JPH10178968A - Heater for water tank - Google Patents

Heater for water tank

Info

Publication number
JPH10178968A
JPH10178968A JP34637296A JP34637296A JPH10178968A JP H10178968 A JPH10178968 A JP H10178968A JP 34637296 A JP34637296 A JP 34637296A JP 34637296 A JP34637296 A JP 34637296A JP H10178968 A JPH10178968 A JP H10178968A
Authority
JP
Japan
Prior art keywords
temperature
water
heater
water tank
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34637296A
Other languages
Japanese (ja)
Other versions
JP3406792B2 (en
Inventor
Takanori Nishihara
孝典 西原
Riyousuke Nakata
亮介 名方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34637296A priority Critical patent/JP3406792B2/en
Publication of JPH10178968A publication Critical patent/JPH10178968A/en
Application granted granted Critical
Publication of JP3406792B2 publication Critical patent/JP3406792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the water temperature of water tank from being rapidly changed far away from a target temperature. SOLUTION: This heater for water tank is provided with a heater for heating water in the water tank and a temperature detector for detecting the water temperature of water tank and when the water temperature inside the water tank detected by this temperature detector is lower than a prescribed temperature, energizing from a commercial power source to the heater is stopped. When the water temperature detected by the temperature detector is settled within the range of prescribed temperature, corresponding to the water temperature detected by the temperature detector, the heater is energized while controlling the phase of commercial power source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水槽用加温装置に関
し、特に鑑賞魚や水生小動物を飼育するための水槽、あ
るいは水草などを育成するための水槽の水を加熱する水
槽用加温装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device for an aquarium, and more particularly to an aquarium heating device for heating water in an aquarium for breeding appreciation fish and small aquatic animals, or for growing aquatic plants.

【0002】[0002]

【従来の技術】従来の水槽用加温装置は、筒体内にニク
ロム線を水密状態に配設した水槽内の水を加熱するヒー
タと、水槽の水温を検知するサーミスタなどから成る温
度検知素子を設け、この温度検知素子で検知された水槽
の水温が目標温度より低いときに、商用電源からヒータ
へ通電して水槽の水を加熱すると共に、温度検知素子で
検知された水槽内の水温が目標温度より高くなったとき
にヒータへの通電を停止して水槽内の水温を目標温度に
維持するように構成されていた。
2. Description of the Related Art A conventional water tank heating device includes a heater for heating water in a water tank in which a nichrome wire is disposed in a watertight state in a cylindrical body, and a temperature detecting element including a thermistor for detecting the water temperature of the water tank. When the water temperature of the water tank detected by the temperature detection element is lower than the target temperature, the heater is energized from the commercial power supply to heat the water in the water tank, and the water temperature in the water tank detected by the temperature detection element is set to the target temperature. When the temperature is higher than the temperature, the power supply to the heater is stopped to maintain the water temperature in the water tank at the target temperature.

【0003】[0003]

【発明が解決しようとする課題】ところが、この従来の
水槽用加温装置では、水槽の水温が目標温度より低いと
きは、商用電源から連続して通電され、水槽の水温が目
標温度より高いときは、商用電源からの通電を直ちに停
止することから、水槽の水温が急激に変化すると共に、
目標温度とは若干異なる水温になるという問題があっ
た。
However, in the conventional heating device for a water tank, when the water temperature of the water tank is lower than the target temperature, the power is continuously supplied from the commercial power supply, and when the water temperature of the water tank is higher than the target temperature. Means that the power from the commercial power supply is immediately stopped, so the water temperature of the water tank changes rapidly,
There was a problem that the water temperature became slightly different from the target temperature.

【0004】本発明はこのような従来装置の問題点に鑑
みて発明されたものであり、水槽の水温が急激に変化し
て目標温度とかけ離れた水温になることを解消した水槽
用加温装置を提供することを目的とする。
[0004] The present invention has been made in view of such problems of the conventional apparatus, and a heating apparatus for a water tank in which the water temperature of the water tank does not suddenly change to become a water temperature far from the target temperature. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る水槽用加温装置では、水槽内の水を加
熱するヒータと、水槽の水温を検知する温度検知素子と
を設け、この温度検知素子で検知された水槽内の水温が
所定温度以下のときに商用電源から前記ヒータへの通電
を停止する水槽用加温装置において、前記温度検知素子
で検知された水温が前記所定温度の範囲内のときは、前
記温度検知素子で検知された水温に応じて前記商用電源
の位相を制御しながら前記ヒータへ通電する。
In order to achieve the above object, a water tank heating apparatus according to the present invention includes a heater for heating water in a water tank and a temperature detecting element for detecting a water temperature of the water tank. When the water temperature in the water tank detected by the temperature detection element is equal to or lower than a predetermined temperature, the power supply from the commercial power supply to the heater is stopped, and the water temperature detected by the temperature detection element is the predetermined temperature. When the temperature is within the temperature range, the heater is energized while controlling the phase of the commercial power supply according to the water temperature detected by the temperature detecting element.

【0006】[0006]

【発明の実施の形態】以下、本発明を添付図面に基づき
詳細に説明する。図1は、本発明に係る水槽用加温装置
の一実施形態を示す電気回路図であり、1は商用電源供
給部、2は整流定電圧回路、3は同期信号回路、4は温
度検知回路、5は温度調整用ボリューム、6は温度制御
回路、7はヒータ駆動回路、8は水検知回路、9はサー
ミスタ断線検知回路、10はヒータ、11はフィルタ回
路である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an electric circuit diagram showing an embodiment of a water tank heating device according to the present invention, wherein 1 is a commercial power supply unit, 2 is a rectified constant voltage circuit, 3 is a synchronization signal circuit, and 4 is a temperature detection circuit. Reference numeral 5 denotes a temperature control volume, 6 denotes a temperature control circuit, 7 denotes a heater drive circuit, 8 denotes a water detection circuit, 9 denotes a thermistor disconnection detection circuit, 10 denotes a heater, and 11 denotes a filter circuit.

【0007】整流定電圧回路2は、変圧部T1 、ダイオ
ードブリッジDS1 、電解コンデンサC2 、抵抗R7
ツェナーダイオードZD3 で構成されており、商用電源
1の電圧を変換して整流化することにより所定電圧の直
流電源を作る。
The rectification constant voltage circuit 2 includes a transformer T 1 , a diode bridge DS 1 , an electrolytic capacitor C 2 , a resistor R 7 ,
It consists of a Zener diode ZD 3, making a DC power supply having a predetermined voltage by rectifying and converting the voltage of the commercial power supply 1.

【0008】同期信号回路3は、ダイオードD6
7 、トランジスタQ2 、コンパレータIC1 などから
成り、商用電源1の正弦波波形の立ち上がりに同期した
信号を作る。
The synchronization signal circuit 3 includes a diode D 6 ,
D 7 , a transistor Q 2 , a comparator IC 1, etc., and generate a signal synchronized with the rising of the sine wave waveform of the commercial power supply 1.

【0009】温度検知回路4は、サーミスタTH、及び
抵抗R14などから成り、サーミスタTHで検知した温度
を電圧に変換する。
[0009] Temperature sensing circuit 4 is formed of a thermistor TH, and the like resistors R 14, converts the temperature detected by the thermistor TH in voltage.

【0010】温度制御回路6は、オペアンプIC3 〜I
6 などから成り、サーミスタTHからの温度電圧と温
度調整用ボリューム5の電圧を比較し、ヒータ10の通
電を制御する信号を同期信号3に同期して出力する。ト
ランジスタQ1 が抵抗R4 を介してフォトカプラPC1
へ接続されており、トランジスタQ1 がオンしていると
きは、このフォトカプラPC1 を導通状態にし、それに
よってトライアックTRIAKにトリガーをかけ、ヒー
タ10に交流電圧がかかる。この温度制御回路6では、
水温によって抵抗が変化するサーミスタTHからの温度
電圧と温度調整用ボリューム5の電圧を比較増幅し、ヒ
ータ10への通電を制御するトランジスタQ1 に駆動信
号を出力する。本発明に係る水槽用加温装置では、水温
と所定温度とトライアックTRIAKとの関係は、3つ
のモードがある。すなわち、水温が所定温度より高い場
合(制御モードA)、トライアックTRIAKは完全不
導通となる。また、水温が所定温度より低い場合(制御
モードB)、トライアックTRIAKは完全導通とな
る。さらに、水温が所定温度範囲内の場合(制御モード
C)、商用電源の電圧波形の位相の途中からトライアッ
クTRIAKは導通状態となる。
The temperature control circuit 6 comprises operational amplifiers IC 3 to I
C 6 and the like, and compares the temperature voltage from the thermistor TH with the voltage of the temperature adjustment volume 5, and outputs a signal for controlling the energization of the heater 10 in synchronization with the synchronization signal 3. Photo coupler PC 1 transistor Q 1 via the resistor R 4
It is connected to, when the transistor Q 1 is in the ON state, and the photocoupler PC 1 in a conductive state, thereby to trigger a triac TRIAK, AC voltage is applied to the heater 10. In this temperature control circuit 6,
It compares and amplifies the temperature voltage from the thermistor TH, the resistance of which varies with the water temperature, and the voltage of the temperature adjustment volume 5, and outputs a drive signal to the transistor Q 1 that controls energization of the heater 10. In the water tank heating apparatus according to the present invention, there are three modes for the relationship between the water temperature, the predetermined temperature, and the triac TRIAK. That is, when the water temperature is higher than the predetermined temperature (control mode A), the triac TRIAK is completely disconnected. When the water temperature is lower than the predetermined temperature (control mode B), the triac TRIAK is completely conducted. Further, when the water temperature is within the predetermined temperature range (control mode C), the triac TRIAK is turned on from the middle of the phase of the voltage waveform of the commercial power supply.

【0011】ヒータ10の駆動回路7は、トライアック
TRIAK、フォトカプラPC1 などから成り、温度制
御回路6からの信号をもとに、ヒータ10を実際に駆動
する。
[0011] driving circuit 7 of the heater 10, the triac TRIAK, made such as optocoupler PC 1, based on a signal from the temperature control circuit 6, actually driving the heater 10.

【0012】水検知回路8は、変圧器T1 、ダイオード
2 〜D5 などから成り、水の有無を検知してヒータ1
0への通電の可否信号を温度制御回路6に送る。この水
検知回路8では、水中にいれる電極間S1 の抵抗値を検
出する。この水検知回路8は変圧器T1 によって変圧さ
れた交流電源と、ダイオードD2 〜D5 で構成される整
流回路との間に水検知用の電極S1 が接続されており、
常時交流電圧が水検知電極S1 に掛かっている。電極S
1 が水中にあった場合、その水の持つ抵抗に流れる電流
は、整流回路D2 〜D5 を通して整流化され電流値に見
合った直流電圧として得られる。一方、コンパレータI
7 は、分圧抵抗R10、R11によって与えられる規定電
圧と水検知電極から得られる電圧とで比較を行い、電極
間S1 が水中にあるか、空気中であるかの判別を行って
いる。水検知電極S1 が水中の場合、規定電圧以上の水
検知電圧が入力されるため、水中と判別される。また、
空気中にある場合、規定電圧を超える水検知電圧が得ら
れないため空気中と判別される。なお、空気中と判別さ
れた場合、前述したトライアックTRIAKを駆動する
回路へ阻止信号を出しトライアックTRIAKが導通し
ないように働く。
The water detecting circuit 8 comprises a transformer T 1 , diodes D 2 to D 5, etc.
A signal indicating whether energization to 0 is possible is sent to the temperature control circuit 6. In the water detection circuit 8 detects the resistance value of the inter-electrode S 1 that are in the water. The water detection circuit 8 and the AC power is transformed by a transformer T 1, electrodes S 1 for water detection is connected between the composed uncontrolled diode rectifier D 2 to D 5,
Always alternating voltage is applied to the water detection electrode S 1. Electrode S
If one was in water, the current flowing through the resistor with the aqueous is obtained as a DC voltage commensurate with the rectified current through the rectifier circuit D 2 to D 5. On the other hand, the comparator I
C 7 performs comparison between the voltage dividing resistors R 10, the specified voltage given by R 11 and voltage obtained from the water sensing electrode, or between the electrodes S 1 is located in the water, subjected to determination of whether the air ing. If water detection electrode S 1 is in the water, for the specified voltage or more water detection voltage is inputted, it is determined that water. Also,
If it is in the air, it is determined to be in the air because a water detection voltage exceeding the specified voltage cannot be obtained. When it is determined that the triac is in the air, a blocking signal is output to the circuit for driving the triac TRIAK, which acts to prevent the triac TRIAK from conducting.

【0013】サーミスタ断線検知回路9は、サーミスタ
THの値が低温のある値になると、サーミスタ断線と判
断してヒータ10への通電を阻止する信号を温度制御回
路6に与える。
When the value of the thermistor TH reaches a certain low temperature value, the thermistor disconnection detecting circuit 9 determines that the thermistor is disconnected and gives a signal to the temperature control circuit 6 to block the power supply to the heater 10.

【0014】ヒータ10は筒状体内にニクロム線などを
水密状態に封入したヒータやセラミック体内にモリブデ
ンなどから成る発熱線などを埋設したセラミックヒータ
などから成る。このヒータ10はヒータ駆動回路7を介
して交流電源10に接続されている。
The heater 10 comprises a heater in which a nichrome wire or the like is sealed in a watertight state in a cylindrical body, or a ceramic heater in which a heating wire made of molybdenum or the like is embedded in a ceramic body. The heater 10 is connected to an AC power supply 10 via a heater drive circuit 7.

【0015】フィルタ回路11は、コイルL1 、コンデ
ンサC4 で構成され、位相制御時に発生するラジオ電波
障害(RF1 )ノイズを低減させる。
The filter circuit 11 includes a coil L 1 and a capacitor C 4 and reduces radio interference (RF 1 ) noise generated during phase control.

【0016】次に、上述した制御モードCの動作を説明
する。サーミスタTHがR14を介して整流定電圧回路2
に接続されており、この電圧がサーミスタ電圧としてコ
ンパレータIC1 、抵抗R20〜R22で構成される温度制
御回路6の前段増幅回路へ入力される。この増幅回路
は、位相制御を行う所定の温度範囲内のサーミスタ電圧
変化を後段で処理できるだけの電圧に拡げることを目的
としている。
Next, the operation of the control mode C will be described. Thermistor TH is via R 14 rectified constant voltage circuit 2
Are connected to, this voltage is input to the preamplifier circuit of the temperature control circuit 6 consists of a comparator IC 1, resistors R 20 to R 22 as thermistor voltage. The purpose of this amplifier circuit is to expand a thermistor voltage change within a predetermined temperature range for performing phase control to a voltage that can be processed in a subsequent stage.

【0017】次に、温度制御回路6の後段の増幅回路で
は抵抗R23〜R26と温度調整用ボリューム5で決定され
る基準電圧と比較したうえで増幅している。基準電圧と
比較することで、前段で増幅されたサーミスタ電圧を疑
似的に電圧可変し、位相制御する電圧範囲まで平行移動
させている。つまり、温度制御回路6の前段増幅回路で
はサーミスタ信号の単なる増幅を行い、後段は前段の増
幅信号の電圧シフトを行う。その結果、図2(c)及び
図3(c)に示すサーミスタ信号TH1 、TH2 とな
る。
Next, is amplified upon by the amplifier circuit of the latter stage of the temperature control circuit 6 as compared with a reference voltage determined by the resistor R 23 to R 26 and the temperature adjustment knob 5. By comparing it with the reference voltage, the thermistor voltage amplified in the preceding stage is pseudo-variable and is shifted in parallel to the voltage range for phase control. That is, the pre-amplifier circuit of the temperature control circuit 6 simply amplifies the thermistor signal, and the post-stage performs voltage shift of the pre-stage amplified signal. As a result, the thermistor signals TH 1 and TH 2 shown in FIGS. 2C and 3C are obtained.

【0018】一方、コンパレータIC1 、抵抗R35、R
43、R44、及びコンデンサC10からなる基準波(のこぎ
り波)発生回路では、抵抗R35、R43とコンデンサC10
とで決まる時定数で、商用電源電圧に同期した疑似のこ
ぎり波N1 、N2 を作り出す。こののこぎり波N1 、N
2 は、位相制御を行うための基準波となり、制御電圧の
範囲内で電圧を上下させている。こののこぎり波N1
2 と前述した増幅信号TH1 、TH2 とを比較合成す
ることで位相制御のための信号が作られる。
On the other hand, a comparator IC 1 , resistors R 35 and R
43, R 44, and reference waves comprising a capacitor C 10 in (sawtooth wave) generating circuit includes resistors R 35, R 43 and capacitor C 10
The pseudo sawtooth waves N 1 and N 2 synchronized with the commercial power supply voltage are created by the time constant determined by The saw-tooth wave N 1, N
Reference numeral 2 is a reference wave for performing phase control, and raises and lowers the voltage within the range of the control voltage. This saw wave N 1 ,
A signal for phase control is created by comparing and synthesizing N 2 with the above-described amplified signals TH 1 and TH 2 .

【0019】この制御モードCにおいて、仮に水温<所
定温度範囲内の中心温度の関係にあったとき、のこぎり
波と比較合成した波形の1サイクル中でみた場合、図2
に示すように、のこぎり波N1 の波形が大きくなり、コ
ンパレータIC6 で比較合成された出力はトランジスタ
1 をオンしている時間が長く、オフしている時間が短
くなり、結果として商用電源の半サイクルのヒータ通電
時間は長くなる。なお、トランジスタQ1 のオンするタ
イミングは、のこぎり波N1 が電源同期しているので、
必ず商用電源電圧波形の立ち上がりから、必ずある決ま
った時点となる。
In this control mode C, if the relationship of water temperature <center temperature within a predetermined temperature range is satisfied, and one cycle of the waveform synthesized and compared with the sawtooth wave is shown in FIG.
As shown in the waveform of the sawtooth wave N 1 is increased, the output of the comparison synthesized by the comparator IC 6 has a long time that by turning the transistor Q 1, off in time is shortened and the commercial as a result the power supply The heater energizing time of the half cycle becomes longer. The timing at which the transistor Q 1 is turned on is synchronized with the power supply of the sawtooth wave N 1 .
It is always a certain point from the rise of the commercial power supply voltage waveform.

【0020】水温>所定温度範囲内の中心温度の関係に
あった場合には、図3に示すように、逆にのこぎり波N
2 との比較合成の結果、トランジスタQ1 のオン時間が
短く、オフ時間が長い動作をする。このようにサーミス
タ電圧TH1 、TH2 の大きさによってトランジスタQ
1 のオン時間が長くなったり、短くなったりすることが
決定される。なお、所定温度の範囲は、温度調整用ボリ
ュームで設定される所定温度範囲内の中心温度に対して
±0.25℃程度になる。この所定温度の範囲が±0.
5℃以内であれば、鑑賞魚が異変を全く起こすことがな
いように水温を制御できる。
When the relationship of water temperature> center temperature within a predetermined temperature range is satisfied, as shown in FIG.
Results of the comparison synthesis of the 2, on-time of the transistor Q 1 is short, the off time is long operation. As described above, the transistor Q depends on the magnitude of the thermistor voltages TH 1 and TH 2.
It is determined that the ON time of 1 becomes longer or shorter. Note that the predetermined temperature range is about ± 0.25 ° C. with respect to the center temperature within the predetermined temperature range set by the temperature adjustment volume. This predetermined temperature range is ± 0.
When the temperature is within 5 ° C., the water temperature can be controlled so that the appreciation fish does not cause any abnormal change.

【0021】図4は電源波形と位相制御波形を示す図で
あり、同図(a)は電源波形を示す図である。なお、図
4において斜線部分がヒータ10に印加される電力であ
る。同図(b)は水温=所定温度範囲内の中心温度のと
きの動作波形を示し、同図(c)は水温<所定温度範囲
内の中心温度のときの制御波形を示し、同図(d)は水
温>所定温度範囲内の中心温度のときの制御波形を示
す。
FIG. 4 is a diagram showing a power supply waveform and a phase control waveform, and FIG. 4A is a diagram showing a power supply waveform. In FIG. 4, the hatched portion is the power applied to the heater 10. FIG. 3B shows an operation waveform when water temperature = center temperature within a predetermined temperature range, and FIG. 4C shows a control waveform when water temperature <center temperature within a predetermined temperature range. ) Shows a control waveform when water temperature> center temperature within a predetermined temperature range.

【0022】次に、全体の動作方法を説明する。サーミ
スタTHの検知温度(水温)が位相制御範囲より低い点
(所定温度以下)で回路を動作させると、制御モードB
となり、ヒータ10は完全通電をする。よって、水槽内
の水温は徐々に上昇を始める。水温が上昇して所定温度
範囲内となって制御モードCとなり、ヒータ10は位相
制御を始めるが、なおもサーミスタ電圧は上がる。制御
モードCでは、サーミスタ電圧が上がる毎にヒータ10
の通電時間が短くなることは先に述べたが、サーミスタ
THの電圧上昇(水温上昇)にしたがいヒータ10に制
御がかかるため、やがてサーミスタTHはある温度で落
ちつくことになる。逆に、水温が位相制御範囲より高い
点(所定温度以上)で動作させると制御モードAとな
り、ヒータ10は完全無通電になり、周囲の温度により
水温が下がるまでこの制御を維持する。やがて、制御モ
ードCとなり、ヒータ10は前述した通電を繰り返す。
そして、サーミスタTHはある電圧(水温)で落ちつ
く。このような制御をすることで、この回路は常に水温
を一定に保ことを可能としている。つまり、サーミスタ
THで検出する電圧によってヒータ10にフィードバッ
クをかけ、目標温度に限りなく近い温度になるように制
御することができる。
Next, the overall operation method will be described. When the circuit is operated at a point where the detected temperature (water temperature) of the thermistor TH is lower than the phase control range (below a predetermined temperature), the control mode B
And the heater 10 is completely energized. Therefore, the water temperature in the water tank gradually starts to rise. When the water temperature rises and falls within a predetermined temperature range, the control mode C is set, and the heater 10 starts phase control, but the thermistor voltage still rises. In the control mode C, each time the thermistor voltage increases, the heater 10
As described above, since the heater 10 is controlled according to the voltage rise (water temperature rise) of the thermistor TH, the thermistor TH will eventually settle down at a certain temperature. Conversely, if the operation is performed at a point where the water temperature is higher than the phase control range (predetermined temperature or higher), the control mode A is set, the heater 10 is completely de-energized, and this control is maintained until the water temperature falls due to the ambient temperature. Eventually, the control mode C is set, and the heater 10 repeats the above-described energization.
Then, the thermistor TH calms down at a certain voltage (water temperature). By performing such control, the circuit can always keep the water temperature constant. That is, the heater 10 is fed back with the voltage detected by the thermistor TH, and the temperature can be controlled to be as close as possible to the target temperature.

【0023】[0023]

【発明の効果】以上のように、本発明に係る水槽用加温
装置によれば、温度検知素子で検知された水温が所定温
度の範囲内のときは、温度検知素子で検知された水温に
応じて商用電源の位相を制御しながらヒータへ通電する
ことから、水槽の水温に応じて目標温度に近づけるよう
にヒータを正確に駆動することができ、水槽の水温が急
激に変化することを防止できると共に、水温が目標温度
になるように極めて厳密に制御できる。
As described above, according to the water tank heating device of the present invention, when the water temperature detected by the temperature detecting element is within the predetermined temperature range, the water temperature detected by the temperature detecting element is reduced to the predetermined value. Power is supplied to the heater while controlling the phase of the commercial power supply accordingly, so that the heater can be accurately driven to approach the target temperature according to the water temperature of the water tank, preventing the water temperature of the water tank from changing rapidly. At the same time, the water temperature can be controlled very strictly to the target temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水槽用加温装置の一実施形態を示
す電気回路図である。
FIG. 1 is an electric circuit diagram showing an embodiment of a water tank heating device according to the present invention.

【図2】本発明に係る水槽用加温装置の動作の一態様を
説明するための図である。
FIG. 2 is a view for explaining one mode of operation of the water tank heating device according to the present invention.

【図3】本発明に係る水槽用加温装置の動作の他の態様
を説明するための図である。
FIG. 3 is a view for explaining another mode of operation of the water tank heating device according to the present invention.

【図4】本発明に係る水槽用加温装置の位相制御を説明
するための図である。
FIG. 4 is a diagram for explaining phase control of the water tank heating device according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・商用電源、10・・・ヒータ、TH・・・温度
検知素子
1: Commercial power supply, 10: heater, TH: temperature detection element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水槽内の水を加熱するヒータと、水槽の
水温を検知する温度検知素子とを設け、この温度検知素
子で検知された水槽内の水温が所定温度以下のときに商
用電源から前記ヒータへ通電すると共に、この温度検知
素子で検知された水温が所定温度以上のときに前記ヒー
タへの通電を停止する水槽用加温装置において、前記温
度検知素子で検知された水温が前記所定温度の範囲内の
ときは、前記温度検知素子で検知された水温に応じて前
記商用電源の位相を制御しながら前記ヒータへ通電する
ことを特徴とする水槽用加温装置。
1. A heater for heating water in a water tank, and a temperature detecting element for detecting a temperature of the water in the water tank, wherein when a temperature of the water in the water tank detected by the temperature detecting element is lower than a predetermined temperature, a commercial power supply is used. In a water tank heating device that energizes the heater and stops energizing the heater when the water temperature detected by the temperature detecting element is equal to or higher than a predetermined temperature, the water temperature detected by the temperature detecting element may be the predetermined temperature. When the temperature is within the range, the heater is energized while controlling the phase of the commercial power supply in accordance with the water temperature detected by the temperature detection element.
【請求項2】 前記所定温度の範囲が±0.5℃以内で
あることを特徴とする請求項1に記載の水槽用加温装
置。
2. The aquarium heating apparatus according to claim 1, wherein the predetermined temperature range is within ± 0.5 ° C.
JP34637296A 1996-12-25 1996-12-25 Water tank heating device Expired - Fee Related JP3406792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34637296A JP3406792B2 (en) 1996-12-25 1996-12-25 Water tank heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34637296A JP3406792B2 (en) 1996-12-25 1996-12-25 Water tank heating device

Publications (2)

Publication Number Publication Date
JPH10178968A true JPH10178968A (en) 1998-07-07
JP3406792B2 JP3406792B2 (en) 2003-05-12

Family

ID=18382979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34637296A Expired - Fee Related JP3406792B2 (en) 1996-12-25 1996-12-25 Water tank heating device

Country Status (1)

Country Link
JP (1) JP3406792B2 (en)

Also Published As

Publication number Publication date
JP3406792B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
US5376775A (en) High frequency induction heating appliance
US20090245847A1 (en) Fixer driving device and fixer driving method
KR910001987B1 (en) Magnetron feeding apparatus and control method
JP3406792B2 (en) Water tank heating device
JP2005044670A (en) High frequency heating device
JP2009087899A (en) Induction heating cooker
US11337279B2 (en) Method for sensing container using resonant current
JP3215037B2 (en) Water tank heating device
JPH0325885A (en) Induction heating cooker
JPH04371108A (en) Pan detecting device for induction heating cooking appliance
KR940005470B1 (en) Over output protection apparatus of inveter microwave oven
JP2589159Y2 (en) Induction heating device for cooking
JPS6142305Y2 (en)
JPH0576758B2 (en)
JP3569071B2 (en) Motor speed control device
JPH10208575A (en) Relay controlling method
JP2003068426A (en) Electric power control equipment
JPS62238943A (en) Induction heating water heater
JPS5998220A (en) Controller
JPH0356074A (en) Pulse width modulating invertor device
JPH0124353B2 (en)
NL1037277C2 (en) METHOD AND DEVICE FOR SIMULTANEOUSLY CONTROLLING DISINFECTION EQUIPMENT.
KR820002169Y1 (en) Remot control circuit for motor speed controlling
JP3189459B2 (en) Phase control circuit of electric water heater
JPH01307652A (en) Temperature controller for heater for oxygen sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090307

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110307

LAPS Cancellation because of no payment of annual fees