JPH10178236A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH10178236A
JPH10178236A JP33717896A JP33717896A JPH10178236A JP H10178236 A JPH10178236 A JP H10178236A JP 33717896 A JP33717896 A JP 33717896A JP 33717896 A JP33717896 A JP 33717896A JP H10178236 A JPH10178236 A JP H10178236A
Authority
JP
Japan
Prior art keywords
layer
inp
type
thickness
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33717896A
Other languages
Japanese (ja)
Inventor
Takayuki Watanabe
孝幸 渡辺
Tsutomu Ishikawa
務 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP33717896A priority Critical patent/JPH10178236A/en
Publication of JPH10178236A publication Critical patent/JPH10178236A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor laser which prevents the resistance of an Fe-InP constriction layer from being lowered by a method wherein a p-type InP layer is provided on a buried layer in which an active InP layer is laminated and in which an iron-doped InP layer and an n-type layer are laminated on both sides sequentially and the produce of an n-type impurity concentration in the n-type InP layer multiplied by a layer thickness satisfies a formula. SOLUTION: S P-type InP layer 4B is provided on a buried layer in which an active layer 2 is laminated and in which an iron-doped InP layer 5 and an n-type InP layer 6 are laminated sequentially on other sides of the active layer 3. The product of an n-type impurity concentration (n-type concentration) in the n-type InP layer (Si-InP layer) 6 multiplied by a layer thickness (an n-layer thickness) satisfies a formula of 5.0×10<19> (cm<-3> nm)<(n-type concentration)×(n-layer thickness)<3.0×10<21> (cm<-3> ×nm). Thereby, it is possible to prevent the resistance of an Fe-InP construction layer doe to the diffusion Zn, and the strain of an optical intensity distribution due to the existence of an n-type InP current stop layer can be suppressed to a negligible degree. In addition, the formulas is established with reference to all n-type dopants without being limited to Si.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスポットサイズ変換
器が集積された埋め込み構造の半導体レーザに係り, 特
に埋め込み層として鉄(Fe)ドープ(Fe-)InP層とn型InP
層で形成された高抵抗電流狭窄層を持つ平坦化埋め込み
レーザ(Semi-Insulated Planer BuriedHeterostructure
Laser; SIPBHレーザ) に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser having a buried structure in which a spot size converter is integrated, and more particularly to an iron (Fe) doped (Fe-) InP layer and an n-type InP as buried layers.
Buried laser (Semi-Insulated Planer Buried Heterostructure)
Laser; SIPBH laser).

【0002】[0002]

【従来の技術】埋め込み層としてFe-InPで形成された高
抵抗電流狭窄層を持つSIBHレーザ(Semi-Insulated Buri
ed Heterostructure Laser) は効率の良い電流狭窄構造
から低しきい値電流, 高効率のレーザ発振が期待でき
る。
2. Description of the Related Art A SIBH laser (Semi-Insulated Buri) having a high-resistance current confinement layer formed of Fe-InP as a buried layer.
The ed Heterostructure Laser) can be expected to have low threshold current and high efficiency laser oscillation due to the efficient current confinement structure.

【0003】図6は断面が出射端に向かって漸減してい
る (テーパ状の) スポットサイズ変換器を持つSIBHレー
ザの説明図である。図において, 1はn型(n-)InP 基
板, 2はレーザ利得領域 (活性層), 3 は導波路領域,
4はp型(p-)InP クラッド層, 5はFe-InP狭窄層であ
る。
FIG. 6 is an explanatory view of an SIBH laser having a (tapered) spot size converter whose cross section gradually decreases toward the emission end. In the figure, 1 is an n-type (n-) InP substrate, 2 is a laser gain region (active layer), 3 is a waveguide region,
4 is a p-type (p-) InP cladding layer, and 5 is a Fe-InP constriction layer.

【0004】この構造においては,レーザ利得領域 (活
性層) 2 ではp側電極から注入された電流がFe-InP狭窄
層で狭窄されて活性層のみに効率良く流れる。また,導
波路領域 3ではレーザ利得領域から出射端に向けて, 導
波路の層厚が減少しているために導波路への光の閉じ込
め率が低下する。従って, レーザ利得領域から発した光
が出射端に近づくにつれてスポットサイズが拡大する。
In this structure, in the laser gain region (active layer) 2, the current injected from the p-side electrode is confined by the Fe—InP constriction layer and flows efficiently only to the active layer. In the waveguide region 3, since the thickness of the waveguide decreases from the laser gain region toward the emission end, the confinement rate of light in the waveguide decreases. Therefore, the spot size increases as the light emitted from the laser gain region approaches the emission end.

【0005】このように,レーザ利得領域と直列に共振
器方向にスポットサイズ変換器を集積した半導体レーザ
は,出射端に向けて光のスポットサイズを大きくし, 光
ファイバのスポットサイズに近づけることができる。従
って, 光モジュール組み立ての際に, 光ファイバとの結
合を容易にすることができるため,結合レンズ等が不要
であり, 低コストの光モジュールを作製することができ
る。
As described above, in a semiconductor laser in which a spot size converter is integrated in the resonator direction in series with the laser gain region, it is possible to increase the light spot size toward the emission end and to approach the spot size of the optical fiber. it can. Accordingly, when assembling the optical module, the coupling with the optical fiber can be facilitated, so that a coupling lens or the like is not required, and a low-cost optical module can be manufactured.

【0006】したがって,スポットサイズ変換器を集積
したSIBHレーザは, 高速変調が可能でかつ低コストのレ
ーザとして, 光ファイバ通信の加入者系において今後重
要な素子である。
Therefore, an SIBH laser with an integrated spot size converter is an important element in the future for optical fiber communication subscribers as a low-cost laser capable of high-speed modulation.

【0007】従来のSIBHレーザの構造では,p-InP クラ
ッド層及びその上に被着されたコンタクト層の電流透過
面積が小さいことから,直列抵抗が増加する。そのた
め,注入電流が大きい場合には, 抵抗成分による素子の
温度上昇により,発光効率が低下し,さらには素子破壊
が生じることが分かってきた。
[0007] In the structure of the conventional SIBH laser, the series resistance increases due to the small current transmission area of the p-InP cladding layer and the contact layer deposited thereon. Therefore, it has been found that when the injection current is large, the luminous efficiency is reduced and the device is destroyed due to the temperature rise of the device due to the resistance component.

【0008】そこで,図7に示されるように,p-InP ク
ラッド層 4及びコンタクト層 8の電流透過面積を大きく
できるSIPBH 構造を埋め込み構造とすることか必要であ
ることが分かった図7はスポットサイズ変換器としてテ
ーパ状の導波路が集積されたSIPBH レーザの説明図であ
る。
Therefore, as shown in FIG. 7, it has been found that it is necessary to make the SIPBH structure capable of increasing the current transmission area of the p-InP cladding layer 4 and the contact layer 8 into a buried structure. FIG. 3 is an explanatory diagram of a SIPBH laser in which a tapered waveguide is integrated as a size converter.

【0009】図において, 1はn-InP 基板, 2はレーザ
利得領域 (活性層), 3は導波路領域, 4はp-InP クラッ
ド層, 5はFe-InP狭窄層, 6はn-InP 電流阻止層, 8は
コンタクト層, 9はn側電極, 10は絶縁膜, 11はp側電
極である。
In the figure, 1 is an n-InP substrate, 2 is a laser gain region (active layer), 3 is a waveguide region, 4 is a p-InP cladding layer, 5 is a Fe-InP confinement layer, 6 is n-InP A current blocking layer, 8 is a contact layer, 9 is an n-side electrode, 10 is an insulating film, and 11 is a p-side electrode.

【0010】[0010]

【発明が解決しようとする課題】しかし,SIPBH 構造で
は,亜鉛(Zn)ドープのp-InP クラッド層 (Zn-InPクラッ
ド層) 4 とFe-InP電流狭窄層 5が隣接するため, Zn原子
がFe-InP狭窄層に拡散する。それにより,Fe-InP狭窄層
がp型になって抵抗が低下し,活性層を通らない漏れ電
流が発生する。これを防ぐためZn-InPクラッド層 4とFe
-InP狭窄層 5の間にn-InP 電流阻止層 6を挿入する必要
がある。
However, in the SIPBH structure, the zinc (Zn) -doped p-InP cladding layer (Zn-InP cladding layer) 4 and the Fe-InP current confinement layer 5 are adjacent to each other. It diffuses into the Fe-InP constriction layer. As a result, the Fe-InP constriction layer becomes p-type, the resistance decreases, and a leakage current that does not pass through the active layer is generated. To prevent this, Zn-InP cladding layer 4 and Fe
It is necessary to insert the n-InP current blocking layer 6 between the -InP constriction layer 5.

【0011】n-InP 電流阻止層 6はキャリア濃度が高い
ほど,また層厚が大きいほどZn原子の拡散を防止するこ
とができる。一方, 出射端にスポットサイズ変換器を集
積した場合, 出射端付近ではビームスポットサイズが拡
大して, n-InP 電流阻止層 6を含むZn-InPクラッド層 4
まで広がる。このとき,n-InP 電流阻止層 6の屈折率
が, Zn-InPクラッド層 4及びFe-InP狭窄層 5と大きく異
なることから,光強度分布が歪むことが分かった。
The higher the carrier concentration of the n-InP current blocking layer 6 and the greater its thickness, the more the diffusion of Zn atoms can be prevented. On the other hand, when a spot size converter is integrated at the emission end, the beam spot size increases near the emission end, and the Zn-InP cladding layer 4 including the n-InP current blocking layer 6
Spread out. At this time, the refractive index of the n-InP current blocking layer 6 was significantly different from that of the Zn-InP cladding layer 4 and the Fe-InP constriction layer 5, indicating that the light intensity distribution was distorted.

【0012】例えば, シリコン(Si)ドープのn-InP (Si-
InP)電流阻止層 6として, 層厚を 1μm, キャリア濃度
を 4×1018cm-3とすると,Si-InP電流阻止層 6とその他
の層の屈折率差Δn=0.02でアリ,出射端における断面
では図8に示される光強度分布となる。
For example, silicon (Si) doped n-InP (Si-
(InP) Assuming that the current blocking layer 6 has a layer thickness of 1 μm and a carrier concentration of 4 × 10 18 cm -3 , the refractive index difference Δn of the Si-InP current blocking layer 6 and the other layers is Δn = 0.02. The cross section has the light intensity distribution shown in FIG.

【0013】図8で,x軸はInP 基板と平行に,y軸は
InP 基板と垂直にとり,原点(x=0,y=0)は導波
路の中心軸である。出射端での光強度の中心(図中の+
1)は導波路の中心軸より上方にずれている。この結果
より光は導波路を十分に導波していないことが分かる。
In FIG. 8, the x axis is parallel to the InP substrate, and the y axis is
Taken perpendicular to the InP substrate, the origin (x = 0, y = 0) is the central axis of the waveguide. The center of the light intensity at the emission end (+
1) is shifted upward from the central axis of the waveguide. From this result, it can be seen that light is not sufficiently guided in the waveguide.

【0014】光強度分布の歪みは,n-InP 電流阻止層 6
はキャリア濃度が高いほど,また層厚が大きいほど大き
い。従って,n-InP 電流阻止層 6の層厚とキャリア濃度
を決定するためには,上記のようにZnドーパントの拡散
防止の効果と光強度の歪みの効果とがトレードオフの関
係にあるため,Zn原子がFe-InP狭窄層 5への拡散を防止
し,かつ光強度分布が大きくならないように決めること
が必要である。
The distortion of the light intensity distribution is caused by the n-InP current blocking layer 6.
Is larger as the carrier concentration is higher and as the layer thickness is larger. Therefore, in order to determine the layer thickness and the carrier concentration of the n-InP current blocking layer 6, there is a trade-off between the effect of preventing the diffusion of the Zn dopant and the effect of the light intensity distortion as described above. It is necessary to determine that Zn atoms are prevented from diffusing into the Fe-InP constriction layer 5 and the light intensity distribution is not increased.

【0015】本発明はZn原子の拡散によるFe-InP狭窄層
の低抵抗化を防止し,かつ光強度分布の歪みを低減する
ことを目的とする。
An object of the present invention is to prevent the Fe—InP constriction layer from lowering in resistance due to the diffusion of Zn atoms and to reduce the distortion of the light intensity distribution.

【0016】[0016]

【課題を解決するための手段】上記課題の解決は, 1)出射端に形成されたスポットサイズ変換器と,活性
層の両側に鉄(Fe)ドープのInP 層とn型InP 層とが順に
積層された埋め込み層と, 該活性層及び該埋め込み層の
上に成膜されたp型InP 層を有し, 該n型InP 層のn型
不純物濃度 n型濃度 と層厚 n層厚 の積が, 5.0×1019[cm-3×nm]<[n型濃度]×[n層厚]<
3.0×1021[cm-3×nm] を満足することを特徴とする半導体レーザ。 2)前記スポットサイズ変換器は,断面が出射端に向か
って漸減している前記1記載の半導体レーザにより達成
される。
Means for solving the above problems are as follows: 1) A spot size converter formed at the emission end, and an iron (Fe) -doped InP layer and an n-type InP layer on both sides of the active layer in order. A p-type InP layer formed on the active layer and the buried layer; and a product of an n-type impurity concentration of the n-type InP layer and a layer thickness of the n-layer thickness Is 5.0 × 10 19 [cm −3 × nm] <[n-type concentration] × [n-layer thickness] <
A semiconductor laser satisfying 3.0 × 10 21 [cm −3 × nm]. 2) The spot size converter is achieved by the semiconductor laser as described in 1 above, wherein the cross section gradually decreases toward the emission end.

【0017】Zn原子のFe-InP狭窄層 5への拡散は, Zn-I
nP層とFe-InP層との間にn-InP 層を挿入することにより
低減できることが知られている。以下の説明ではn-InP
層としてSi-InP層を例にとる。InP 中のZn拡散は次のモ
デルにより説明できる。
The diffusion of Zn atoms into the Fe-InP confining layer 5 is based on Zn-I
It is known that it can be reduced by inserting an n-InP layer between the nP layer and the Fe-InP layer. In the following description, n-InP
Take the Si-InP layer as an example. The Zn diffusion in InP can be explained by the following model.

【0018】Zni + + VIn=Znsb - +2 h ここで,Zni + は格子間のZnイオン, VInはInの空孔, Z
nsb - は格子位置のZnイオン, h は正孔である。
Zn i + + V In = Zn sb +2 h where Zn i + is Zn ion between lattices, V In is vacancy of In, Z
n sb - is a Zn ion at the lattice position, and h is a hole.

【0019】InP 中に入ったZn原子は拡散係数の小さい
Znsb - と, 拡散係数の大きいとZni + で平衡状態にあ
る。Si-InP層中では, Si原子が格子位置に入ることによ
り生じる電子が, 正孔 hと結合して相殺され,上式の平
衡状態は右辺に移動する。これにより拡散に寄与する格
子間イオンZni + が減少してZn拡散の速度が低下する。
Zn atoms in InP have a small diffusion coefficient
Zn sb - and, in a large equilibrium with Zn i + diffusion coefficient. In the Si-InP layer, the electrons generated when the Si atoms enter the lattice position are combined with the holes h and canceled, and the equilibrium state in the above equation moves to the right side. Thereby, the interstitial ions Zn i + contributing to the diffusion decrease, and the Zn diffusion speed decreases.

【0020】発明者等が行った実験によれば, Si-InP層
中でのZnの拡散速度は図2に示されるように,Si濃度が
高いほど遅いことが分かった。また,Si-InP層中のZn拡
散層では, Zn濃度はSi濃度と一致し, 図3に示されるよ
うに総拡散量はSi濃度に依存しないことが分かった。こ
こに,総拡散離量は次式で表せる。
According to experiments conducted by the inventors, the diffusion rate of Zn in the Si-InP layer was found to be lower as the Si concentration was higher, as shown in FIG. In addition, in the Zn diffusion layer in the Si-InP layer, the Zn concentration coincided with the Si concentration, and as shown in FIG. 3, it was found that the total diffusion amount did not depend on the Si concentration. Here, the total diffusion separation amount can be expressed by the following equation.

【0021】 総拡散離量=Zn濃度×拡散距離=Si濃度×拡散距離 約 5時間を要するレーザ構造成長中にZn原子がSi-InP層
を通過しないためには, 図3から次式に示される関係が
必要である。
Total diffusion separation = Zn concentration × Diffusion distance = Si concentration × Diffusion distance In order to prevent Zn atoms from passing through the Si-InP layer during laser structure growth requiring about 5 hours, the following equation is used from FIG. Relationship is needed.

【0022】総拡散離量= 5.0×1019[cm-3×nm]<
[Si 濃度]×[Si-InP 層厚] 一方, n-InP層のキャリア濃度が高く層厚が厚いとき
は, n-InP層とその他の層との屈折率差Δnにより,図
8のように出射端での光強度分布が歪む。
Total diffusion separation = 5.0 × 10 19 [cm −3 × nm] <
[Si concentration] × [Si-InP layer thickness] On the other hand, when the carrier concentration of the n-InP layer is high and the layer thickness is large, the refractive index difference Δn between the n-InP layer and the other layers is as shown in FIG. The light intensity distribution at the emission end is distorted.

【0023】発明者が行った計算によると,図4に示さ
れるように, n-InP層の厚さが 1μm(103nm) のとき,
n-InP層の屈折率差がΔn=0.01以下では, 光強度中心
が導波路の中心軸(x=0,y=0)と一致する。
According to the calculation made by the inventor, as shown in FIG. 4, when the thickness of the n-InP layer is 1 μm (10 3 nm),
When the refractive index difference of the n-InP layer is Δn = 0.01 or less, the center of light intensity coincides with the central axis (x = 0, y = 0) of the waveguide.

【0024】また,図5( Ref.; J.Stone and M.S.Wha
rten, Appl. Phs. Lett. 41, 1141(1982). ) に示され
るように,n型キャリア濃度を変化させた場合の屈折率
差の変化を示す実験より,n型キャリア濃度< 3.0×10
18cm-3のとき, Δn<0.01が達成される。従って, 次式
の成立が必要である。
FIG. 5 (Ref .; J. Stone and MSWha)
rten, Appl. Phs. Lett. 41, 1141 (1982).) As shown in the experiment showing the change in the refractive index difference when the n-type carrier concentration was changed, the n-type carrier concentration was less than 3.0 × 10
At 18 cm -3 , Δn <0.01 is achieved. Therefore, the following equation must be satisfied.

【0025】 [n型濃度]×[n層厚]< 3.0×1021[cm-3×nm] 以上の考察により, n-InP電流阻止層のキャリア濃度及
び厚さを, 5.0×1019[cm-3×nm]<[n型濃度]×[n層厚]< 3.0×1021[cm-3×nm] ・・・・・・・・(1) とすることにより,Zn拡散によるFe-InP狭窄層の低抵抗
化を防ぎ, かつ n-InP電流阻止層の存在による光強度分
布の歪みを無視できる程度に抑えることができる。な
お, 上記の関係式(1) はSiに限らずすべてのn型ドーパ
ントに対して成立する。
[N-type concentration] × [n-layer thickness] <3.0 × 10 21 [cm −3 × nm] From the above considerations, the carrier concentration and thickness of the n-InP current blocking layer are set to 5.0 × 10 19 [ cm −3 × nm] <[n-type concentration] × [n-layer thickness] <3.0 × 10 21 [cm −3 × nm] (1) The resistance of the -InP constriction layer can be prevented from being lowered, and the distortion of the light intensity distribution due to the presence of the n-InP current blocking layer can be suppressed to a negligible level. Note that the above relational expression (1) holds true not only for Si but also for all n-type dopants.

【0026】[0026]

【発明の実施の形態】図1は本発明の実施の形態の説明
図である。図において, 1はn-InP 基板, 2, 3 はレー
ザ利得領域 (活性層) 及び導波路領域となるInGaAsP
層, 4A, 4BはZn-InP層(p-InPクラッド層), 5 はFe-InP
電流狭窄層, 6はSi-InP層 (n-InP 電流阻止層), 7は
Si-InPバッファ層, 8はZn-InGaAs コンタクト層, 9は
n側電極, 10は絶縁膜, 11はp側電極である。
FIG. 1 is an explanatory diagram of an embodiment of the present invention. In the figure, 1 is an n-InP substrate, 2 and 3 are InGaAsP to be the laser gain region (active layer) and the waveguide region.
Layers, 4A, 4B: Zn-InP layer (p-InP cladding layer), 5: Fe-InP
Current confinement layer, 6 is Si-InP layer (n-InP current blocking layer), 7 is
An Si-InP buffer layer, 8 is a Zn-InGaAs contact layer, 9 is an n-side electrode, 10 is an insulating film, and 11 is a p-side electrode.

【0027】各層の詳細は以下のとおりである。レーザ
利得領域においては,Si-InPバッファ層 7は厚さ 0.2μ
mでキャリア濃度 5×1017cm-3,InGaAsP 活性層 2は厚
さ 0.3μmで波長表示で1.3 μm組成のアンドープ,Zn-
InPクラッド層4Aは厚さ 0.7μmでキャリア濃度 7×10
17cm-3である。
The details of each layer are as follows. In the laser gain region, the thickness of the Si-InP buffer layer 7 is 0.2 μm.
m, the carrier concentration is 5 × 10 17 cm -3 , and the InGaAsP active layer 2 is 0.3 μm thick and undoped with a wavelength of 1.3 μm.
The InP cladding layer 4A has a thickness of 0.7 μm and a carrier concentration of 7 × 10
17 cm -3 .

【0028】導波路の出射端においては,Si-InPバッフ
ァ層は厚さ0.07μmでキャリア濃度 5×1017cm-3,InGaA
sP 導波路層は厚さ 0.1μmで波長表示で1.3 μm組成
のアンドープ,Zn-InPクラッド層は厚さ0.23μmでキャ
リア濃度 7×1017cm-3である。
At the exit end of the waveguide, the Si-InP buffer layer has a thickness of 0.07 μm, a carrier concentration of 5 × 10 17 cm -3 , and InGaA
The sP waveguide layer is 0.1 μm thick and undoped with a 1.3 μm composition in terms of wavelength, and the Zn-InP cladding layer is 0.23 μm thick and has a carrier concentration of 7 × 10 17 cm −3 .

【0029】上記の各層の厚さはレーザ利得領域から出
射端に向けてなだらかに変化する。Fe-InP電流狭窄層 5
は厚さ 2μmでキャリア濃度 5×1016cm-3,Si-InP電流
阻止層 6は厚さ 0.3μmでキャリア濃度 5×1018cm-3,Z
n-InPクラッド層 4は厚さ 1.5μmでキャリア濃度 2×1
018cm-3,Zn-InGaAs コンタクト層 8は厚さ 0.5μmでキ
ャリア濃度 2×1018cm-3である。
The thickness of each layer changes gradually from the laser gain region toward the emission end. Fe-InP current confinement layer 5
Is 2 μm thick and has a carrier concentration of 5 × 10 16 cm -3 , and the Si-InP current blocking layer 6 has a thickness of 0.3 μm and has a carrier concentration of 5 × 10 18 cm -3 , Z
The n-InP cladding layer 4 has a thickness of 1.5 μm and a carrier concentration of 2 × 1
0 18 cm −3 , Zn—InGaAs contact layer 8 has a thickness of 0.5 μm and a carrier concentration of 2 × 10 18 cm −3 .

【0030】この実施の形態において,Si-InP電流阻止
層 6の[厚さ]×[キャリア濃度]は 5×1018cm-3× 0.3μm= 5×1018× 3×102[cm-3×nm] = 1.5×1021[cm-3×nm] となり,前記(1) 式を満たしている。
In this embodiment, [thickness] × [carrier concentration] of the Si—InP current blocking layer 6 is 5 × 10 18 cm −3 × 0.3 μm = 5 × 10 18 × 3 × 10 2 [cm − 3 × nm] = 1.5 × 10 21 [cm -3 × nm], which satisfies the expression (1).

【0031】実施の形態では, スポットサイズ変換器の
テーパ状の導波路として, 厚さを変えた場合を説明した
が, 図9に示されるように導波路の幅を変えても同様の
効果が得られることは勿論である。
In the embodiment, the case where the thickness is changed as the tapered waveguide of the spot size converter has been described. However, the same effect can be obtained by changing the width of the waveguide as shown in FIG. Of course, it can be obtained.

【0032】[0032]

【発明の効果】本発明によれば,Zn原子の拡散によるFe
-InP狭窄層の低抵抗化を防止し,かつ光強度分布の歪み
を低減することができる。
According to the present invention, according to the present invention, Fe
-The resistance of the InP constriction layer can be prevented from being lowered, and the distortion of the light intensity distribution can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】 Si-InP中のZn拡散の説明図 (拡散距離対拡散
時間)
Fig. 2 Illustration of Zn diffusion in Si-InP (diffusion distance vs. diffusion time)

【図3】 Si-InP中のZn拡散の説明図 (n型濃度×拡散
距離対拡散時間)
FIG. 3 is an explanatory view of Zn diffusion in Si-InP (n-type concentration × diffusion distance vs. diffusion time)

【図4】 本発明の実施の形態における光強度分布を示
す図
FIG. 4 is a diagram showing a light intensity distribution in the embodiment of the present invention.

【図5】 n型キャリア濃度と屈折率差の関係図FIG. 5 is a diagram showing a relationship between an n-type carrier concentration and a refractive index difference.

【図6】 SIBHレーザ(テーパ状導波路付き)の説明図FIG. 6 is an explanatory diagram of a SIBH laser (with a tapered waveguide).

【図7】 SIPBH レーザ(テーパ状導波路付き)の説明
FIG. 7 is an explanatory view of a SIPBH laser (with a tapered waveguide).

【図8】 従来例の光強度分布を示す図FIG. 8 is a diagram showing a light intensity distribution of a conventional example.

【図9】 本発明の他の実施の形態の説明図FIG. 9 is an explanatory view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 n-InP 基板 2, 3 レーザ利得領域 (活性層) 及び導波路領域とな
るInGaAsP 層 4, 4A, 4B Zn-InP層(p-InPクラッド層) 5 Fe-InP狭窄層 6 Si-InP層 (n-InP 電流阻止層) 7 Si-InPバッファ層 8 Zn-InGaAs コンタクト層 9 n側電極 10 絶縁膜 11 p側電極
1 n-InP substrate 2, 3 InGaAsP layer for laser gain region (active layer) and waveguide region 4, 4A, 4B Zn-InP layer (p-InP cladding layer) 5 Fe-InP confining layer 6 Si-InP layer (n-InP current blocking layer) 7 Si-InP buffer layer 8 Zn-InGaAs contact layer 9 n-side electrode 10 insulating film 11 p-side electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 出射端に形成されたスポットサイズ変換
器と,活性層の両側に鉄(Fe)ドープのInP 層とn型InP
層とが順に積層された埋め込み層と, 該活性層及び該埋
め込み層の上に成膜されたp型InP 層を有し, 該n型In
P 層のn型不純物濃度[n型濃度]と層厚[n層厚]の
積が, 5.0×1019[cm-3×nm]<[n型濃度]×[n層厚]<
3.0×1021[cm-3×nm] を満足することを特徴とする半導体レーザ。
1. A spot size converter formed at an emission end, an iron (Fe) doped InP layer and an n-type InP layer on both sides of an active layer.
A p-type InP layer formed on the active layer and the buried layer.
The product of the n-type impurity concentration [n-type concentration] of the P layer and the layer thickness [n-layer thickness] is 5.0 × 10 19 [cm −3 × nm] <[n-type concentration] × [n-layer thickness] <
A semiconductor laser satisfying 3.0 × 10 21 [cm −3 × nm].
【請求項2】 前記スポットサイズ変換器は,断面が出
射端に向かって漸減していることを特徴とする請求項1
記載の半導体レーザ。
2. The spot size converter according to claim 1, wherein a cross section of the spot size converter is gradually reduced toward an emission end.
A semiconductor laser as described in the above.
JP33717896A 1996-12-17 1996-12-17 Semiconductor laser Withdrawn JPH10178236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33717896A JPH10178236A (en) 1996-12-17 1996-12-17 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33717896A JPH10178236A (en) 1996-12-17 1996-12-17 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH10178236A true JPH10178236A (en) 1998-06-30

Family

ID=18306189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33717896A Withdrawn JPH10178236A (en) 1996-12-17 1996-12-17 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH10178236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240644A1 (en) * 2019-05-27 2020-12-03 三菱電機株式会社 Optical semiconductor device and method for manufacturing optical semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240644A1 (en) * 2019-05-27 2020-12-03 三菱電機株式会社 Optical semiconductor device and method for manufacturing optical semiconductor device

Similar Documents

Publication Publication Date Title
JP3654435B2 (en) Semiconductor optical device and manufacturing method thereof
US7405421B2 (en) Optical integrated device
JP2004179274A (en) Optical semiconductor device
JPH11330605A (en) Semiconductor laser
JP6209129B2 (en) Semiconductor optical device
US5805627A (en) Laser diode and optical communications system using such laser diode
JP4057802B2 (en) Semiconductor optical device
US6798552B2 (en) Semiconductor light modulator
US8660160B2 (en) Semiconductor laser element and method of manufacturing the same
US7251381B2 (en) Single-mode optical device
US6560266B2 (en) Distributed feedback semiconductor laser
JP2003234541A (en) Distributed feedback semiconductor laser element
EP0621665B1 (en) Semiconductor double-channel-planar-buried-heterostructure laser diode effective against leakage current
JPH10178236A (en) Semiconductor laser
CN111937260B (en) Semiconductor laser and method for manufacturing the same
JP3645320B2 (en) Semiconductor laser element
JPS61164287A (en) Semiconductor laser
JP2004109594A (en) Waveguide type semiconductor element
JP4278985B2 (en) Method and apparatus for improving the efficiency of a photoelectron emission source device
JP2879083B2 (en) DFB semiconductor laser
JP2008022043A (en) Method of manufacturing semiconductor laser device
KR100593931B1 (en) Semiconductor laser device and method for manufacturing the same
US20070076773A1 (en) Buried ridge waveguide laser diode
JPS6355878B2 (en)
JP2003060309A (en) Semiconductor laser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302