077A JP H10180077 A JPH10180077 A JP H10180077A JP 8342037 A JP8342037 A JP 8342037A JP 34203796 A JP34203796 A JP 34203796A JP H10180077 A JPH10180077 A JP H10180077A
Authority
JP
Japan
Prior art keywords
driven
raw liquid
pump
water
metering pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8342037A
Other languages
Japanese (ja)
Other versions
JP4326600B2 (en
Inventor
Akio Suzuki
明夫 鈴木
Tatsuo Akamatsu
達雄 赤松
Eiichi Sugano
栄一 菅野
Hitoshi Sugano
均 菅野
Masaru Suematsu
優 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Z KOGYO KK
Sumitomo Electric Industries Ltd
Taiyo Kogyo Co Ltd
Original Assignee
Z KOGYO KK
Sumitomo Electric Industries Ltd
Taiyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Z KOGYO KK, Sumitomo Electric Industries Ltd, Taiyo Kogyo Co Ltd filed Critical Z KOGYO KK
Priority to JP34203796A priority Critical patent/JP4326600B2/en
Publication of JPH10180077A publication Critical patent/JPH10180077A/en
Application granted granted Critical
Publication of JP4326600B2 publication Critical patent/JP4326600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)
  • Accessories For Mixers (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain particularly even a trace quantity of raw liquid having the preset dilution magnification. SOLUTION: In this automatic diluting feeder A for raw liquid, a pump mechanism P consists of a water pressure driven fixed delivery pump 20 driven by pressure of water flowing in from a water supply main pipe 1 and a raw liquid pressure driven pump 40 driven by pressure of raw liquid R discharged from the water pressure driven fixed quantity pump 20. A raw liquid receiving part 27 of the water pressure driven fixed delivery pump 20 and a raw liquid storing part 47 of the raw liquid pressure driven fixed delivery pump 40 are made to communicate with each other through a communicative path 39 to make adjustment so that the stored quantity of the raw liquid pressure driven fixed delivery pump 40 may be smaller than the discharge quantity of the raw liquid R discharged from the water pressure driven fixed delivery pump 20, and the difference between the discharge quantity of the raw material R from the water pressure driven fixed delivery pump 20 and the stored quantity of the raw liquid R by the raw liquid pressure driven fixed delivery pump 40 is poured into the water supply main pipe 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原液の自動希釈供
給装置に係り、養液栽培などにおける液体肥料や農薬や
その他薬剤の希釈に利用するための原液の自動希釈供給
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for automatically diluting and supplying an undiluted liquid, and more particularly to an apparatus for automatically diluting and supplying a undiluted liquid for use in diluting liquid fertilizers, pesticides and other chemicals in hydroponics.

【0002】[0002]

【従来の技術】近年、農園芸分野において養液栽培が普
及し、そのための給液方法は、「養液循環方式」と「か
け流し方式」とに大きく分類される。養液栽培のかけ流
し方式による給液方式を採用した場合、供給される水
に、植物の育成に必要な養分を供給時に溶解させること
が一般的に行われている。その一つの手段として、供給
される水量を検出し、その水量に応じて応動するポンプ
により、水に液体肥料を定量ずつ混入する自動希釈供給
装置がある。
2. Description of the Related Art In recent years, nutrient solution cultivation has become widespread in the field of agriculture and horticulture, and liquid supply methods therefor are broadly classified into a "nutrient solution circulating method" and a "flowing method". In the case of adopting a liquid supply method based on a pouring method of nutrient cultivation, it is common practice to dissolve nutrients necessary for growing plants in supplied water at the time of supply. As one of the means, there is an automatic dilution and supply device that detects the amount of supplied water and mixes liquid fertilizer into the water by a fixed amount by a pump that responds according to the amount of water.

【0003】この種の自動希釈供給装置としては、実公
昭63−5770号公報や実公平1−33150号公報
に開示されている。図7は、前述の公報に開示された自
動希釈供給装置の外観を示す斜視図、図8は、この装置
に利用されるポンプ機構を示す断面図である。これら図
面において、1は給水本管、2は給水本管を流れる水量
を計測する流量計、3は給水本管1から分岐した第1の
流入管、4は第1の流入管3に接続された三方電磁弁、
5は三方電磁弁4から延びる第2の流入管、6は三方電
磁弁4から延びる排水管、7は第2の流入管5に接続さ
れた水圧駆動定量ポンプ、80は液体肥料8の入った原
液容器、9は原液容器80と水圧駆動定量ポンプ7とを
接続した吸入管、10は水圧駆動定量ポンプ7と給水本
管1とを接続した原液供給管、11は給水本管1に液体
肥料8を供給する前記原液供給管10の注入部位であ
る。
[0003] This type of automatic dilution supply apparatus is disclosed in Japanese Utility Model Publication No. 63-5770 and Japanese Utility Model Publication No. 1-350150. FIG. 7 is a perspective view showing the appearance of the automatic dilution and supply device disclosed in the above-mentioned publication, and FIG. 8 is a sectional view showing a pump mechanism used in this device. In these drawings, 1 is a water supply main pipe, 2 is a flow meter for measuring the amount of water flowing through the water supply main pipe, 3 is a first inflow pipe branched from the water supply main pipe 1, and 4 is connected to a first inflow pipe 3. Three-way solenoid valve,
5 is a second inflow pipe extending from the three-way solenoid valve 4, 6 is a drain pipe extending from the three-way solenoid valve 4, 7 is a hydraulically driven metering pump connected to the second inflow pipe 5, 80 is a liquid fertilizer 8 A stock solution container, 9 is a suction pipe connecting the stock solution container 80 and the hydraulic drive metering pump 7, 10 is a stock solution supply pipe connecting the hydraulic drive metering pump 7 and the water main 1, and 11 is a liquid fertilizer for the water main 1. 8 is an injection site of the undiluted solution supply pipe 10 for supplying 8.

【0004】このような構成において、給水本管1内を
一定の水が流れる毎に、流量計2から送られる電気信号
によって三方電磁弁4を切替え、三方電磁弁4に連なる
第2の流入管5を通じて、水圧駆動式定量ポンプ7に給
水本管1の圧力水を、いわゆる駆動水として与える。ま
た、流量計2から送出される電気信号の消滅により、三
方電磁弁4は、第2の流入管5と排水管6との接続に切
替える。その結果、水圧駆動定量ポンプ7内の駆動水を
排水管6から外部に排出する。このような給排水動作
は、給水本管1内に水が流されている間、連続して行わ
れる。そして、ポンプ7の水受入れ部101内に駆動水
が供給されると、ポンプ7内の原液受入れ部102に向
けてピストン部100が前進し、ピストン部100の前
部に設けられた隔膜103が前方に移動する。その結
果、原液受入れ部102内の液体肥料8を、隔膜103
の移動距離に従った定量だけ吐出させ、定量の液体肥料
8を原液供給管10を介して給水本管1内に圧入する。
その後、三方電磁弁4の切替えにより、水受入れ部10
1から駆動水が排出されると、ばね104によりピスト
ン部100が後退し、そのとき、原液容器80から吸入
管9を経て原液受入れ部102内に定量の液体肥料8が
供給される。このような動作を繰り返し行うことで、給
水本管1内を流れる一定量の水に対して一定量の液体肥
料8を溶解させることができ、常に安定した希釈倍率を
得ることができる。
In such a configuration, each time a certain amount of water flows in the water supply main pipe 1, the three-way solenoid valve 4 is switched by an electric signal sent from the flow meter 2, and a second inflow pipe connected to the three-way solenoid valve 4 is provided. 5, pressurized water of the water supply main pipe 1 is supplied to a hydraulic drive metering pump 7 as so-called drive water. In addition, the three-way solenoid valve 4 switches to the connection between the second inflow pipe 5 and the drain pipe 6 by the disappearance of the electric signal sent from the flow meter 2. As a result, the drive water in the hydraulic drive metering pump 7 is discharged from the drain pipe 6 to the outside. Such a water supply / drain operation is continuously performed while water is flowing in the water supply main pipe 1. When the driving water is supplied into the water receiving portion 101 of the pump 7, the piston portion 100 advances toward the undiluted solution receiving portion 102 in the pump 7, and the diaphragm 103 provided at the front portion of the piston portion 100 is moved. Move forward. As a result, the liquid fertilizer 8 in the undiluted solution receiving unit 102 is
Of the liquid fertilizer 8 is injected into the water supply main pipe 1 via the undiluted liquid supply pipe 10.
Thereafter, by switching the three-way solenoid valve 4, the water receiving section 10
When the driving water is discharged from 1, the piston portion 100 is retracted by the spring 104, and at that time, a fixed amount of the liquid fertilizer 8 is supplied from the stock solution container 80 into the stock solution receiving portion 102 via the suction pipe 9. By repeating such an operation, a certain amount of liquid fertilizer 8 can be dissolved in a certain amount of water flowing in the water supply main pipe 1, and a stable dilution ratio can always be obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
原液の自動希釈供給装置は、上述したように構成されて
いるため、次のような課題が存在していた。すなわち、
従来の装置を用いて高倍率の希釈を行おうとすると、ピ
ストン部100の移動量を小さくして、水圧駆動定量ポ
ンプ7からの吐出量を小さくする必要がある。その場
合、原液受入れ部102に気泡やゴミ等が入ると水圧駆
動定量ポンプ7内の隔膜103に作動異常が起こり易
く、所望の液体肥料8の希釈倍率を得ることができない
ばかりか、気泡の混入によりエアーロックが生じ、液体
肥料8の吸入/吐出が不可能になることもある。また、
吐出量の小さな電磁ポンプ等が市販されているが、少量
吐出のものでは、吐出圧力が小さいため給水本管1の水
圧に打ち勝って液体肥料8を注入することができない。
また高圧力の電磁ポンプは形状も大きく高価であるため
実用的ではないという問題点もあった。
However, the conventional automatic diluting and feeding apparatus for a stock solution has the following problems because it is configured as described above. That is,
In order to perform high-magnification dilution using a conventional apparatus, it is necessary to reduce the amount of movement of the piston unit 100 and the amount of discharge from the hydraulically driven metering pump 7. In this case, if air bubbles or dust enters the undiluted solution receiving section 102, the malfunction of the diaphragm 103 in the hydraulic drive metering pump 7 is likely to occur, so that not only the desired dilution ratio of the liquid fertilizer 8 cannot be obtained, but also the mixing of air bubbles. As a result, an air lock may be generated, and suction / discharge of the liquid fertilizer 8 may not be possible. Also,
Electromagnetic pumps and the like with a small discharge amount are commercially available, but those with a small discharge amount cannot inject the liquid fertilizer 8 overcoming the water pressure of the water supply main pipe 1 because the discharge pressure is small.
Further, the high-pressure electromagnetic pump has a problem that it is not practical because it is large and expensive.

【0006】本発明は、上述の課題を解決するためにな
されたもので、特に、微量の原液でも設定通りの希釈倍
率を得ることを可能にした原液の自動希釈供給装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and in particular, has as its object to provide an automatic dilution and supply apparatus for a stock solution that can obtain a dilution ratio as set even with a very small stock solution. And

【0007】[0007]

【課題を解決するための手段】請求項1の発明におい
て、農業に利用される原液の自動希釈供給装置は、給水
本管の通過流量を検出する流量計と、流量計の検出信号
によって開閉する三方弁と、この三方弁の開閉によって
駆動するポンプ機構と、ポンプ機構に原液を供給する原
液容器と、給水本管から分岐し、三方弁を経由してポン
プ機構に接続された流入路とを備え、ポンプ機構から吐
出する所定量の原液を給水本管内に流入させて、給水本
管内を流れる所定量の水で所定量の原液を希釈する自動
希釈装置において、ポンプ機構は、給水本管から流入す
る水の圧力で駆動する水圧駆動定量ポンプと、水圧駆動
定量ポンプから吐出する原液の圧力で駆動する原液圧駆
動定量ポンプとからなり、水圧駆動定量ポンプは、流入
路からの水圧に応動すると共に前後に隔膜をもった主動
ピストン部と、主動ピストン部の後方に位置して、主動
ピストン部の移動距離を規制する主動側の移動距離調整
手段と、主動ピストン部の前方に位置し、原液容器から
の原液を受け入れる原液受入れ部と、主動ピストン部の
後方に位置し、流入路からの水を受け入れる水受入れ部
と、主動ピストン部を主動側の移動距離調整手段に向け
て付勢するバネ部材とを有し、原液圧駆動定量ポンプ
は、原液受入れ部から吐出した原液の圧力に応動すると
共に前後に隔膜をもった従動ピストン部と、従動ピスト
ン部の後方に位置して、従動ピストン部の移動距離を規
制する従動側の移動距離調整手段と、従動ピストン部の
前方に位置し、水圧駆動定量ポンプから吐出する原液を
貯留する原液貯留部と、従動ピストン部を従動側の移動
距離調整手段に向けて付勢するバネ部材とを有し、水圧
駆動定量ポンプの原液受入れ部と原液圧駆動定量ポンプ
の原液貯留部とを連通路を介して連結させ、水圧駆動定
量ポンプから吐出する原液の吐出量に対して、原液圧駆
動定量ポンプの貯留量が小さくなるように調整し、水圧
駆動定量ポンプからの原液の吐出量と原液圧駆動定量ポ
ンプで原液を貯留する貯留量との差額を、給水本管に連
通した原液供給路に流し込むことを特徴とする。
According to the first aspect of the present invention, an apparatus for automatically diluting and supplying an undiluted solution used for agriculture is opened and closed by a flow meter for detecting a flow rate passing through a water supply main pipe and a detection signal of the flow meter. A three-way valve, a pump mechanism driven by opening and closing the three-way valve, a stock solution container for supplying a stock solution to the pump mechanism, and an inflow passage branched from the water supply main pipe and connected to the pump mechanism via the three-way valve. In an automatic diluting device provided with a predetermined amount of undiluted solution discharged from a pump mechanism flowing into a water supply main pipe and diluting a predetermined amount of the undiluted solution with a predetermined amount of water flowing through the water supply main pipe, the pump mechanism is provided from the water supply main pipe. It consists of a hydraulically driven metering pump driven by the pressure of the inflowing water and a stock hydraulically driven metering pump driven by the pressure of the stock solution discharged from the hydraulically driven metering pump. The hydraulically driven metering pump responds to the water pressure from the inflow passage. A driving piston having a diaphragm in front and back, a driving distance adjusting means on the driving side which is located behind the driving piston and regulates a moving distance of the driving piston, and which is located in front of the driving piston; A stock solution receiving portion for receiving a stock solution from a stock solution container, a water receiving portion located behind the driving piston portion for receiving water from the inflow passage, and biasing the driving piston portion toward the moving distance adjusting means on the driving side. A spring member, and a stock solution pressure driven metering pump, which is responsive to the pressure of the stock solution discharged from the stock solution receiving portion and has a driven piston portion having a diaphragm in front and back, and a driven piston portion located behind the driven piston portion, A moving distance adjusting means on the driven side that regulates the moving distance of the unit, a stock solution storage unit that is located in front of the driven piston unit and stores the stock solution discharged from the hydraulically driven metering pump, and a driven piston unit A spring member that urges the driven-side moving distance adjusting means, and connects the stock solution receiving portion of the hydraulically driven metering pump and the stock solution storage portion of the hydraulically driven metering pump via a communication path, and is hydraulically driven. Adjust the amount of stock solution discharged from the metering pump to be smaller than the amount of stock solution discharged from the metering pump, and store the stock solution with the amount of stock solution discharged from the hydraulically driven metering pump and the metering pump driven by stock solution. It is characterized in that the difference from the stored amount is poured into a stock solution supply passage communicating with a water supply main pipe.

【0008】この原液の自動希釈供給装置においては、
給水本管内を流れる流量を流量計で検出した後、この検
出信号に基づいて三方弁を切り替えることで、流入路を
介して、給水本管から流入した水は、水圧駆動定量ポン
プの水受入れ部内に取り込まれ、水の圧力により主動ピ
ストン部が原液受入れ部に向けて前進し、主動ピストン
部の前部に設けられた隔膜が前方に移動する。その結
果、原液受入れ部内の原液を、隔膜の移動距離に従った
定量だけ吐出させ、定量の原液を原液受入れ部から吐出
させると同時に、この原液を、連通路を介して、原液圧
駆動定量ポンプの原液貯留部内に貯留させる。このと
き、水圧駆動定量ポンプから吐出する原液の吐出量に対
して、原液圧駆動定量ポンプの貯留量が僅かに小さくな
るように調整された場合、水圧駆動定量ポンプからの原
液の吐出量と、原液圧駆動定量ポンプで原液を貯留する
貯留量とに僅かな差額が発生する。そして、この差額分
の原液を、給水本管に連通した原液供給路に流し込むこ
とで、給水本管内を流れる一定量の水に対して微量の原
液を溶解させることができる。また、流量計から送出さ
れる電気信号の消滅により、三方弁を切り替える。その
結果、水圧駆動定量ポンプにおいて水受入れ部からの排
水が達成され、ばね力により、主動ピストン部が移動距
離調整手段で規制される位置まで後退する。そのとき、
原液圧駆動定量ポンプの原液貯留部内に貯留されていた
原液が、連通路を介して水圧駆動定量ポンプの原液受入
れ部内に引き戻されると同時に、差額分の原液が原液容
器から補充され、原液受入れ部内が所定量の原液で満た
されることになる。このような動作を繰り返し行うこと
で、ポンプ機構による所望の高倍率の希釈液が得られ
る。また、ポンプ機構に採用されている水圧駆動定量ポ
ンプと原液圧駆動定量ポンプとは略同等な構成を有して
いるので、装置自体の構成が簡単になり、低コスト化を
可能にする。
[0008] In this automatic dilution and supply apparatus for a stock solution,
After detecting the flow rate flowing in the water supply main line with the flow meter, the three-way valve is switched based on this detection signal, so that the water flowing in from the water supply main line through the inflow passage is supplied to the water receiving portion of the hydraulic pressure-driven metering pump. The driving piston moves forward toward the undiluted liquid receiving part by the pressure of the water, and the diaphragm provided at the front of the driving piston moves forward. As a result, the undiluted solution in the undiluted solution receiving section is discharged by a fixed amount according to the moving distance of the diaphragm, and a fixed amount of undiluted solution is discharged from the undiluted solution receiving portion. In the undiluted solution storage section. At this time, the discharge amount of the undiluted solution from the hydraulically driven metering pump is adjusted with respect to the discharge amount of the undiluted solution discharged from the hydraulically driven metered pump, when the storage amount of the undiluted hydraulically driven metering pump is adjusted to be slightly smaller. There is a slight difference between the amount of the stock solution stored by the stock solution pressure driven metering pump and the amount of stock. Then, by flowing the undiluted solution corresponding to the difference into the undiluted solution supply passage communicating with the water supply main, a trace amount of the undiluted solution can be dissolved in a certain amount of water flowing in the water supply main. Further, the three-way valve is switched by the disappearance of the electric signal sent from the flow meter. As a result, drainage from the water receiving portion is achieved in the hydraulic drive metering pump, and the driven piston portion retreats to a position regulated by the movement distance adjusting means by the spring force. then,
The undiluted solution stored in the undiluted solution storage section of the undiluted pressure driven pump is returned to the undiluted solution receiving section of the hydraulically driven fixed-quantity pump via the communication passage, and at the same time, the undiluted solution corresponding to the difference is replenished from the undiluted solution container to the undiluted solution receiving section. Is filled with a predetermined amount of the stock solution. By repeating such an operation, a desired high-magnification diluent is obtained by the pump mechanism. In addition, since the hydraulic drive metering pump and the stock fluid pressure metering pump employed in the pump mechanism have substantially the same configuration, the configuration of the device itself is simplified and the cost can be reduced.

【0009】この場合、選択的に駆動する複数個の原液
圧駆動定量ポンプを並列に配置すると好ましい。このよ
うな構成を採用した場合、それぞれの原液圧駆動定量ポ
ンプの原液貯留部を、異なった許容量に設定しておくこ
とで、希釈倍率を変える必要性に迫られるごとに各移動
距離調整手段を調整せずとも、異なった倍率の希釈を簡
単に作り出すことができる。
In this case, it is preferable to arrange a plurality of raw liquid pressure driven metering pumps that are selectively driven in parallel. In the case of adopting such a configuration, by setting the stock solution storage sections of the stock solution pressure driven metering pumps to different allowable amounts, each moving distance adjusting means is required each time the necessity of changing the dilution ratio is approached. It is possible to easily create different dilutions of the dilution without having to adjust.

【0010】また、水圧駆動定量ポンプと原液圧駆動定
量ポンプとを内部にもった一体型のポンプ機構を備える
と好ましい。このような構成を採用した場合、装置の取
り扱いが容易になり、設置場所に応じた形状にすること
ができる。
Further, it is preferable to provide an integrated pump mechanism having a water pressure driven metering pump and a stock pressure driven metering pump inside. When such a configuration is adopted, handling of the device is facilitated, and the device can be formed in a shape according to the installation location.

【0011】[0011]

【発明の実施の形態】以下、図面と共に本発明による原
液の自動希釈供給装置の好適な実施形態について詳細に
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of an automatic stock solution diluting and supplying apparatus according to the present invention will be described below in detail with reference to the drawings.

【0012】(第1の実施形態)図1は、本実施形態に
係る原液の自動希釈供給装置を示す斜視図である。同図
に示す原液の自動希釈供給装置Aは、給水本管1に一定
の流量の水が流れる毎に、その都度開閉する電気接点
(図示せず)をもった流量計2と、流量計2の電気接点
に連動するリレー(図示せず)により開閉する三方電磁
弁4とを有している。この三方電磁弁4には、流量計2
の上流側において給水本管1から分岐した第1の流入路
(以下、「第1の流入管」という)3と、三方電磁弁4
から後述の水圧駆動定量ポンプ20に延びる第2の流入
路(以下、「第2の流入管」という)5と、三方電磁弁
4から外部に向けて延びる排水路(以下、「排水管」と
いう)6とが接続されている。
(First Embodiment) FIG. 1 is a perspective view showing an apparatus for automatically diluting and supplying a stock solution according to this embodiment. The undiluted solution automatic dilution supply apparatus A shown in FIG. 1 includes a flow meter 2 having an electric contact (not shown) that opens and closes each time a constant flow of water flows through the water supply main pipe 1, and a flow meter 2. And a three-way solenoid valve 4 that is opened and closed by a relay (not shown) interlocked with the electrical contacts of the above. The three-way solenoid valve 4 has a flow meter 2
A first inflow path (hereinafter, referred to as a “first inflow pipe”) 3 branched from the water supply main pipe 1 on the upstream side of the
, A second inflow path (hereinafter, referred to as “second inflow pipe”) 5 extending to a hydraulic drive metering pump 20 described below, and a drainage path (hereinafter, referred to as “drain pipe”) extending from the three-way solenoid valve 4 to the outside. 6) are connected.

【0013】第2の流入管5には、給水本管1から流入
する水の圧力で駆動してポンプ機構Pの一部を構成する
水圧駆動定量ポンプ20が接続されている。この水圧駆
動定量ポンプ20は、図2に示すように、第2の流入管
5からの水圧に応動する主動ピストン部21を有し、こ
の主動ピストン部21は、円筒状のケーシング22内に
装填されていると共に、前後にヘッド23,24を有し
ている。なお、前後のヘッド23,24は連結竿30に
よって連結されている。更に、主動ピストン部21は前
後一対の隔壁25,26を有し、前側の隔壁25の外端
はケーシング22の内壁面に固定され、その中央部分は
前側のヘッド23の端部に固定されている。また、後側
の隔壁26の外端はケーシング22の内壁面に固定さ
れ、その中央部分は後側のヘッド24の端部に固定され
ている。従って、このような隔壁25,26を利用する
ことで、主動ピストン部21は、ケーシング22に対し
てシールされながら前後に移動することができる。
The second inflow pipe 5 is connected to a hydraulically driven metering pump 20 which is driven by the pressure of the water flowing from the water supply main pipe 1 and forms a part of the pump mechanism P. As shown in FIG. 2, the hydraulic drive metering pump 20 has a driving piston 21 that responds to the water pressure from the second inflow pipe 5, and the driving piston 21 is loaded in a cylindrical casing 22. And has heads 23 and 24 at the front and back. The front and rear heads 23 and 24 are connected by a connecting rod 30. Further, the driving piston portion 21 has a pair of front and rear partitions 25, 26, the outer end of the front partition 25 is fixed to the inner wall surface of the casing 22, and the central portion thereof is fixed to the end of the front head 23. I have. The outer end of the rear partition wall 26 is fixed to the inner wall surface of the casing 22, and the central portion is fixed to the end of the rear head 24. Therefore, by using such partition walls 25 and 26, the driving piston portion 21 can move back and forth while being sealed with respect to the casing 22.

【0014】更に、ケーシング22内において、前側の
ヘッド23の前方には、この移動を許容する容積をもっ
た原液受入れ部27が形成され、原液受入れ部27には
吸入管9の一端が接続され、この吸入管9の他端は、農
業に利用される原液(例えば、液体肥料や農薬やその他
の薬剤)Rを収容した原液容器80に接続されている
(図1参照)。従って、主動ピストン部21の後退によ
り、原液受入れ部27内には原液Rを充填させることが
できる。また、ケーシング22内において、後側のヘッ
ド24の後方にも、この移動を許容する容積をもった水
受入れ部28が形成され、この水受入れ部28には第2
の流入管5が接続されている。従って、第2の流入管5
からの水を受け入れることができると共に、第2の流入
管5から流入した水の圧力により、主動ピストン部21
を前進させることができる。
Further, in the casing 22, in front of the head 23 on the front side, a stock solution receiving portion 27 having a capacity to allow this movement is formed, and one end of the suction pipe 9 is connected to the stock solution receiving portion 27. The other end of the suction pipe 9 is connected to a stock solution container 80 containing a stock solution R used for agriculture (for example, liquid fertilizer, pesticide or other chemicals) (see FIG. 1). Therefore, the stock solution R can be filled in the stock solution receiving portion 27 by the retreat of the driving piston portion 21. In the casing 22, a water receiving portion 28 having a capacity to allow this movement is also formed behind the rear head 24, and the water receiving portion 28
Are connected. Therefore, the second inflow pipe 5
From the second piston 5 by the pressure of the water flowing from the second inflow pipe 5.
Can be advanced.

【0015】ケーシング22内には、主動ピストン部2
1を水受入れ部28側に向けて付勢するバネ部材(例え
ば、螺旋バネ)29が設けられ、このバネ部材29は、
ケーシング22の内壁面から内方に突出した突起部22
aと主動ピストン部21のヘッド24との間に装填され
ている。更に、ケーシング22には、主動ピストン部2
1の水受入れ部28側の移動距離を規制する主動側の移
動距離調整手段31が設けられている。この移動距離調
整手段31は、ダイヤルスクリューを構成すると共に、
水受入れ部28内に突出し且つケーシング22に対して
所定のピッチで螺着されたネジ部31aと、ネジ部31
aを所定の方向に回すための操作部31bとからなる。
従って、バネ部材29の付勢力で戻ってきた主動ピスト
ン部21をネジ部31aに突き当てることができる。そ
して、操作部31bを所定量だけ回転させ、ネジ部31
aが水受入れ部28内に突出する量を変えることで、主
動ピストン部21の移動量を変えることができる。な
お、ケーシング22には、主動ピストン部21の往復時
の空気抵抗を無くすための空気抜き穴37が設けられて
いる。
In the casing 22, the driving piston 2 is provided.
A spring member (for example, a helical spring) 29 for urging the first member 1 toward the water receiving portion 28 is provided.
Projection 22 projecting inward from the inner wall surface of casing 22
a and the head 24 of the driving piston 21. Further, the driving piston portion 2 is provided on the casing 22.
There is provided a moving distance adjusting means 31 on the driving side which regulates the moving distance on the side of the first water receiving portion 28. This moving distance adjusting means 31 constitutes a dial screw,
A screw portion 31a projecting into the water receiving portion 28 and screwed at a predetermined pitch to the casing 22;
and an operation unit 31b for turning the "a" in a predetermined direction.
Therefore, the driving piston portion 21 returned by the urging force of the spring member 29 can be abutted against the screw portion 31a. Then, the operation part 31b is rotated by a predetermined amount, and the screw part 31 is rotated.
By changing the amount of “a” protruding into the water receiving portion 28, the amount of movement of the driving piston portion 21 can be changed. The casing 22 is provided with an air vent hole 37 for eliminating air resistance when the driving piston 21 reciprocates.

【0016】前述した水圧駆動定量ポンプ20には、原
液受入れ部27から吐出する原液Rの圧力で駆動してポ
ンプ機構Pの一部を構成する原液圧駆動定量ポンプ40
が、連通路(以下、「連通管」という)39を介して連
結されている。この原液圧駆動定量ポンプ40は、水圧
駆動定量ポンプ20と略同様な構成を有している。
The above-mentioned hydraulically driven metering pump 20 includes a stock solution pressure driven pump 40 which is driven by the pressure of the stock solution R discharged from the stock solution receiving portion 27 and forms a part of the pump mechanism P.
Are connected via a communication passage (hereinafter, referred to as a “communication pipe”) 39. The stock hydraulic drive metering pump 40 has substantially the same configuration as the hydraulic drive metering pump 20.

【0017】原液圧駆動定量ポンプ40は、連通管39
からの原液Rの圧力に応動する従動ピストン部41を有
し、この従動ピストン部41は、円筒状のケーシング4
2内に装填されると共に、前後にヘッド43,44を有
している。なお、前後のヘッド43,44は連結竿50
によって連結されている。更に、従動ピストン部41は
前後一対の隔壁45,46を有し、前側の隔壁45の外
端はケーシング42の内壁面に固定され、その中央部分
は前側のヘッド43の端部に固定されている。また、後
側の隔壁46の外端はケーシング42の内壁面に固定さ
れ、その中央部分は後側のヘッド44の端部に固定され
ている。従って、このような隔壁45,46を利用する
ことで、従動ピストン部41は、ケーシング42に対し
てシールされながら前後に移動することができる。
The stock pressure driven metering pump 40 includes a communication pipe 39.
A driven piston portion 41 that responds to the pressure of the undiluted solution R from the cylinder, and the driven piston portion 41
2 and has heads 43 and 44 in front and back. The front and rear heads 43 and 44 are connected to a connecting rod 50.
Are linked by Further, the driven piston portion 41 has a pair of front and rear partitions 45 and 46, an outer end of the front partition 45 is fixed to an inner wall surface of the casing 42, and a central portion thereof is fixed to an end of the front head 43. I have. Further, the outer end of the rear partition wall 46 is fixed to the inner wall surface of the casing 42, and the central portion thereof is fixed to the end of the rear head 44. Therefore, by using such partition walls 45 and 46, the driven piston portion 41 can move back and forth while being sealed with respect to the casing 42.

【0018】更に、ケーシング42内において、前側の
ヘッド43の前方には、この移動を許容する容積をもっ
た原液貯留部47が形成され、原液貯留部47には連通
管39が接続されている。従って、従動ピストン部41
の後退により、原液貯留部47内には、水圧駆動定量ポ
ンプ20から吐出した原液Rが貯留される。また、後側
のヘッド44の後方にも、この移動を許容する容積をも
ったヘッド受入れ部48が形成され、このヘッド受入れ
部48は、空気管52を介して外部に開放されている。
従って、原液貯留部47内に原液Rを充填させること
で、従動ピストン部41を後退させることができる。
Further, in the casing 42, in front of the front head 43, a stock solution storage 47 having a capacity to allow this movement is formed, and a communication pipe 39 is connected to the stock solution storage 47. . Therefore, the driven piston portion 41
By retreating, the stock solution R discharged from the hydraulic drive metering pump 20 is stored in the stock solution storage unit 47. A head receiving portion 48 having a capacity to allow this movement is also formed behind the rear head 44, and the head receiving portion 48 is opened to the outside via an air pipe 52.
Accordingly, by filling the stock solution R into the stock solution storage unit 47, the driven piston unit 41 can be retracted.

【0019】ケーシング42内には、従動ピストン部4
1をヘッド受入れ部48側に向けて付勢するバネ部材
(例えば、螺旋バネ)49が設けられ、このバネ部材4
9は、ケーシング42の内壁面から内方に突出した突起
部42aと従動ピストン部41のヘッド44との間に装
填されている。更に、ケーシング42には、従動ピスト
ン部41の移動距離を規制する従動側移動距離調整手段
51が設けられている。この移動距離調整手段51は、
ダイヤルスクリューを構成すると共に、ヘッド受入れ部
48内に突出し且つケーシング42に対して所定のピッ
チで螺着されたネジ部51aと、ネジ部51aを所定の
方向に回すための操作部51bとからなる。なお、ケー
シング42には、従動ピストン部41の往復時の空気抵
抗を無くすための空気抜き穴38が設けられている。
In the casing 42, the driven piston 4
A spring member (for example, a helical spring) 49 for biasing the spring member 1 toward the head receiving portion 48 is provided.
Reference numeral 9 is mounted between the protrusion 42 a projecting inward from the inner wall surface of the casing 42 and the head 44 of the driven piston 41. Further, the casing 42 is provided with driven-side moving distance adjusting means 51 for regulating the moving distance of the driven piston portion 41. This moving distance adjusting means 51
A screw part 51a that constitutes a dial screw, projects into the head receiving part 48, and is screwed to the casing 42 at a predetermined pitch, and an operation part 51b for turning the screw part 51a in a predetermined direction. . The casing 42 is provided with an air vent hole 38 for eliminating air resistance when the driven piston portion 41 reciprocates.

【0020】従って、バネ部材49の付勢力で戻ってき
た従動ピストン部41をネジ部51aの端面に突き当て
ることができる。そして、操作部51bを所定量だけ回
転させ、ネジ部51aがヘッド受入れ部48内に突出す
る量を変えることで、従動ピストン部41の移動量を変
えることができる。更に、連通管39の途中には原液供
給路(以下、「原液供給管」という)53が接続され、
この原液供給路53は給水本管1に接続されている。従
って、原液貯留部47で受入れられなかった余剰な原液
Rは、原液供給路53を通って給水本管1に流れ込むこ
とになる。
Therefore, the driven piston portion 41 returned by the urging force of the spring member 49 can abut against the end face of the screw portion 51a. The amount of movement of the driven piston portion 41 can be changed by rotating the operation portion 51b by a predetermined amount and changing the amount by which the screw portion 51a projects into the head receiving portion 48. Further, a stock solution supply path (hereinafter, referred to as “stock solution supply pipe”) 53 is connected in the middle of the communication pipe 39,
The stock solution supply path 53 is connected to the water supply main pipe 1. Accordingly, the surplus undiluted solution R not received by the undiluted solution storage unit 47 flows into the water supply main pipe 1 through the undiluted solution supply path 53.

【0021】なお、符号54は、原液受入れ部27から
原液容器80に向けて原液Rが逆流するのを防止する逆
止弁であり、符号55は、原液受入れ部27から空気を
適切に出すための空気抜き弁であり、符号56は、給水
本管1から原液供給管53に向けて水が流れ込むのを防
止する逆止弁である。次に、前述した構成の自動希釈供
給装置Aの動作について説明する。なお、水圧駆動定量
ポンプ20の原液受入れ部27から吐出する原液Rの吐
出量に対して、原液圧駆動定量ポンプ40の原液貯留部
47で原液Rを貯留し得る量が僅かに少なくなるよう
に、移動距離調整手段31,51で予め調整してある。
Reference numeral 54 denotes a check valve for preventing the undiluted solution R from flowing back from the undiluted solution receiving portion 27 toward the undiluted solution container 80, and numeral 55 indicates a valve for properly discharging air from the undiluted solution receiving portion 27. Reference numeral 56 denotes a check valve for preventing water from flowing from the water supply main pipe 1 toward the stock solution supply pipe 53. Next, the operation of the automatic dilution and supply device A having the above-described configuration will be described. It should be noted that the amount of the undiluted solution R that can be stored in the undiluted solution storage unit 47 of the undiluted solution pressure-driven quantitative pump 40 is slightly smaller than the discharge amount of the undiluted solution R discharged from the undiluted solution receiving unit 27 of the hydraulic drive quantitative pump 20. Are adjusted in advance by the moving distance adjusting means 31 and 51.

【0022】先ず、給水本管1内を流れる流量を流量計
2で検出し、一定流量を検出するごとに流量計2から電
気信号が送出されて三方電磁弁4を切り替えることで、
流入管3,5を介して、水圧駆動定量ポンプ20の水受
入れ部28内に水が流入する。このとき、給水本管1か
ら流入した水の圧力により、主動ピストン部21が原液
受入れ部27に向けて前進し、隔膜25が前方に移動す
る。その結果、原液受入れ部27内の原液Rを、隔膜2
5の移動距離に従った定量だけ吐出させると同時に、こ
の原液Rを、連通管39を介して、原液圧駆動定量ポン
プ40の原液貯留部47内に貯留させる。このとき、水
圧駆動定量ポンプ20からの原液Rの吐出量と、原液圧
駆動定量ポンプ40で原液Rを貯留する貯留量とに僅か
な差額が発生する。そして、この差額分の原液Rが、原
液供給管53に流れ込むことで、給水本管1内を流れる
一定量の水に対して微量の原液Rを希釈供給することが
できる。
First, the flow rate flowing through the water supply main pipe 1 is detected by the flow meter 2, and every time a constant flow rate is detected, an electric signal is transmitted from the flow meter 2 to switch the three-way solenoid valve 4.
Water flows into the water receiving section 28 of the hydraulic drive metering pump 20 via the inflow pipes 3 and 5. At this time, due to the pressure of the water flowing from the water supply main pipe 1, the driving piston portion 21 advances toward the undiluted solution receiving portion 27, and the diaphragm 25 moves forward. As a result, the undiluted solution R in the undiluted solution receiving unit 27 is transferred to the diaphragm 2
At the same time, the undiluted solution R is discharged in the undiluted solution storage section 47 of the undiluted liquid pressure driven quantitative pump 40 through the communication pipe 39 at the same time as discharging the fixed amount according to the moving distance of No. 5. At this time, a slight difference occurs between the discharge amount of the stock solution R from the hydraulic drive metering pump 20 and the storage amount of the stock solution R stored by the stock pressure drive pump 40. Then, the undiluted solution R corresponding to the difference flows into the undiluted solution supply pipe 53, whereby a small amount of undiluted solution R can be diluted and supplied to a certain amount of water flowing in the water supply main pipe 1.

【0023】また、流量計2から送出される電気信号の
消滅により、三方電磁弁4を切り替える。その結果、第
1の流入管3が遮断され、第2の流入管5と排水管6と
が連通し、水圧駆動定量ポンプ20の水受入れ部28か
ら排水させる。そして、バネ部材29のばね力により主
動ピストン部21が移動距離調整手段31のネジ部31
aの端面に当接する位置まで後退する。そのとき、原液
圧駆動定量ポンプ40の原液貯留部47内に貯留されて
いた原液Rが、従動ピストン部41の隔膜45の移動距
離に従った定量だけ吐出し、連通管39を介して水圧駆
動定量ポンプ20の原液受入れ部27内に引き戻され
る。これと同時に、差額分の原液Rが原液容器80から
補充されることで、原液受入れ部27内が所定量の原液
Rで満たされることになる。このような動作を繰り返し
行うことで、給水本管1を流れる流量が変動した場合で
も、ポンプ機構Pによる所望の高倍率の希釈液が得られ
る。
The three-way solenoid valve 4 is switched by the disappearance of the electric signal sent from the flow meter 2. As a result, the first inflow pipe 3 is shut off, the second inflow pipe 5 and the drain pipe 6 communicate with each other, and the water is drained from the water receiving section 28 of the hydraulically driven metering pump 20. The driving piston 21 is moved by the spring force of the spring member 29 so that the screw 31
It retracts to the position where it comes into contact with the end face of a. At this time, the undiluted solution R stored in the undiluted solution storage portion 47 of the undiluted solution pressure driven pump 40 discharges a fixed amount according to the moving distance of the diaphragm 45 of the driven piston portion 41, and is hydraulically driven through the communication pipe 39. It is pulled back into the stock solution receiving section 27 of the metering pump 20. At the same time, the undiluted solution R is replenished from the undiluted solution container 80 by the difference, so that the undiluted solution receiving section 27 is filled with a predetermined amount of undiluted solution R. By repeating such an operation, a desired high-magnification diluent by the pump mechanism P can be obtained even when the flow rate flowing through the water supply main pipe 1 fluctuates.

【0024】[実験例1]自動希釈供給装置Aを直径5
0mm の給水本管1に取り付け、ダイヤルスクリュー
31により原液受入れ部27の吐出予定容積を5mlに
設定し、一方、ダイヤルスクリュー51により原液貯留
部47の貯留予定容積を4.9mlに設定した。ここで
直径50mmの給水本管1に水圧2Kg/cm2で流量
50リットル/分の水を流し、1リットルが流れる都
度、流量計2からの信号を受けて水圧駆動定量ポンプ2
0を作動させた。そして、給水本管1の下流で希釈水を
採取し、化学分析をした結果、液体肥料Rは±5%の誤
差で10,000倍の濃度に希釈されていることが確認
できた。すなわち、原液圧駆動定量ポンプ40の最大液
体肥料貯留量よりやや大きな吐出量を水圧駆動定量ポン
プ20で設定することにより、高希釈倍率を得ることが
できる。
[Experimental Example 1] The automatic dilution and supply device A was set to a diameter of 5
It was attached to the water supply main pipe 1 of 0 mm 2, and the planned discharge volume of the stock solution receiving section 27 was set to 5 ml by the dial screw 31, while the planned storage volume of the stock solution storage section 47 was set to 4.9 ml by the dial screw 51. Here, water is flowed at a flow rate of 50 liters / minute at a water pressure of 2 kg / cm 2 through a water supply main pipe 1 having a diameter of 50 mm, and every time 1 liter flows, a signal from the flow meter 2 is received to receive a signal from the flow meter 2.
0 was activated. Then, dilution water was collected downstream of the water supply main pipe 1 and subjected to chemical analysis. As a result, it was confirmed that the liquid fertilizer R was diluted to a concentration 10,000 times with an error of ± 5%. That is, by setting the discharge amount slightly larger than the maximum liquid fertilizer storage amount of the raw liquid pressure driven metering pump 40 by the hydraulic driven metering pump 20, a high dilution ratio can be obtained.

【0025】また、従来型のポンプ(図7及び図8参
照)において、1回の液体肥料の吐出量を0.1ccの
ように小さく設定した場合、原液受入れ部102に空気
が混入すると、原液受入れ部102からの吐出量が少な
いため、その中の空気が圧縮されるだけで気泡は完全に
抜けず、エアーロックを起こし、原液容器80から液体
肥料を吸引しなかったり、所望の液体肥料の希釈倍率を
得られない場合があった。ところが、本実施形態の原液
受入れ部27に空気が入っても、水圧駆動定量ポンプ2
0の吐出量が大きいため、空気弁55により容易に空気
抜きが行われ、エアロックを起こすことがない。例え
ば、原液受入れ部27内に5ml程度の気泡を入れ、2
kg/cm2の水圧を流入管5に加えたところ、主動ピ
ストン部21の3回の往復作動で気泡抜きが完了した。
In the conventional pump (see FIGS. 7 and 8), when the discharge amount of liquid fertilizer at one time is set as small as 0.1 cc, when air is mixed into the raw liquid receiving portion 102, the raw liquid Since the amount of discharge from the receiving part 102 is small, the air therein is only compressed and the air bubbles are not completely removed, causing an air lock and preventing the liquid fertilizer from being sucked from the stock solution container 80 or the desired liquid fertilizer. In some cases, the dilution ratio could not be obtained. However, even if air enters the stock solution receiving section 27 of the present embodiment, the hydraulically driven
Since the discharge amount of “0” is large, air is easily released by the air valve 55, and air lock does not occur. For example, air bubbles of about 5 ml are put in the undiluted solution receiving section 27, and 2
When a water pressure of kg / cm 2 was applied to the inflow pipe 5, the bubble removal was completed by the three reciprocating operations of the driving piston 21.

【0026】(第2の実施形態)この実施形態は、一個
の水圧駆動定量ポンプに対して、二個の原液圧駆動定量
ポンプを並列に配置したものである。なお、第1の実施
形態に係る自動希釈供給装置Aと同一又は同等な構成部
分には同一の符号を付し、その説明は省略する。
(Second Embodiment) In this embodiment, two raw liquid pressure driven metering pumps are arranged in parallel with one hydraulic driven metering pump. Note that the same or equivalent components as those of the automatic dilution and supply device A according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0027】図3及び図4に示すように、この実施形態
に係る自動希釈供給装置Bは、一個の水圧駆動定量ポン
プ20と、選択的に駆動する第1及び第2の原液圧駆動
定量ポンプ60,70とを有している。第1の原液圧駆
動定量ポンプ60は、第1実施形態で説明したポンプ4
0と略同一の構成を有しているが、後側のヘッド44の
後方に、この移動を許容する容積をもった水受入れ部6
1が形成されている点で相違する。また、水受入れ部6
1から流入路(以下、「流入管」という)62が延び
て、給水本管1に接続され、流入管62の途中に三方電
磁弁63が設けられ、三方電磁弁63から排水管(以
下、「排水路」という)64が延びている。
As shown in FIGS. 3 and 4, the automatic dilution and supply device B according to this embodiment comprises a single hydraulically driven metering pump 20 and first and second undiluted liquid pressure driven metering pumps selectively driven. 60 and 70. The first raw liquid pressure driven metering pump 60 is the pump 4 described in the first embodiment.
0, but behind the head 44 on the rear side, a water receiving portion 6 having a capacity to allow this movement.
1 is formed. In addition, water receiving section 6
An inflow passage (hereinafter, referred to as an “inflow pipe”) 62 extends from the intake pipe 1 and is connected to the water supply main pipe 1. A three-way solenoid valve 63 is provided in the middle of the inflow pipe 62. A “drainage channel” 64 extends.

【0028】同様に、第2の原液圧駆動定量ポンプ70
も後側のヘッド44の後方に、水受入れ部71をもって
いる。また、水受入れ部71から流入路(以下、「流入
管」という)72が延びて、給水本管1に接続され、流
入管72の途中に三方電磁弁73が設けられ、三方電磁
弁73から排水管(以下、「排水路」という)74が延
びている。
Similarly, the second raw liquid pressure driven metering pump 70
Also has a water receiving part 71 behind the head 44 on the rear side. An inflow path (hereinafter, referred to as an “inflow pipe”) 72 extends from the water receiving section 71 and is connected to the water supply main pipe 1. A three-way solenoid valve 73 is provided in the middle of the inflow pipe 72. A drain pipe (hereinafter, referred to as “drain channel”) 74 extends.

【0029】更に、水圧駆動定量ポンプ20から延びる
連通管82は左右に分岐し、分岐管82aの一端が、第
1の原液圧駆動定量ポンプ60の第1の原液貯留部65
に連結され、分岐管82bの一端が第2の原液圧駆動定
量ポンプ70の第2の原液貯留部75に連結されてい
る。また、給水本管1は、流量計2の下流側で分岐し、
第1の分岐本管1aには、第1の原液貯留部65に連通
した第1の原液供給管66が接続され、第2の分岐本管
1bには、第2の原液貯留部75に連通した第2の原液
供給管76が接続されている。また、給水本管1におい
て、流量計2の上流側には開閉電磁弁83が設けられ、
第1及び第2の分岐本管1a,1bにも開閉電磁弁8
4,85が設けられている。これらの開閉電磁弁83〜
85は、コントローラボックス86からの制御信号によ
り開閉する構成になっている。このコントローラボック
ス86は、三方電磁弁4,63,73も制御している。
Further, a communication pipe 82 extending from the hydraulic drive metering pump 20 branches right and left, and one end of the branch pipe 82a is connected to the first stock solution storage section 65 of the first stock solution pressure drive pump 60.
And one end of the branch pipe 82b is connected to the second stock solution storage section 75 of the second stock solution pressure driven metering pump 70. Further, the water supply main pipe 1 branches on the downstream side of the flow meter 2,
The first branch main pipe 1a is connected to a first raw liquid supply pipe 66 communicating with a first raw liquid storage section 65, and the second branch main pipe 1b is connected to a second raw liquid storage section 75. The second undiluted solution supply pipe 76 is connected. In the water supply main pipe 1, an opening / closing solenoid valve 83 is provided on the upstream side of the flow meter 2,
The first and second branch mains 1a and 1b are also provided with an on-off solenoid valve 8
4,85 are provided. These opening / closing solenoid valves 83 to
Reference numeral 85 is configured to be opened and closed by a control signal from the controller box 86. The controller box 86 also controls the three-way solenoid valves 4, 63, 73.

【0030】なお、符号67及び77は逆止弁である。
また、図4においては、第1及び第2の原液圧駆動定量
ポンプ60,70と水圧駆動定量ポンプ20とは対向し
た関係で配列され、図3においては、第1及び第2の原
液圧駆動定量ポンプ60,70と水圧駆動定量ポンプ2
0とは横並びの関係で配列されているが、いずれの図面
も一個の水圧駆動定量ポンプ20に対して、二個の原液
圧駆動定量ポンプ60,70を並列的に配置したもので
あり、思想的に同一である。更には、原液圧駆動定量ポ
ンプの個数を3つ以上にすることもできる。
Reference numerals 67 and 77 are check valves.
Also, in FIG. 4, the first and second raw liquid pressure driven metering pumps 60 and 70 and the hydraulic pressure driven metering pump 20 are arranged in a facing relationship, and in FIG. 3, the first and second raw liquid pressure driven pumps 60 and 70 are arranged. Metering pumps 60 and 70 and water pressure driven metering pump 2
Although 0 is arranged in a side-by-side relationship, in each of the drawings, two raw liquid pressure driven pumps 60 and 70 are arranged in parallel with one hydraulic driven pump 20. Are identical. Further, the number of the raw liquid pressure driven metering pumps can be three or more.

【0031】次に、前述した自動希釈供給装置Bの構成
に基づいて、その動作を簡単に説明する。
Next, the operation of the automatic dilution and supply device B will be briefly described based on the above-described configuration.

【0032】先ず、コントローラボックス86からの制
御信号により、開閉電磁弁83及び84を開状態にし、
開閉電磁弁85を閉状態にする。そして、三方電磁弁7
3を制御して、第2の原液圧駆動定量ポンプ70が作動
しない状態にしておく。この状態で、水圧駆動定量ポン
プ20を作動させて定量の原液Rを吐出させる。そし
て、第1の原液圧駆動定量ポンプ60の第1の原液貯留
部65内に原液Rを流入させ、水圧駆動定量ポンプ20
からの原液Rの吐出量と、第1の原液圧駆動定量ポンプ
60で原液Rを貯留する貯留量とに僅かな差額を発生さ
せる。そして、この差額分の原液Rを、第1の原液供給
管66に流し込むことで、分岐本管1a内を流れる一定
量の水に対して微量の原液Rを希釈供給することができ
る。
First, the open / close solenoid valves 83 and 84 are opened according to a control signal from the controller box 86,
The on-off solenoid valve 85 is closed. And the three-way solenoid valve 7
3 is controlled so that the second raw liquid pressure driven metering pump 70 does not operate. In this state, the hydraulic drive metering pump 20 is operated to discharge a fixed amount of the undiluted solution R. Then, the stock solution R is caused to flow into the first stock solution storage section 65 of the first stock solution pressure driven metering pump 60,
A slight difference is generated between the discharge amount of the undiluted solution R from the pump and the amount of the undiluted solution R stored by the first undiluted liquid pressure driven metering pump 60. Then, by flowing the undiluted solution R corresponding to the difference into the first undiluted solution supply pipe 66, it is possible to dilute and supply a small amount of undiluted solution R to a certain amount of water flowing in the branch main pipe 1a.

【0033】このとき、水圧駆動定量ポンプ20用の三
方電磁弁4は、水受入れ部28内に水を取り込むように
動作し、第1の原液圧駆動定量ポンプ60用の三方電磁
弁63は、水受入れ部61から排水管64を介して水を
排出するように動作する。更に、第1の原液圧駆動定量
ポンプ60から水圧駆動定量ポンプ20に原液Rを戻す
ときには、三方電磁弁4及び三方電磁弁63は前述とは
逆の動作をする。
At this time, the three-way solenoid valve 4 for the hydraulically driven metering pump 20 operates to take water into the water receiving section 28, and the three-way solenoidal valve 63 for the first raw liquid pressure driven metering pump 60 is It operates to discharge water from the water receiving section 61 through the drain pipe 64. Further, when the stock solution R is returned from the first stock solution pressure driven metering pump 60 to the water pressure driven metering pump 20, the three-way solenoid valve 4 and the three-way solenoid valve 63 operate in the opposite manner as described above.

【0034】次に、第2の原液圧駆動定量ポンプ70を
利用する場合、コントローラボックス86からの制御信
号により、開閉電磁弁83及び85を開状態にし、開閉
電磁弁84を閉状態にする。そして、三方電磁弁63を
制御して、第1の原液圧駆動定量ポンプ60の水受入れ
部61に水を取り込んで水圧をかけ、第1の原液圧駆動
定量ポンプ60が作動しない状態にしておく。なお、水
圧駆動定量ポンプ20と第2の原液圧駆動定量ポンプ7
0の動作関係は、前述した水圧駆動定量ポンプ20と第
1の原液圧駆動定量ポンプ60の動作関係と同様である
から、その説明は省略する。
Next, when the second raw liquid pressure driven metering pump 70 is used, the open / close electromagnetic valves 83 and 85 are opened and the open / close electromagnetic valve 84 is closed according to a control signal from the controller box 86. Then, the three-way solenoid valve 63 is controlled to take water into the water receiving portion 61 of the first raw liquid pressure driven metering pump 60 and apply water pressure, so that the first raw liquid pressure driven metering pump 60 is not operated. . It should be noted that the hydraulic drive metering pump 20 and the second raw liquid pressure drive metering pump 7
The operation relationship of 0 is the same as the above-described operation relationship of the hydraulically driven metering pump 20 and the first hydraulically driven metering pump 60, and thus the description thereof is omitted.

【0035】[実験例2]自動希釈供給装置Bを直径5
0mm の給水本管1に取り付け、原液受入れ部27の
吐出予定容積を5mlに設定し、第1の原液貯留部65
の貯留予定容積を4.9mlに設定し、第2の原液貯留
部75の貯留予定容積を4.8mlに設定した。ここ
で、給水本管1に水圧2Kg/cm2で流量50リット
ル/分の水を流して、1リットルが流れる都度、流量計
2より信号を受けて水圧駆動定量ポンプ20を作動させ
た。そして、第1の原液圧駆動定量ポンプ60を利用し
た場合、分岐本管1aの下流で希釈水を採取し、化学分
析をした結果、液体肥料Rは±5%の誤差で10,00
0倍の濃度に希釈されていることが確認できた。また、
第2の原液圧駆動定量ポンプ70を利用した場合、液体
肥料Rは5,000倍の濃度に希釈されていることが確
認できた。
[Experimental Example 2] The automatic dilution and supply device B was set to a diameter of 5
0 mm 2, the scheduled discharge volume of the undiluted solution receiving unit 27 is set to 5 ml, and the first undiluted solution storage unit 65 is set.
Was set to 4.9 ml, and the planned storage volume of the second stock solution storage unit 75 was set to 4.8 ml. At this time, water at a flow rate of 50 liters / minute was flowed through the water supply main pipe 1 at a water pressure of 2 kg / cm 2 , and every time 1 liter flowed, a signal was received from the flow meter 2 to operate the hydraulically driven metering pump 20. When the first raw liquid pressure driven metering pump 60 is used, dilution water is collected downstream of the branch main pipe 1a and subjected to chemical analysis. As a result, the liquid fertilizer R has a ± 5% error of 10,000.
It was confirmed that the solution was diluted to a concentration of 0 times. Also,
When the second raw liquid pressure driven metering pump 70 was used, it was confirmed that the liquid fertilizer R was diluted to a concentration of 5,000 times.

【0036】(第3の実施形態)この実施形態は、水圧
駆動定量ポンプと原液圧駆動定量ポンプとを一体にした
ものである。図5及び図6に示すように、この実施形態
に係る自動希釈供給装置Cは、水圧駆動定量ポンプ90
と原液圧駆動定量ポンプ91とを横に並べて一体化した
ものであり、それぞれのポンプ90,91に三方電磁弁
92,93を設けた構成を有している。このような構成
により、自動希釈供給装置Cは、その取り扱い性が良く
なり、外観もよく商品価値を高めている。なお、この第
3実施形態は、それぞれのポンプ90,91が三方電磁
弁92,93をもっており、この点において第2の実施
形態に係る自動希釈供給装置Bと共通する。また、水圧
駆動定量ポンプ90と原液圧駆動定量ポンプ91とを対
向配列又は直角配列させることもできる。更には、原液
圧駆動定量ポンプ91の個数を2つ以上にすることもで
きる。
(Third Embodiment) In this embodiment, a water pressure driven metering pump and a stock pressure driven metering pump are integrated. As shown in FIGS. 5 and 6, the automatic dilution and supply device C according to this embodiment includes a hydraulically driven metering pump 90.
And a raw liquid pressure driven pump 91 are arranged side by side and integrated, and each pump 90, 91 is provided with a three-way solenoid valve 92, 93. With such a configuration, the automatic dilution and supply device C has good handleability, good appearance, and high commercial value. In the third embodiment, the pumps 90 and 91 have three-way solenoid valves 92 and 93, respectively, and in this respect, are common to the automatic dilution and supply device B according to the second embodiment. In addition, the hydraulic drive metering pump 90 and the stock hydraulic pressure metering pump 91 can be arranged to face each other or at right angles. Further, the number of the raw liquid pressure driven metering pumps 91 may be two or more.

【0037】本発明は、前述した実施形態に限定されな
いのは言うまでもない。例えば、図2に示した自動希釈
供給装置Aを、給水本管1に複数個直列に並べること
で、複数種類の殺菌剤、農薬、液体肥料を給水本管1内
で希釈混合することができる。また、図3に示した自動
希釈供給装置Bにおいて、分岐本管1aと1bとを下流
側で一本に合流させることもできる。このような構成
は、原液同士を混合することが好ましくない場合に特に
有効である。また、従来技術で挙げられている自動希釈
供給装置と第1実施形態で挙げられている自動希釈供給
装置Aとを給水本管1に直列又は並列に並べることもで
きる。更には、自動希釈供給装置の三方電磁弁や開閉電
磁弁の開閉をタイマーにより管理することもできる。な
お、第1〜第3の実施形態の自動希釈供給装置A〜Cで
は、配管が露出しているが、この配管を自動希釈供給装
置内に一体形成した場合には、通路となる。
Needless to say, the present invention is not limited to the above-described embodiment. For example, by arranging a plurality of automatic dilution supply devices A shown in FIG. 2 in series on the water supply main pipe 1, a plurality of types of disinfectants, pesticides, and liquid fertilizers can be diluted and mixed in the water supply main pipe 1. . Further, in the automatic dilution supply device B shown in FIG. 3, the branch main pipes 1a and 1b can be merged into one at the downstream side. Such a configuration is particularly effective when it is not preferable to mix stock solutions. In addition, the automatic dilution supply device described in the related art and the automatic dilution supply device A described in the first embodiment can be arranged in series or in parallel with the water supply main pipe 1. Further, the opening and closing of the three-way solenoid valve and the on-off solenoid valve of the automatic dilution supply device can be managed by a timer. In the automatic dilution and supply devices A to C of the first to third embodiments, the pipes are exposed. However, when the pipes are integrally formed in the automatic dilution and supply apparatuses, they serve as passages.

【0038】[0038]

【発明の効果】本発明において、農業に利用される原液
の自動希釈供給装置は、以上のように構成されているた
め、次のような効果を得る。すなわち、この装置に利用
するポンプ機構は、給水本管から流入する水の圧力で駆
動する水圧駆動定量ポンプと、水圧駆動定量ポンプから
吐出する原液の圧力で駆動する原液圧駆動定量ポンプと
からなり、水圧駆動定量ポンプの原液受入れ部と原液圧
駆動定量ポンプの原液貯留部とを連通路を介して連結さ
せ、水圧駆動定量ポンプから吐出する原液の吐出量に対
して、原液圧駆動定量ポンプの貯留量が小さくなるよう
に調整し、水圧駆動定量ポンプからの原液の吐出量と原
液圧駆動定量ポンプで原液を貯留する貯留量との差額
を、給水本管に連通した原液供給路に流し込む構成にす
ることで、微量の原液でも設定通りの希釈倍率を得るこ
とができる。
According to the present invention, the automatic diluting and supplying apparatus for undiluted solution used for agriculture is configured as described above, and thus the following effects are obtained. That is, the pump mechanism used in this device is composed of a hydraulically driven metering pump driven by the pressure of the water flowing from the water supply main pipe, and a stock solution pressure driven metering pump driven by the pressure of the stock solution discharged from the hydraulically driven metering pump. Connecting the stock solution receiving portion of the hydraulic drive metering pump and the stock solution storage portion of the stock pressure drive metering pump via a communication path, and controlling the amount of the stock solution discharged from the hydraulic drive metering pump to the A configuration in which the storage amount is adjusted to be small, and the difference between the discharge amount of the stock solution from the hydraulically driven metering pump and the storage amount for storing the stock solution by the stock pressure driven metering pump is fed into the stock solution supply passage communicating with the water supply main pipe. By doing so, the dilution ratio as set can be obtained even with a small amount of the stock solution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る原液の自動希釈供給装置の第1実
施形態を示す斜視図である。
FIG. 1 is a perspective view showing a first embodiment of an apparatus for automatically diluting and supplying a stock solution according to the present invention.

【図2】図1に示した自動希釈供給装置の要部の断面図
である。
FIG. 2 is a sectional view of a main part of the automatic dilution and supply device shown in FIG.

【図3】本発明に係る原液の自動希釈供給装置の第2実
施形態を示す斜視図である。
FIG. 3 is a perspective view showing a second embodiment of an automatic diluting and supplying apparatus for a stock solution according to the present invention.

【図4】図3に示した自動希釈供給装置の要部であるポ
ンプ機構を示す断面図である。
FIG. 4 is a cross-sectional view showing a pump mechanism which is a main part of the automatic dilution supply device shown in FIG.

【図5】本発明に係る原液の自動希釈供給装置の第3実
施形態を示す斜視図である。
FIG. 5 is a perspective view showing a third embodiment of an automatic dilution and supply device for a stock solution according to the present invention.

【図6】図5に示した自動希釈供給装置の要部であるポ
ンプ機構を示す正面図である。
FIG. 6 is a front view showing a pump mechanism which is a main part of the automatic dilution supply device shown in FIG.

【図7】従来の自動希釈供給装置を示す斜視図である。FIG. 7 is a perspective view showing a conventional automatic dilution supply device.

【図8】図7に示した自動希釈供給装置のポンプ機構を
示す断面図である。
FIG. 8 is a sectional view showing a pump mechanism of the automatic dilution supply device shown in FIG. 7;

【符号の説明】[Explanation of symbols]

A〜C…自動希釈供給装置、P…ポンプ機構、R…原
液、1…給水本管、2…流量計、3…第1の流入管(流
入路)、4,63,73,92,93…三方電磁弁(三
方弁)、5…第2の流入管(流入路)、8…液体肥料、
20,90…水圧駆動定量ポンプ、21…主動ピストン
部、25,26…隔膜、27…原液受入れ部、28,6
1,71…水受入れ部、29,49…バネ部材、31…
主動側の移動距離調整手段、39…連通管(連通路)、
40,60,70,91…原液圧駆動定量ポンプ、41
…従動ピストン部、45,46…隔膜、47…原液貯留
部、51…従動側の移動距離調整手段、53…原液供給
管(原液供給路)、55…空気抜き弁、62,72…流
入管(流入路)、80…原液容器。
A to C: automatic dilution supply device, P: pump mechanism, R: undiluted solution, 1: water supply main pipe, 2: flow meter, 3: first inflow pipe (inflow path), 4, 63, 73, 92, 93 ... three-way solenoid valve (three-way valve), 5 ... second inflow pipe (inflow path), 8 ... liquid fertilizer,
20, 90: hydraulic drive metering pump, 21: driven piston, 25, 26: diaphragm, 27: undiluted solution receiving part, 28, 6
1, 71: water receiving portion, 29, 49: spring member, 31 ...
Moving distance adjusting means on the driving side, 39 ... communication pipe (communication passage),
40, 60, 70, 91 ... stock pressure driven metering pump, 41
... driven piston parts, 45, 46 ... diaphragm, 47 ... stock solution storage part, 51 ... driven side moving distance adjusting means, 53 ... stock solution supply pipe (stock solution supply path), 55 ... air vent valve, 62, 72 ... inflow pipe ( (Inflow channel), 80 ... stock solution container.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤松 達雄 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 菅野 栄一 東京都大田区東蒲田一丁目13番5号 株式 会社ゼット工業内 (72)発明者 菅野 均 東京都大田区東蒲田一丁目13番5号 株式 会社ゼット工業内 (72)発明者 末松 優 東京都台東区浅草橋四丁目2番2号 太洋 興業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsuo Akamatsu 1 Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Eiichi Sugano 1-13-5 Higashikamata, Ota-ku, Tokyo No. Zetsu Kogyo Co., Ltd. (72) Inventor Hitoshi Sugano 1-13-5 Higashikamata, Ota-ku, Tokyo Tokyo, Japan Incorporated Zet Kogyo Co., Ltd. (72) Yu Suematsu 4-2-2 Asakusabashi, Taito-ku, Tokyo Taiyo Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 給水本管の通過流量を検出する流量計
と、前記流量計の検出信号によって開閉する三方弁と、
この三方弁の開閉によって駆動するポンプ機構と、前記
ポンプ機構に原液を供給する原液容器と、前記給水本管
から分岐し、前記三方弁を経由して前記ポンプ機構に接
続された流入路とを備え、前記ポンプ機構から吐出する
所定量の原液を前記給水本管内に流入させて、前記給水
本管内を流れる所定量の水で前記所定量の前記原液を希
釈する自動希釈装置において、 前記ポンプ機構は、前記給水本管から流入する水の圧力
で駆動する水圧駆動定量ポンプと、前記水圧駆動定量ポ
ンプから吐出する前記原液の圧力で駆動する原液圧駆動
定量ポンプとからなり、 前記水圧駆動定量ポンプは、 前記流入路からの水圧に応動すると共に前後に隔膜をも
った主動ピストン部と、 前記主動ピストン部の後方に位置して、前記主動ピスト
ン部の移動距離を規制する主動側の移動距離調整手段
と、 前記主動ピストン部の前方に位置し、前記原液容器から
の前記原液を受け入れる原液受入れ部と、 前記主動ピストン部の後方に位置し、前記流入路からの
水を受け入れる水受入れ部と、 前記主動ピストン部を前記主動側の移動距離調整手段に
向けて付勢するバネ部材とを有し、 前記原液圧駆動定量ポンプは、 前記原液受入れ部から吐出した前記原液の圧力に応動す
ると共に前後に隔膜をもった従動ピストン部と、 前記従動ピストン部の後方に位置して、前記従動ピスト
ン部の移動距離を規制する従動側の移動距離調整手段
と、 前記従動ピストン部の前方に位置し、前記水圧駆動定量
ポンプから吐出する前記原液を貯留する原液貯留部と、 前記従動ピストン部を前記従動側の移動距離調整手段に
向けて付勢するバネ部材とを有し、 前記水圧駆動定量ポンプの前記原液受入れ部と前記原液
圧駆動定量ポンプの前記原液貯留部とを連通路を介して
連結させ、前記水圧駆動定量ポンプから吐出する前記原
液の吐出量に対して、前記原液圧駆動定量ポンプの貯留
量が小さくなるように調整し、前記水圧駆動定量ポンプ
からの前記原液の吐出量と前記原液圧駆動定量ポンプで
前記原液を貯留する貯留量との差額を、前記給水本管に
連通した原液供給路に流し込むことを特徴とする農業に
利用される原液の自動希釈供給装置。
1. A flow meter for detecting a flow rate passing through a water supply main pipe, a three-way valve that opens and closes according to a detection signal of the flow meter,
A pump mechanism driven by the opening and closing of the three-way valve, a stock solution container for supplying a stock solution to the pump mechanism, and an inflow passage branched from the water supply main pipe and connected to the pump mechanism via the three-way valve. An automatic diluting device that comprises: a predetermined amount of undiluted solution discharged from the pump mechanism flowing into the water supply main pipe, and diluting the predetermined amount of the undiluted solution with a predetermined amount of water flowing through the water supply main pipe; Comprises a hydraulically driven metering pump driven by the pressure of the water flowing from the water supply main pipe, and a raw liquid pressure driven metering pump driven by the pressure of the stock solution discharged from the hydraulically driven metering pump. Is driven by the water pressure from the inflow path and has a diaphragm in front and rear, a driving piston portion, located behind the driving piston portion, the moving distance of the driving piston portion A moving-distance adjusting means on the driving side to regulate; a raw liquid receiving section positioned in front of the driving piston section to receive the raw liquid from the raw liquid container; and a raw liquid receiving section positioned behind the driving piston section, from the inflow passage. A water receiving portion that receives water, and a spring member that urges the driving piston portion toward the moving distance adjusting means on the driving side, wherein the raw liquid pressure driven metering pump discharges the raw liquid from the raw liquid receiving portion. A driven piston portion responsive to the pressure of the undiluted solution and having a diaphragm in front and back; a driven-side moving distance adjusting means positioned behind the driven piston portion to regulate a moving distance of the driven piston portion; An undiluted solution storage unit that is located in front of the piston unit and stores the undiluted solution discharged from the hydraulic drive metering pump; and moves the driven piston unit toward the driven-side moving distance adjusting unit. A spring member that urges and discharges the undiluted solution from the hydraulically driven metering pump. With respect to the discharge amount of the undiluted solution to be adjusted, the storage amount of the undiluted liquid pressure driven metering pump is adjusted so as to be small, and the undiluted solution from the hydraulically driven fixed amount pump and the undiluted solution are discharged by the undiluted pressure driven metering pump. An automatic diluent supply apparatus for agriculture, wherein a difference from a storage amount to be stored is poured into a concentrate supply path communicating with the water supply main pipe.
【請求項2】 選択的に駆動する複数個の前記原液圧駆
動定量ポンプを並列に配置したことを特徴とする請求項
1記載の農業に利用される原液の自動希釈供給装置。
2. The apparatus for automatically diluting and supplying a stock solution used in agriculture according to claim 1, wherein a plurality of the stock solution pressure driven metering pumps selectively driven are arranged in parallel.
【請求項3】 前記水圧駆動定量ポンプと前記原液圧駆
動定量ポンプとを内部にもった一体型の前記ポンプ機構
を備えたことを特徴とする請求項1又は2記載の農業に
利用される原液の自動希釈供給装置。
3. The undiluted solution used in agriculture according to claim 1 or 2, comprising the integrated pump mechanism having the hydraulically driven metered pump and the undiluted hydraulically driven metered pump therein. Automatic dilution feeding device.
JP34203796A 1996-12-20 1996-12-20 Automatic dilution supply equipment for stock solutions used in agriculture Expired - Lifetime JP4326600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34203796A JP4326600B2 (en) 1996-12-20 1996-12-20 Automatic dilution supply equipment for stock solutions used in agriculture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34203796A JP4326600B2 (en) 1996-12-20 1996-12-20 Automatic dilution supply equipment for stock solutions used in agriculture

Publications (2)

Publication Number Publication Date
JPH10180077A true JPH10180077A (en) 1998-07-07
JP4326600B2 JP4326600B2 (en) 2009-09-09

Family

ID=18350680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34203796A Expired - Lifetime JP4326600B2 (en) 1996-12-20 1996-12-20 Automatic dilution supply equipment for stock solutions used in agriculture

Country Status (1)

Country Link
JP (1) JP4326600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023423A (en) * 2006-07-19 2008-02-07 Hiroshima Univ Mixed liquid feeding device and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023423A (en) * 2006-07-19 2008-02-07 Hiroshima Univ Mixed liquid feeding device and its control method

Also Published As

Publication number Publication date
JP4326600B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
US6314979B1 (en) Liquid injection apparatus and method for horticultural watering systems
US5520333A (en) Tube metering control system
US4471887A (en) Dispensing device
US9643135B1 (en) Proportionate automated blending system for aqueous mixtures
EA024326B1 (en) Spraying assembly, and sprayer equipped with at least one such assembly
US8020578B2 (en) Solid product dispenser
US6079632A (en) Comprehensive product delivery system
US9095825B2 (en) Fluid injection system
US5957153A (en) Oscillating dual bladder balanced pressure proportioning pump system
US11840466B2 (en) Dispensing system with bypass
CN109906738A (en) Standby fertilizer device and irrigation sprinkler and fertilizing method comprising this for fertilizer device
JP2008125433A (en) Chemical liquid-mixing and spraying apparatus
FI86807B (en) FOERFARANDE OCH ANORDNING FOER FRAMSTAELLNING AV BEVATTNINGSVATTEN GENOM TILLSAETTNING AV KOLDIOXID OCH KOLSYRA.
JPH10180077A (en) Automatic diluting feeder for raw liquid to be utilized as agricultural chemicals
CN110036742B (en) Agricultural is with fertigation irrigation system
JPH0947121A (en) Chemical mixing apparatus
US20010048037A1 (en) Chemical infeed system for a sprinlker or irrigation system
CN208175336U (en) Standby fertilizer device and the irrigation sprinkler including this for fertilizer device
CN209643343U (en) A kind of bypass type fertilizer applicator of the adjustable self-adapting pipe flow of EC, PH
KR20110077318A (en) Cotroll method of apparatus for supplying nutrient solution
CN208016331U (en) Standby fertilizer device and the irrigation sprinkler for including the standby fertile device
CN208016332U (en) Standby fertilizer device and the irrigation sprinkler for including the standby fertile device
CN109906734A (en) Standby fertilizer device and irrigation sprinkler and fertilizing method including this for fertilizer device
JPS635770Y2 (en)
KR100378940B1 (en) Fixed volume delivery and delivery control device of pressureized flowable material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term