JPH1017859A - Method for extracting constituent of fluorescent substance from fluorescent substance - Google Patents

Method for extracting constituent of fluorescent substance from fluorescent substance

Info

Publication number
JPH1017859A
JPH1017859A JP17323996A JP17323996A JPH1017859A JP H1017859 A JPH1017859 A JP H1017859A JP 17323996 A JP17323996 A JP 17323996A JP 17323996 A JP17323996 A JP 17323996A JP H1017859 A JPH1017859 A JP H1017859A
Authority
JP
Japan
Prior art keywords
phosphor
reactant
fluorescent substance
constituent
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17323996A
Other languages
Japanese (ja)
Inventor
Shozo Oshio
祥三 大塩
Koji Kitamura
幸二 北村
Teruaki Shigeta
照明 重田
Shigeru Horii
堀井  滋
Tomizo Matsuoka
富造 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17323996A priority Critical patent/JPH1017859A/en
Publication of JPH1017859A publication Critical patent/JPH1017859A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To extract a constituent of fluorescent substance other than rare earth compds. from a fluorescent substance. SOLUTION: A Ba0.9 Eu0.1 MgAl10 O17 fluorescent substance is mixed with an aluminum fluoride reactant for 1hr by using a mortar (the reactant addition step). The resultant mixture is put in an alumina-made boat, which is then placed in an alumina-made core tube in a tubular atmospheric furnace. Nitrogen gas and hydrogen gas are introduced into the core tube, and the temp. of the mixture is elevated at a temp. rise rate of 400 deg.C/hr by energizing an electric heater and is kept at 1,200 deg.C for 2hr. Then, the mixture is cooled at a temp. fall rate of 200 deg.C/hr to room temp. (the thermal reaction step). After the reaction step, the thermal reaction product of the mixture remains in the boat. Thus, after adding the reactant to a fluorescent substance, the resultant mixture is heated to give a thermal reaction product and a part of the product is subjected to extraction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光灯などの照明
装置やプラズマディスプレイなどの表示装置に、広く用
いられる蛍光体の再利用技術に関し、さらに詳しくは、
蛍光体からの蛍光体構成物の抽出技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for reusing a phosphor widely used for a lighting device such as a fluorescent lamp and a display device such as a plasma display.
The present invention relates to a technique for extracting a phosphor constituent from a phosphor.

【0002】[0002]

【従来の技術】従来から、蛍光体からの蛍光体構成物の
抽出技術においては、例えば、資源・素材’95(秋季
大会)p.9や、特開昭60−161330号公報に示
されるように、蛍光体構成物の中の希土類を抽出してき
た。抽出する希土類としては、例えばユーロピウムがあ
る。
2. Description of the Related Art Conventionally, in a technique for extracting a phosphor component from a phosphor, for example, resources and materials '95 (Autumn Games), p. 9 and JP-A-60-161330, rare earth elements in the phosphor composition have been extracted. The rare earth to be extracted is, for example, europium.

【0003】しかしながら、従来の蛍光体からの蛍光体
構成物の抽出技術においては、希土類以外の蛍光体構成
物を蛍光体から抽出しない。このため、例えば、アルミ
ニウム等の、希土類以外の蛍光体構成物は、蛍光体から
抽出されずに再利用されないばかりか、廃棄処分されて
いる。環境保護や環境保全への意識が高まるなかで、廃
棄処分されている蛍光体構成物の再利用が望まれてい
る。
[0003] However, in the conventional technique for extracting a phosphor constituent from a phosphor, a phosphor constituent other than a rare earth element is not extracted from the phosphor. For this reason, for example, phosphor components other than rare earths, such as aluminum, are not extracted from the phosphor and reused, but are also discarded. With increasing awareness of environmental protection and environmental preservation, there is a demand for reusing discarded phosphor components.

【0004】[0004]

【発明が解決しようとする課題】従来の蛍光体からの蛍
光体構成物の抽出技術にあっては、前記希土類以外の蛍
光体構成物を、蛍光体から抽出せず再利用しないばかり
か、蛍光体のまま廃棄処分するために、蛍光体構成物が
有効利用されないばかりか、蛍光体の製造における廃棄
物量が増加するという課題があった。
In the conventional technique for extracting a phosphor composition from a phosphor, the phosphor composition other than the rare earth element is not extracted from the phosphor and is not reused. In order to dispose of the phosphor as it is, not only is the phosphor component not effectively used, but also the amount of waste in the production of the phosphor increases.

【0005】本発明は、蛍光体から希土類以外の蛍光体
構成物を抽出する方法を提供することを目的としてい
る。同時に、蛍光体の製造における廃棄物量を低減する
ことも目的としている。
[0005] It is an object of the present invention to provide a method for extracting a phosphor component other than a rare earth from a phosphor. At the same time, the object is to reduce the amount of waste in the production of the phosphor.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の蛍光体からの蛍光体構成物の抽出方法にお
いては、反応剤添加工程と、加熱反応工程と、分離工程
とを主体にして構成する。
Means for Solving the Problems To achieve the above object, a method for extracting a phosphor component from a phosphor of the present invention mainly comprises a reactant adding step, a heating reaction step, and a separation step. And configure.

【0007】以下、本発明の蛍光体からの蛍光体構成物
の抽出方法について詳しく述べる。反応剤添加工程で
は、蛍光体に反応剤を添加する。次の加熱反応工程で
は、蛍光体と反応剤が化学反応するよう加熱する。最後
の分離工程では、加熱反応物の中の蛍光体構成物を分離
する。蛍光体を、反応促進剤を用いて合成し得る蛍光体
にして、反応剤を、上記反応促進剤にするとよい。反応
剤となる反応促進剤には、弗化アルミニウムがある。弗
化アルミニウムを反応剤とした場合では、蛍光体をBa
1-xEuxMgAl1017の化学式で表わされる化合物を
主体とする蛍光体にするとよい。
Hereinafter, the method for extracting a phosphor constituent from the phosphor of the present invention will be described in detail. In the reactant adding step, a reactant is added to the phosphor. In the next heating reaction step, heating is performed so that the phosphor and the reactant chemically react. In the last separation step, the phosphor constituents in the heated reactant are separated. The phosphor may be a phosphor that can be synthesized using a reaction accelerator, and the reactant may be the above-described reaction accelerator. The reaction accelerator used as the reactant includes aluminum fluoride. When aluminum fluoride is used as the reactant, the phosphor is
The 1-x Eu x MgAl 10 Formula compound represented by the O 17 may be a phosphor mainly.

【0008】反応剤を弗化アルミニウム、蛍光体をBa
1-xEuxMgAl1017蛍光体にする場合では、弗化ア
ルミニウムとBa1-xEuxMgAl1017蛍光体とが反
応して、Ba1-xEuxMgF4と酸化アルミニウムの混
合体になるよう加熱した後、混合体を酸処理してBa
1-xEuxMgF4と酸化アルミニウムを分離し、酸化ア
ルミニウムを抽出する。
The reactant is aluminum fluoride and the phosphor is Ba.
1-x Eu x in the case of the MgAl 10 O 17 phosphor is to react with aluminum fluoride and Ba 1-x Eu x MgAl 10 O 17 phosphor, Ba 1-x Eu x MgF 4 and aluminum oxide After heating to a mixture, the mixture is acid-treated to form Ba.
1-x Eu x separates MgF 4 and aluminum oxide, to extract the aluminum oxide.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は、本発明の蛍光体からの蛍光体構成
物の抽出方法の一実施の形態を示すフローチャートであ
る。
Embodiments of the present invention will be described below. FIG. 1 is a flowchart showing one embodiment of a method for extracting a phosphor constituent from a phosphor according to the present invention.

【0010】まず、蛍光体に反応剤を添加して混合す
る。蛍光体と反応剤を加熱すると、加熱反応物を生成す
る。加熱反応物は複種類の蛍光体構成物からなるので、
蛍光体構成物を個別に分離すると蛍光体構成物を抽出す
ることになる。使用できる蛍光体としては、Ba1-x
xMgAl1017の化学式で表わされる化合物を主体
とする蛍光体があり、反応剤としては、弗化アルミニウ
ムがある。また、弗化アルミニウムを反応剤として、B
1-xEuxMgAl1017の化学式で表わされる蛍光体
から抽出できる蛍光体構成物としては、酸化アルミニウ
ムがある。
First, a reactant is added to the phosphor and mixed. Heating the phosphor and reactant produces a heated reactant. Since the heated reactant is composed of multiple types of phosphor constituents,
Separating the phosphor constituents individually extracts the phosphor constituents. The phosphors that can be used include Ba 1-x E
There is a phosphor mainly composed of the compound represented by the formula of u x MgAl 10 O 17, as the reactant, there is aluminum fluoride. Further, using aluminum fluoride as a reactant, B
Aluminum oxide is a phosphor component that can be extracted from the phosphor represented by the chemical formula of a 1-x Eu x MgAl 10 O 17 .

【0011】本発明にかかる実施例として、弗化アルミ
ニウム反応剤を用いてBa0.9Eu0 .1MgAl1017
化学式で表わされる蛍光体から、蛍光体構成物である酸
化アルミニウムを抽出する方法を、図2を参照しながら
説明する。
[0011] As an example of the present invention, a method of the phosphor, to extract the aluminum oxide phosphor composition represented by the chemical formula Ba 0.9 Eu 0 .1 MgAl 10 O 17 with aluminum fluoride reactant Will be described with reference to FIG.

【0012】まず、mol比1:4/3のBa0.9Eu
0.1MgAl1017蛍光体と弗化アルミニウム反応剤を
用意する。上記Ba0.9Eu0.1MgAl1017と弗化ア
ルミニウムを、乳鉢を用いて1時間混合する(反応剤添
加工程)。
First, Ba 0.9 Eu having a molar ratio of 1: 4/3 is used.
A 0.1 MgAl 10 O 17 phosphor and an aluminum fluoride reactant are prepared. The above-mentioned Ba 0.9 Eu 0.1 MgAl 10 O 17 and aluminum fluoride are mixed for 1 hour using a mortar (reactant addition step).

【0013】次に、混合体1をアルミナ製のボート2に
仕込み、管状雰囲気炉のアルミナ製の炉心管3の内部に
設置する。ガスボンベに充填した窒素ガス4と水素ガス
5を炉心管に導入し、バブラー6を経て大気中に放出す
る。窒素ガスと水素ガスの流量は、各々380cc/分
と20cc/分になるよう制御する。ヒーター7に通電
して400℃/時間の昇温速度で昇温して、混合体を1
200℃で2時間加熱する。その後、降温速度200℃
/時間で室温まで降温する(加熱反応工程)。
Next, the mixture 1 is charged into an alumina boat 2 and placed inside an alumina furnace tube 3 of a tubular atmosphere furnace. A nitrogen gas 4 and a hydrogen gas 5 filled in a gas cylinder are introduced into a furnace tube, and discharged into the atmosphere via a bubbler 6. The flow rates of the nitrogen gas and the hydrogen gas are controlled to be 380 cc / min and 20 cc / min, respectively. The heater 7 was energized to increase the temperature at a rate of 400 ° C./hour,
Heat at 200 ° C. for 2 hours. After that, the cooling rate is 200 ° C
/ Hour to room temperature (heating reaction step).

【0014】加熱反応工程後には、ボート内に混合体1
の加熱反応物が残る。加熱反応物のX線回折パターンを
図3に示す。図3は、加熱反応物がBa0.9Eu0.1Mg
4の化学式で表わされる化合物と酸化アルミニウムが
主体の混合体であることを示している。図3は、加熱反
応工程によって、Ba0.9Eu0.1MgAl1017蛍光体
と弗化アルミニウム反応剤とが化学反応して、Ba0.9
Eu0.1MgF4の化学式で表わされる化合物と酸化アル
ミニウムの混合体になることを示すものでもある。参考
のため、この反応式を(化1)に示した。
After the heating reaction step, the mixture 1 is placed in a boat.
The heated reactant remains. FIG. 3 shows the X-ray diffraction pattern of the heated reaction product. FIG. 3 shows that the heated reactant was Ba 0.9 Eu 0.1 Mg.
It shows that the compound represented by the chemical formula of F 4 and aluminum oxide are a mixture mainly. 3, the heating reaction step, the Ba 0.9 Eu 0.1 MgAl 10 O 17 phosphor and aluminum fluoride reactant in a chemical reaction, Ba 0.9
It also indicates that it is a mixture of the compound represented by the chemical formula of Eu 0.1 MgF 4 and aluminum oxide. This reaction formula is shown in (Chemical Formula 1) for reference.

【0015】[0015]

【化1】 Embedded image

【0016】(化1)は、1molのBa0.9Eu0.1
gAl1017蛍光体に(4/3)molの弗化アルミニ
ウム反応剤が作用して、1molのBa0.9Eu0.1Mg
4化合物と(17/3)molの酸化アルミニウムを
生成することを示している。
(Formula 1) is 1 mol of Ba 0.9 Eu 0.1 M
(4/3) mol of aluminum fluoride reactant acts on the gAl 10 O 17 phosphor to form 1 mol of Ba 0.9 Eu 0.1 Mg
F 4 compound (17/3) have been shown to produce an aluminum oxide mol.

【0017】最後に、純水で希釈した50%希硝酸が入
ったビーカーの中に、上記加熱反応物、即ち、Ba0.9
Eu0.1MgF4化合物と酸化アルミニウムの混合体を投
入する。ガラス棒を用いて、希硝酸の中の加熱反応物
を、30分間かき混ぜた後、濾紙を用いてビーカー内の
粉末状の固形物を濾し取る。その後、濾し取った粉末状
の固形物を10分間純水で流水洗浄する(分離工程)。
Finally, in a beaker containing 50% dilute nitric acid diluted with pure water, place the above heated reactant, ie, Ba 0.9
A mixture of the Eu 0.1 MgF 4 compound and aluminum oxide is charged. After stirring the heated reactant in dilute nitric acid for 30 minutes using a glass rod, the powdery solid in the beaker is filtered off using a filter paper. Thereafter, the powdery solid that has been filtered off is washed with running running pure water for 10 minutes (separation step).

【0018】図4は、純水洗浄後の上記粉末状の固形
物、すなわち、分離抽出物のX線回折パターンである。
FIG. 4 is an X-ray diffraction pattern of the powdery solid after washing with pure water, ie, the separated extract.

【0019】図4は、抽出物が、酸化アルミニウムを主
体とする物質であることを示し、本発明の蛍光体からの
蛍光体構成物の抽出方法によって、Ba0.9Eu0.1Mg
Al 1017蛍光体から、蛍光体構成物である酸化アルミ
ニウムを抽出できたことを示すものである。
FIG. 4 shows that the extract mainly contains aluminum oxide.
Indicates that the substance is a body,
Depending on the method of extracting the phosphor constituents, Ba0.9Eu0.1Mg
Al TenO17From phosphor to aluminum oxide, which is a phosphor constituent
This indicates that the extraction of the chromium was successful.

【0020】尚、酸化アルミニウムを主体とする物質が
抽出できる理由は、Ba0.9Eu0.1MgF4化合物が硝
酸溶液に溶解するのに対して、酸化アルミニウムは溶解
しないために、上記の分離工程において、溶解するBa
0.9Eu0.1MgF4化合物が濾過され、酸化アルミニウ
ムが濾し取られるからである。
[0020] The reason why the substance composed mainly of aluminum oxide can be extracted is that the Ba 0.9 Eu 0.1 MgF 4 compound is dissolved in nitric acid solution, for aluminum oxide does not dissolve, in the separation step, Ba to dissolve
This is because the 0.9 Eu 0.1 MgF 4 compound is filtered, and the aluminum oxide is filtered off.

【0021】本発明は、蛍光体に反応剤を添加する反応
剤添加工程と、蛍光体と反応剤とを加熱する加熱反応工
程と、加熱反応物から蛍光体構成物を分離する分離工程
とが主体であることを特徴とする蛍光体からの蛍光体構
成物の抽出方法に関するものである。
The present invention comprises a reactant adding step of adding a reactant to a phosphor, a heating reaction step of heating the phosphor and the reactant, and a separation step of separating a phosphor constituent from the heated reactant. The present invention relates to a method for extracting a phosphor constituent from a phosphor characterized by being a main constituent.

【0022】したがって、蛍光体に反応剤を添加する反
応剤添加工程と、蛍光体と反応剤とを加熱する加熱反応
工程と、加熱反応物から蛍光体構成物を分離する分離工
程とを主体に構成されておればよく、蛍光体や反応剤の
種類が限定されるものではない。反応剤添加工程におけ
る加熱方法や加熱条件、および、分離工程における蛍光
体構成物の分離方法すなわち抽出方法も限定されるもの
ではない。
Therefore, the main steps are a reactant adding step of adding a reactant to the phosphor, a heating reaction step of heating the phosphor and the reactant, and a separation step of separating the phosphor constituent from the heated reactant. The type of the phosphor or the reactant is not limited as long as it is configured. The heating method and heating conditions in the reactant addition step, and the method for separating or extracting the phosphor constituents in the separation step are not limited.

【0023】ところで、蛍光体の合成では、蛍光体の結
晶成長を助けるために反応促進剤が用いられている。反
応促進剤は、フラックスと呼ばれるものである。反応促
進剤は、蛍光体と化学反応して、融解性を有する物質を
生成する働きを担っている。実施例で記述したBa0.9
Eu0.1MgAl1017蛍光体の合成では、反応剤とな
る弗化アルミニウムが反応促進剤として用いられる。こ
のことは、蛍光体の合成に用いる反応促進剤を反応剤に
できることを示すものである。すなわち、本発明の蛍光
体からの蛍光体構成物の抽出方法によれば、反応促進剤
を用いて合成し得る蛍光体に反応促進剤を添加して、加
熱反応工程と分離工程を施すと、原理上、反応促進剤を
用いて合成し得る蛍光体から、蛍光体構成物を抽出でき
る。
Incidentally, in the synthesis of the phosphor, a reaction accelerator is used to assist the crystal growth of the phosphor. The reaction accelerator is called a flux. The reaction accelerator has a function of chemically reacting with the phosphor to generate a substance having a melting property. Ba 0.9 described in Examples
In the synthesis of the Eu 0.1 MgAl 10 O 17 phosphor, aluminum fluoride as a reactant is used as a reaction accelerator. This indicates that the reaction accelerator used in the synthesis of the phosphor can be used as the reaction agent. That is, according to the method for extracting a phosphor constituent from the phosphor of the present invention, a reaction accelerator is added to a phosphor that can be synthesized using a reaction accelerator, and a heating reaction step and a separation step are performed. In principle, a phosphor composition can be extracted from a phosphor that can be synthesized using a reaction accelerator.

【0024】[0024]

【発明の効果】以上のように本発明によれば、希土類以
外の蛍光体構成物を、蛍光体から抽出する蛍光体からの
蛍光体構成物の抽出技術を提供できる。また、蛍光体の
製造における廃棄物量を低減することができる。
As described above, according to the present invention, it is possible to provide a technique for extracting a phosphor component from a phosphor, which extracts a phosphor component other than a rare earth element from the phosphor. Further, the amount of waste in the production of the phosphor can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる蛍光体からの蛍光体構成物の抽
出方法を示すフローチャート
FIG. 1 is a flowchart illustrating a method for extracting a phosphor constituent from a phosphor according to the present invention.

【図2】本発明にかかる蛍光体からの蛍光体構成物の抽
出方法の実施例を示す図
FIG. 2 is a diagram showing an embodiment of a method for extracting a phosphor constituent from a phosphor according to the present invention.

【図3】本発明にかかる加熱反応物のX線回折パターン
を示す図
FIG. 3 is a view showing an X-ray diffraction pattern of a heated reaction product according to the present invention.

【図4】本発明にかかる抽出物のX線回折パターンを示
す図
FIG. 4 shows an X-ray diffraction pattern of the extract according to the present invention.

【符号の説明】[Explanation of symbols]

1 混合体 2 ボート 3 炉心管 4 窒素ガス 5 水素ガス 6 バブラー 7 ヒーター Reference Signs List 1 mixture 2 boat 3 furnace tube 4 nitrogen gas 5 hydrogen gas 6 bubbler 7 heater

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01J 9/50 H01J 9/50 B // C01F 17/00 C01F 17/00 D (72)発明者 堀井 滋 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松岡 富造 大阪府門真市大字門真1006番地 松下電器 産業株式会社内──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location H01J 9/50 H01J 9/50 B // C01F 17/00 C01F 17/00 D (72) Inventor Shigeru Horii 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Tomizo Matsuoka 1006 Kadoma Kadoma, Kadoma City, Osaka Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】蛍光体に反応剤を添加する反応剤添加工程
と、前記蛍光体と前記反応剤を加熱する加熱反応工程
と、加熱反応物から蛍光体構成物を分離する分離工程と
が主体であることを特徴とする蛍光体からの蛍光体構成
物の抽出方法。
1. A reactant adding step of adding a reactant to a phosphor, a heating reaction step of heating the phosphor and the reactant, and a separation step of separating a phosphor constituent from the heated reactant are mainly performed. A method for extracting a phosphor constituent from a phosphor.
【請求項2】蛍光体が反応促進剤を用いて合成し得る蛍
光体であり、反応剤が反応促進剤であることを特徴とす
る請求項1記載の蛍光体からの蛍光体構成物の抽出方
法。
2. The method according to claim 1, wherein the phosphor is a phosphor that can be synthesized using a reaction accelerator, and the reactant is a reaction accelerator. Method.
【請求項3】反応剤が弗化アルミニウムであることを特
徴とする請求項1記載の蛍光体からの蛍光体構成物の抽
出方法。
3. The method according to claim 1, wherein the reactant is aluminum fluoride.
【請求項4】蛍光体が、Ba1-xEuxMgAl1017
化学式で表わされる化合物を主体とする蛍光体であり、
また、抽出する蛍光体構成物が、酸化アルミニウムであ
ることを特徴とする請求項1記載の蛍光体からの蛍光体
構成物の抽出方法。
4. A phosphor mainly comprising a compound represented by a chemical formula of Ba 1 -xE x MgAl 10 O 17 ,
2. The method for extracting a phosphor composition from a phosphor according to claim 1, wherein the phosphor composition to be extracted is aluminum oxide.
【請求項5】Ba1-xEuxMgAl1017の化学式で表
わされる化合物を主体とする蛍光体に弗化アルミニウム
を添加する反応剤添加工程と、 前記蛍光体と前記弗化アルミニウムを加熱する加熱反応
工程と、 加熱反応物から蛍光体構成物の酸化アルミニウムを分離
する分離工程とが主体であることを特徴とする蛍光体か
らの蛍光体構成物の抽出方法。
5. A reactant adding step of adding aluminum fluoride to a phosphor mainly comprising a compound represented by a chemical formula of Ba 1 -xE x MgAl 10 O 17 , and heating the phosphor and the aluminum fluoride. A method of extracting a phosphor constituent from a phosphor, which mainly comprises a heating reaction step, and a separation step of separating aluminum oxide of the phosphor constituent from the heated reactant.
JP17323996A 1996-07-03 1996-07-03 Method for extracting constituent of fluorescent substance from fluorescent substance Pending JPH1017859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17323996A JPH1017859A (en) 1996-07-03 1996-07-03 Method for extracting constituent of fluorescent substance from fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17323996A JPH1017859A (en) 1996-07-03 1996-07-03 Method for extracting constituent of fluorescent substance from fluorescent substance

Publications (1)

Publication Number Publication Date
JPH1017859A true JPH1017859A (en) 1998-01-20

Family

ID=15956743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17323996A Pending JPH1017859A (en) 1996-07-03 1996-07-03 Method for extracting constituent of fluorescent substance from fluorescent substance

Country Status (1)

Country Link
JP (1) JPH1017859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7703041B2 (en) 2003-07-25 2010-04-20 Sony Corporation Screen display apparatus, program, and screen display method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7703041B2 (en) 2003-07-25 2010-04-20 Sony Corporation Screen display apparatus, program, and screen display method
US9088375B2 (en) 2003-07-25 2015-07-21 Sony Corporation Apparatus, program, and method for displaying content information while controlling display area sizes

Similar Documents

Publication Publication Date Title
JP5424873B2 (en) Recovery method of rare earth from fluorescent lamp
US4650652A (en) Process for recovering highly pure rare earth oxides from a waste rare earth phosphor
KR101343166B1 (en) Method for recovering rare-earth elements from a solid mixture containing a halophosphate and a compound of one or more rare-earth elements
US8137645B2 (en) Rare earth recovery from fluorescent material and associated method
CN100567447C (en) The method for making of aluminate fluorescent substance, fluorescent substance and contain the device of fluorescent substance
US8282703B2 (en) Rare earth recovery from phosphor material and associated method
US3763050A (en) Method of recovering a rare earth phosphor
KR20140003508A (en) Method of recovering rare earths from a solid mixture containing a halophosphate and a rare earth compound and solid mixtures suitable for this method
US6423247B1 (en) Phosphorescent pigment and process for preparing the same
JPH1017859A (en) Method for extracting constituent of fluorescent substance from fluorescent substance
Kujawski et al. Processes and technologies for the recycling of spent fluorescent lamps
EP0818416B1 (en) Method for the preparation of rare earth phosphate of low overstoichiometric phoshorus content
US5160663A (en) Method of reclaiming lamp phosphor
JP2000501374A (en) Process for producing a rare earth borate by reacting at least one rare earth salt, boric acid and a base together
US3563909A (en) Method of preparing a lanthanide activated yttrium,gadolinium or lanthanum oxysulfide luminescent material
KR100487454B1 (en) Method for Producing Rare Earth Borates, and Use of the Resulting Borates in Luminescence
US3637517A (en) Process for producing phosphors
US2589513A (en) Method of making titanium activated calcium magnesium silicate phosphor
JP3955648B2 (en) Rare earth activated barium fluoride halide phosphor powder and method for producing the same
JP2001288460A (en) Production method for rare earth phosphor
KR900004232B1 (en) Method of recovery of red-luminescnet
US4053551A (en) Methods of recovering terbium oxide from a glass
JP2001240853A (en) Method of regenerating acid sulfide rare earth fluorescent substance
JPH0331644B2 (en)
JPH0468077A (en) Preparation of phosphor powder