JPH10208575A - Relay controlling method - Google Patents

Relay controlling method

Info

Publication number
JPH10208575A
JPH10208575A JP1485797A JP1485797A JPH10208575A JP H10208575 A JPH10208575 A JP H10208575A JP 1485797 A JP1485797 A JP 1485797A JP 1485797 A JP1485797 A JP 1485797A JP H10208575 A JPH10208575 A JP H10208575A
Authority
JP
Japan
Prior art keywords
relay
contact
output
microcomputer
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1485797A
Other languages
Japanese (ja)
Inventor
Masahiko Yoshida
雅彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home Tech Ltd filed Critical Hitachi Home Tech Ltd
Priority to JP1485797A priority Critical patent/JPH10208575A/en
Publication of JPH10208575A publication Critical patent/JPH10208575A/en
Pending legal-status Critical Current

Links

Landscapes

  • Keying Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable pointing during on and off of a contact to be constant from a second or subsequent relay operation by providing a contact operation detecting circuit, calculating time up to on or off of the contact due to nonexcitation or excitation of a relay coil, and establishing timing. SOLUTION: A contact operation detecting circuit 16 connects an AC photo- coupler in parallel to a relay contact 2, and this output is wave-rectified by a resistor, a diode and a capacitor, is inputted to a transistor base, and is outputted from the transistor collector. The relay contact 2 initially inputs an output wave at a contact part during on and off to a microcomputer 15, that delay time (first time) is calculated by the microcomputer 15, and second and subsequent relay outputs are performed considering that delay time. Thereby, the second and subsequent relay outputs make a relay contact openable at an ideal timing regardless of relay individual fluctuation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器のリレー
制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a relay of electric equipment.

【0002】[0002]

【従来の技術】制御回路部にマイクロコンピュータを使
用し、ヒーターを制御する手段としてコイルの無励磁,
励磁に応じて接点が瞬時にON,OFFし、それ以外は
動作要素上特別な機能を持たない一般的なリレーを使用
する電気機器において、ACゼロクロス手前を狙ったリ
レー出力タイミングが1パターンだとリレー個々のバラ
ツキにおいて、接点のON,OFFがACゼロクロスを
過ぎた所で行われ、特に接点OFF時にアークが発生し
接点寿命が満足できないという問題があった。
2. Description of the Related Art A microcomputer is used in a control circuit section, and a means for controlling a heater is a method of controlling a heater without a coil.
If an electrical device that uses a general relay that has no special function as an operating element when the contact instantaneously turns ON and OFF in response to excitation and the relay output timing aimed at just before the AC zero crossing is one pattern In the variation of each relay, the ON and OFF of the contacts are performed after passing the AC zero cross, and there is a problem that an arc is generated when the contacts are turned OFF and the contact life cannot be satisfied.

【0003】例えば、この対策として接点の極性を交互
に変えてON,OFFさせたり、ACゼロクロスに関係
なくランダムに接点開閉を行わせていた。
For example, as a countermeasure, the polarity of the contact is alternately turned on and off, or the contact is randomly opened and closed regardless of the AC zero cross.

【0004】[0004]

【発明が解決しようとする課題】前記従来の方法では、
極性を交互に変えても接点OFF時のアークの影響が大
きく、ノイズによる影響を受けたりする。又、ランダム
に接点開閉を行うことは、複雑であり、この場合もノイ
ズの影響を受けるという問題があった。
In the above conventional method,
Even if the polarity is changed alternately, the influence of the arc when the contact is turned off is large and may be affected by noise. In addition, it is complicated to randomly open and close the contacts, and in this case, there is also a problem that noise is affected.

【0005】[0005]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明は、リレー接点のON,OFFタイミン
グをACゼロクロス手前で動作させるために、接点動作
検出回路を設け、マイクロコンピュータでリレーコイル
の無励磁,励磁による接点、ON,OFFまでの時間を
計算してタイミングを確定させるようにしたものであ
る。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a contact operation detecting circuit for operating the ON / OFF timing of a relay contact just before an AC zero crossing. The non-excitation of the relay coil, the contact by excitation, and the time until ON and OFF are calculated to determine the timing.

【0006】[0006]

【発明の実施の形態】本発明は、リレー接点に対して並
列にACフォトカプラを接続し、この出力を抵抗とダイ
オード,コンデンサで波形整形しトランジスタのベース
に入力してトランジスタのコレクタから出力させる接点
動作検出回路を設けて、リレーが最初にON及びOFF
した時の接点部の出力波形をマイクロコンピュータに入
力し、その遅延時間(1回目)をマイクロコンピュータ
で計算し、その遅延時間分を考慮して2回目以降のリレ
ー出力を行うこととした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, an AC photocoupler is connected in parallel to a relay contact, the output is shaped by a resistor, a diode, and a capacitor, input to the base of the transistor, and output from the collector of the transistor. A contact operation detection circuit is provided so that the relay is turned on and off first.
The output waveform of the contact portion at this time is input to the microcomputer, the delay time (first time) is calculated by the microcomputer, and the second and subsequent relay outputs are performed in consideration of the delay time.

【0007】以上のように構成したことにより、リレー
個々のバラツキに関係なく接点のON及びOFF時のポ
イントがリレーの動作2回目以降から一定化される。
[0007] With the above configuration, the ON and OFF points of the contacts are fixed from the second and subsequent operations of the relay irrespective of the individual variations of the relay.

【0008】[0008]

【実施例】以下、本発明の一実施例について図面に従っ
て説明する。図1は本発明の一実施例を施したリレー駆
動回路のブロック図であり、図2はリレー接点動作検出
回路図であり、図3はマイクロコンピュータによるリレ
ー出力タイミングの確定フローチャートであり、図4は
リレーOFF時の例を示した各部の信号波形である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a relay drive circuit according to an embodiment of the present invention, FIG. 2 is a circuit diagram of a relay contact operation detecting circuit, FIG. 3 is a flowchart for determining a relay output timing by a microcomputer, and FIG. Is a signal waveform of each section showing an example when the relay is OFF.

【0009】図1において、負荷はリレーの接点2を通
してヒーター3を駆動するものであり、電源部はトラン
ス4で降圧し整流回路5で直流にし、その出力をコンデ
ンサ6で平滑する。それをリレー用定電圧回路7を通し
てコンデンサ8で更に平滑する。これをリレー駆動用電
源とし、トランジスタ11のエミッタを高電位側に接続
してコレクタからリレーコイル10を通して低電位側に
接続し、マイクロコンピュータからなる制御回路部15
からリレー信号出力をトランジスタ11のベースに出力
してリレーをON及びOFFさせる。ツェナーダイオー
ド9はリレーコイル10による逆起電力保護であり、抵
抗12はトランジスタ11を確実にOFFさせるためのバ
イアス抵抗、抵抗13はベース電流制限用である。リレ
ー駆動用電源を制御回路用定電圧回路14を通して制御
回路部15の電源とする。リレー接点2の両端から接点
動作検出回路16を通してマイクロコンピュータ15に
入力する。AC電源1からAC同期信号検出回路17を
通してACゼロクロスに同期した信号をマイクロコンピ
ュータ15に入力する。マイクロコンピュータ15は上
記したリレー信号出力と接点動作検出信号、ACゼロク
ロス同期信号の3つからリレー駆動タイミングを計算し
て確定させる。
In FIG. 1, a load drives a heater 3 through a contact 2 of a relay, and a power supply unit lowers the voltage by a transformer 4 to make it DC by a rectifier circuit 5 and smoothes the output by a capacitor 6. It is further smoothed by a capacitor 8 through a constant voltage circuit 7 for relay. This is used as a power source for driving the relay, the emitter of the transistor 11 is connected to the high potential side, the collector is connected to the low potential side through the relay coil 10 from the collector, and the control circuit unit 15 comprising a microcomputer is connected.
To output a relay signal output to the base of the transistor 11 to turn on and off the relay. The Zener diode 9 is for back electromotive force protection by the relay coil 10, the resistor 12 is a bias resistor for surely turning off the transistor 11, and the resistor 13 is for limiting the base current. The power source for driving the relay is used as the power source for the control circuit unit 15 through the constant voltage circuit 14 for the control circuit. The signal is input from both ends of the relay contact 2 to the microcomputer 15 through the contact operation detecting circuit 16. A signal synchronized with the AC zero cross from the AC power supply 1 through the AC synchronization signal detection circuit 17 is input to the microcomputer 15. The microcomputer 15 calculates and determines the relay drive timing from the relay signal output, the contact operation detection signal, and the AC zero cross synchronization signal.

【0010】図2はリレーの接点動作検出回路16の例
を示しており、リレー接点2に対して並列にACフォト
カプラ19の発光部を接続し、エミッタを基準点(GN
D)に接続する。プルアップ抵抗20とダイオード21
のアノードをACフォトカプラ19のコレクタに接続
し、ダイオード21のカソードとGND間にコンデンサ
22を接続する。この出力をトランジスタ24のベース
に入力する。トランジスタ24のエミッタをGNDに接
続し、コレクタにプルアップ抵抗25を接続して出力と
する。抵抗23はトランジスタ24を確実にOFFさせ
るためのものである。これにより、リレー接点2がON
するとトランジスタ24のコレクタ出力は、“L”とな
り、リレー接点2がOFFするとトランジスタ24のコ
レクタ出力は“H”となる。
FIG. 2 shows an example of a relay contact operation detecting circuit 16, in which a light emitting portion of an AC photocoupler 19 is connected in parallel to the relay contact 2, and an emitter is connected to a reference point (GN).
Connect to D). Pull-up resistor 20 and diode 21
Is connected to the collector of the AC photocoupler 19, and a capacitor 22 is connected between the cathode of the diode 21 and GND. This output is input to the base of the transistor 24. The emitter of the transistor 24 is connected to GND, and the collector is connected to the pull-up resistor 25 for output. The resistor 23 is for surely turning off the transistor 24. As a result, the relay contact 2 is turned ON.
Then, the collector output of the transistor 24 becomes “L”, and when the relay contact 2 is turned off, the collector output of the transistor 24 becomes “H”.

【0011】図3はマイクロコンピュータによるリレー
動作タイミングの確定方法のフローチャートを示し、図
4はリレーOFF時の例を示した各部の波形の変化を示
す。AC電源のゼロクロスに同期した信号を基本とし、
この波形の立ち上がりから次の立ち上がりまでをT1と
する。次に、最初(1回目)のリレー出力OFFのタイ
ミングをACゼロクロス部分になるようにAC同期信号
波形の立ち上がりからの時間T2と、リレー接点OFF
の狙い目箇所をACゼロクロスから時間a手前の部分と
いうことをあらかじめ設定しておく。
FIG. 3 shows a flowchart of a method for determining the relay operation timing by the microcomputer, and FIG. 4 shows a change in the waveform of each part showing an example when the relay is OFF. Based on the signal synchronized with the AC power zero cross,
The period from the rise of this waveform to the next rise is defined as T1. Next, the time (T2) from the rising edge of the AC synchronizing signal waveform and the relay contact OFF are set so that the first (first) relay output OFF timing becomes the AC zero crossing portion.
It is set in advance that the target position is a portion before the time a from the AC zero cross.

【0012】1回目のリレーOFF信号を出力したとき
のリレー接点がOFFしたAC同期信号波形の立ち上が
りからの時間T3を読み込む。マイクロコンピュータ
は、1回目のリレーOFFさせた(フローチャート部2
6)時に上記4個のデータから最初にフローチャート部
27の判定を行い、NOならば、フローチャート部28
の処理をして2回目以降のリレー出力OFFタイミング
T2を再設定し、フローチャート部32へ移行する。も
しフローチャート部27の判定でYESならば、フロー
チャート部29の処理をして2回目以降のリレー出力O
FFタイミングT2を再設定し、フローチャート部30
の判定を行い、NOならばフローチャート部32へ移行
する。もしフローチャート部30の判定においてYES
ならばフローチャート部31の処理を行い、2回目以降
のリレー出力OFFタイミングT2を再々設定し、フロ
ーチャート部32へ移行する。
The time T3 from the rise of the AC synchronizing signal waveform when the relay contact is turned off when the first relay OFF signal is output is read. The microcomputer turns off the relay for the first time (flow chart part 2
6) At time, the flowchart unit 27 first determines the four data, and if NO, the flowchart unit 28
And resets the relay output OFF timing T2 for the second and subsequent times, and proceeds to the flowchart section 32. If the determination in the flowchart section 27 is YES, the processing in the flowchart section 29 is performed and the relay output O
The FF timing T2 is reset and the flowchart section 30
Is determined, and if NO, the flow shifts to the flowchart section 32. If the determination in the flowchart section 30 is YES
If so, the process of the flowchart unit 31 is performed, the relay output OFF timing T2 for the second and subsequent times is set again, and the process proceeds to the flowchart unit 32.

【0013】尚、リレー出力ONタイミング確定も上記
と同様に行うものである。
The relay output ON timing is determined in the same manner as described above.

【0014】[0014]

【発明の効果】本発明によれば、リレー接点動作検出回
路を設けてその出力をマイクロコンピュータに入力して
計算させることによりリレーON及びOFF動作の2回
目以降はリレー個々のバラツキに関係なく、ACゼロク
ロス手前の狙い目とする理想的タイミングでリレー接点
を動作させることができ、リレー接点の損傷を低減でき
寿命を伸ばせ、また、接点に発生するアークノイズによ
る影響を少なくさせることができる。
According to the present invention, a relay contact operation detecting circuit is provided, and its output is input to a microcomputer and calculated, so that the second and subsequent relay ON and OFF operations are independent of the individual variations of the relay. The relay contacts can be operated at an ideal timing before the AC zero cross, so that damage to the relay contacts can be reduced, the life can be extended, and the influence of arc noise generated at the contacts can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリレー制御方法の一実施例を示すリレ
ー駆動回路のブロック回路図である。
FIG. 1 is a block circuit diagram of a relay drive circuit showing one embodiment of a relay control method of the present invention.

【図2】同リレー接点動作検出回路図である。FIG. 2 is a circuit diagram of the relay contact operation detecting circuit.

【図3】同リレー出力タイミング確定フローチャートで
ある。
FIG. 3 is a flowchart for determining the relay output timing.

【図4】同リレーOFF時の例を示す各部の信号波形図
である。
FIG. 4 is a signal waveform diagram of each section showing an example when the relay is OFF.

【符号の説明】[Explanation of symbols]

1…リレー接点、3…ヒーター、15…制御回路部(マ
イクロコンピュータ)、16…接点動作検出回路。
DESCRIPTION OF SYMBOLS 1 ... Relay contact, 3 ... Heater, 15 ... Control circuit part (microcomputer), 16 ... Contact operation detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】制御回路部にマイクロコンピュータを使用
し、ヒーターを駆動させる手段としてコイルの無励磁,
励磁に応じて接点が瞬時にON,OFFするリレー制御
方法において、リレー接点のON,OFFタイミングを
ACゼロクロス手前で動作させるために、接点動作検出
回路を設け、マイクロコンピュータでリレーコイルの無
励磁,励磁による接点ON,OFFまでの時間を計算し
てタイミングを確定させることを特徴とするリレー制御
方法。
A microcomputer is used for a control circuit unit, and a means for driving a heater includes a non-excitation coil,
In the relay control method in which the contacts are instantaneously turned ON and OFF in response to excitation, a contact operation detection circuit is provided to operate the ON and OFF timings of the relay contacts just before the AC zero crossing. A relay control method characterized in that the time until contact ON and OFF by excitation is calculated to determine the timing.
JP1485797A 1997-01-29 1997-01-29 Relay controlling method Pending JPH10208575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1485797A JPH10208575A (en) 1997-01-29 1997-01-29 Relay controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1485797A JPH10208575A (en) 1997-01-29 1997-01-29 Relay controlling method

Publications (1)

Publication Number Publication Date
JPH10208575A true JPH10208575A (en) 1998-08-07

Family

ID=11872709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1485797A Pending JPH10208575A (en) 1997-01-29 1997-01-29 Relay controlling method

Country Status (1)

Country Link
JP (1) JPH10208575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018020829A1 (en) * 2016-07-26 2019-02-14 株式会社日立産機システム Hoisting machine and control method of hoisting machine
JP2021009802A (en) * 2019-07-01 2021-01-28 象印マホービン株式会社 Relay control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018020829A1 (en) * 2016-07-26 2019-02-14 株式会社日立産機システム Hoisting machine and control method of hoisting machine
JP2021009802A (en) * 2019-07-01 2021-01-28 象印マホービン株式会社 Relay control device

Similar Documents

Publication Publication Date Title
JPH10208575A (en) Relay controlling method
JPH07115768A (en) Resonance type converter
JP2003189598A (en) Switching power unit
JPH08171843A (en) Relay controlling circuit
JPH11168367A (en) Contact point input device
KR0179541B1 (en) Phase control load operating device and method thereof
JP2005102347A (en) Phase control unit of air conditioner
JP2000350460A (en) Power supply unit
JP2512531B2 (en) Induction heating cooker
JPH0356074A (en) Pulse width modulating invertor device
JPS6226729A (en) Relay driver
JPH08171842A (en) Relay controlling circuit
JP2003052174A (en) Switching power supply
JP2002010645A (en) Voltage-control method and unit
JPH0564439A (en) Circuit for controlling high-voltage power supply
JPH0821281B2 (en) Relay controller
KR960020617A (en) High frequency heater
JPH04222470A (en) Controlling circuit for pulse width modulation-controlled inverter
KR20230103975A (en) A power module that can improve power efficiency and a method for controlling turn-off of a secondary switch
JP2002303644A (en) Current detector and electric apparatus controller
KR960028699A (en) Output Control Circuit of Resonant Inverter
JPH10337079A (en) Control method for brushless motor, and its device
JPH07231663A (en) Control device of direct current link parallel resonance inverter
JP2591464Y2 (en) Constant amplitude control circuit for electromagnetic vibration equipment
JP2000348586A (en) Power circuit