JPH10176527A - Denitration device - Google Patents

Denitration device

Info

Publication number
JPH10176527A
JPH10176527A JP8339192A JP33919296A JPH10176527A JP H10176527 A JPH10176527 A JP H10176527A JP 8339192 A JP8339192 A JP 8339192A JP 33919296 A JP33919296 A JP 33919296A JP H10176527 A JPH10176527 A JP H10176527A
Authority
JP
Japan
Prior art keywords
exhaust gas
denitration
reactor
space
shielding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8339192A
Other languages
Japanese (ja)
Other versions
JP3409617B2 (en
Inventor
Takuya Hatagishi
琢弥 畑岸
Masahiko Ieda
正彦 家田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP33919296A priority Critical patent/JP3409617B2/en
Publication of JPH10176527A publication Critical patent/JPH10176527A/en
Application granted granted Critical
Publication of JP3409617B2 publication Critical patent/JP3409617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the lowering of the denitration effect due to the unevenness of the gas density to be generated by irregular flow or turbulence of the exhaust gas, which flows into a reaction unit of a denitration system. SOLUTION: In this device, the NOx removing agent 2 having the honeycomb structure are laminated, and the exhaust gas G is made to flow into an upper space from a side of a reaction unit 1, and while the reducing agent is sprayed so as to eliminate the nitrogen oxide with a catalyst reducing method. In this case, a shield plate 11 is arranged in the upper space at a position opposite to the lead-in part of the exhaust gas, and when the exhaust gas collides with the shield plate 11, a backward spiral flow is generated for strengthening. Or, single or plural reflecting plates are fixed to corners of the upper space so that the exhaust gas is turned in a flat surface by the reflecting plates for even distribution and straightening.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関等における
排気ガス中に含まれている窒素酸化物(NOX)を除去
するための脱硝装置に関し、特に反応器の内方に遮蔽板
もしくは反射板を備えた脱硝装置に関するものである。
Relates denitration apparatus for removing the invention the nitrogen oxides contained in the exhaust gas of an internal combustion engine or the like (NO X) BACKGROUND OF THE INVENTION, in particular the reactor inwardly shield or reflector The present invention relates to a denitration device provided with:

【0002】[0002]

【従来の技術】NOX処理技術は種々の分野で必要とさ
れてきており、例えばディーゼル機関等の排気ガス中に
存在するNOXは人体に有害であって酸性雨の発生原因
ともなるので、これら排気ガス中のNOXを効果的に処
理する技術が望まれている。
BACKGROUND ART NO X processing technology has been required in various fields, for example, since the NO X present in the exhaust gas such as a diesel engine is also a cause of acid rain be deleterious to the human body, technique that handles NO X of the exhaust gas effectively is desired.

【0003】一般に上記NOXの処理方法は、排煙脱硝
技術として実用化されている。この排煙脱硝技術は乾式
法と湿式法に大別されるが、現在では乾式法の一つであ
る選択接触還元法が技術的に先行しており、有力な脱硝
方法として注目されている。
[0003] Generally, the above-mentioned NO X treatment method is put to practical use as a flue gas denitration technique. This flue gas denitrification technique is roughly classified into a dry method and a wet method. At present, a selective catalytic reduction method, which is one of the dry methods, is technically advanced, and is attracting attention as an effective denitration method.

【0004】上記選択接触還元法の主反応は以下の通り
である。
The main reaction of the above selective catalytic reduction method is as follows.

【0005】 4NO+4NH3+O2 → 4N2+6H2O・・・・・・・・・・・・・(1) この反応は還元剤としてアンモニア,炭化水素,一酸化
炭素が使用され、特にアンモニアは酸素が共存しても選
択的にNOXを除去するため、ディーゼル機関等の排気
ガス中に含まれているNOXの除去に用いて有効であ
る。
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1) In this reaction, ammonia, hydrocarbon, and carbon monoxide are used as a reducing agent. since oxygen is removed selectively NO X even coexist, it is effectively used to remove of the NO X contained in the exhaust gas such as a diesel engine.

【0006】上記脱硝装置の一例として、図7に示した
ように密閉型の反応器1内部にハニカム状に構成された
触媒で成る脱硝剤2,2を多数個並べて積層しておき、
該反応器1の上方から排気ガスGが流入されるのと同時
にノズル3からタンク4に貯留された還元剤を散布し
て、上記(1)式に基づく接触還元を行う手段が多用さ
れている。尚、脱硝剤2を構成する触媒としてプラチナ
等の貴金属とかアルミナ,酸化チタン(TiO2)等に
担持された各種金属酸化物が使用される。
As an example of the above-mentioned denitration apparatus, as shown in FIG. 7, a large number of denitration agents 2 and 2 made of a honeycomb-shaped catalyst are arranged and laminated inside a closed reactor 1.
At the same time as the exhaust gas G flows in from above the reactor 1, means for spraying the reducing agent stored in the tank 4 from the nozzle 3 to perform catalytic reduction based on the above formula (1) is often used. . As a catalyst constituting the denitration agent 2, a noble metal such as platinum or various metal oxides supported on alumina, titanium oxide (TiO 2 ) or the like is used.

【0007】図7の例では、脱硝剤2,2の上方に空間
部15が形成されていて、この空間部15によって流入
する排気ガスGと還元剤の混合効果を高めるとともに排
気ガスGの偏流とか乱流を抑制する作用を持たせてい
る。一般に反応器1内に排気ガスGを送り込む配管は、
周囲のスペースとかレイアウトの都合上から直管状に形
成されることはほとんどなく、通常は配管の中途部が曲
折されているのが通例であり、従って排気ガスGに偏流
とか乱流が生じることが避けられず、上記の空間部15
によって偏流,乱流を抑制する手段が必要となってい
る。
In the example of FIG. 7, a space portion 15 is formed above the denitration agents 2 and 2, and the space portion 15 enhances the mixing effect of the exhaust gas G and the reducing agent flowing into the space portion 15 and causes the exhaust gas G to drift. Or the effect of suppressing turbulence. Generally, the piping for sending the exhaust gas G into the reactor 1
Due to the surrounding space and layout, it is hardly formed into a straight tube because of the layout, and it is customary that the middle part of the pipe is usually bent, so that a drift or a turbulent flow may occur in the exhaust gas G. Inevitably, the space 15
Therefore, means for suppressing drift and turbulence is required.

【0008】図8は従来の脱硝装置の他の例を示してお
り、この例では密閉型の反応器1の側部に排気ガスGが
流入する配管5を連結し、該反応器1内部にハニカム状
に構成された脱硝剤2を積層して、配管5の前段に配置
したノズル(図示省略)から還元剤を散布して上記
(1)式に基づく接触還元反応を行わせている。
FIG. 8 shows another example of a conventional denitration apparatus. In this example, a pipe 5 into which exhaust gas G flows is connected to the side of a closed-type reactor 1 and the inside of the reactor 1 is connected. The denitration agent 2 formed in a honeycomb shape is laminated, and a reducing agent is sprayed from a nozzle (not shown) arranged in a preceding stage of the pipe 5 to perform a catalytic reduction reaction based on the above formula (1).

【0009】[0009]

【発明が解決しようとする課題】しかしながらこのよう
な従来の脱硝装置例では、反応器1内に流入する排気ガ
スGの偏流とか乱流に伴うガス密度の不均一に起因し
て、該排気ガスGの拡散状態が不十分になり易く、排気
ガス全体に対して触媒に基づく均一な脱硝効果を得るこ
とができない場合があるという難点がある。
However, in such a conventional denitration apparatus, the exhaust gas G flowing into the reactor 1 is not uniform due to the uneven flow of the exhaust gas G or the uneven gas density due to the turbulent flow. There is a disadvantage that the diffusion state of G tends to be insufficient, and a uniform denitration effect based on the catalyst cannot be obtained for the entire exhaust gas in some cases.

【0010】前記図7の構成例では、発電機等の周辺機
器との関係から反応器1に流入する排気ガスは曲がった
状態の配管を通って流入する場合が多いため、反応器1
内に空間部15を形成しただけでは偏流とか乱流を抑制
する効果が不十分であり、且つこの抑制作用と還元剤の
混合効果を高めるためには、空間部15を上下に延長し
て現行のものよりも更に大きくしなければならず、その
結果反応器1自体が大型化して広い設置スペースが要求
されるという難点が生じる。
In the configuration example of FIG. 7, the exhaust gas flowing into the reactor 1 often flows through a bent pipe due to the relationship with peripheral equipment such as a generator.
The effect of suppressing the drift or the turbulent flow is not sufficient if only the space 15 is formed in the inside, and the space 15 is extended up and down in order to enhance the suppression action and the mixing effect of the reducing agent. Therefore, there is a problem that the reactor 1 itself becomes large and a large installation space is required.

【0011】図8の構成例では、反応器1の側部に排気
ガスGが流入する配管5が連結されているため、配管5
のレイアウトの面では図7の構成例よりも好ましいとい
えるが、反応器1の側部から排気ガスGを流入させた場
合には、排気ガスGの入口近傍に単に空間部15を設け
ただけでは排気ガスGの偏流を防止することができず、
且つ排気ガスGと還元剤との混合スペースが不足すると
いう難点がある。そのため、図7の例と同様に空間部1
5を上下に延長しなければならず、反応器1自体が大型
化してしまうという問題がある。
In the configuration example of FIG. 8, since the pipe 5 through which the exhaust gas G flows is connected to the side of the reactor 1, the pipe 5
However, when the exhaust gas G is caused to flow from the side of the reactor 1, the space 15 is simply provided near the inlet of the exhaust gas G. Cannot prevent the drift of the exhaust gas G,
In addition, there is a disadvantage that the mixing space between the exhaust gas G and the reducing agent is insufficient. Therefore, as in the example of FIG.
5 has to be extended up and down, and there is a problem that the reactor 1 itself becomes large.

【0012】又、反応器1内に充填された脱硝剤2,2
内へは均一な流速で排気ガスGを流すことが望ましい
が、図9のハニカム内流速分布図に示したように、排気
ガスGの偏流の影響から脱硝剤2,2の中心部分でのが
流速が大きく、周辺部の流速が小さくなる傾向があり、
脱硝効果の均一性が阻害される要因となっている。
The denitration agents 2 and 2 filled in the reactor 1
It is desirable to flow the exhaust gas G into the inside at a uniform flow rate. However, as shown in the honeycomb flow velocity distribution diagram in FIG. The flow velocity is large, the flow velocity in the peripheral part tends to be small,
This is a factor that hinders the uniformity of the denitration effect.

【0013】そこで本発明はこのような従来の脱硝装置
が有している課題を解消して、反応器内に流入する排気
ガスの偏流とか乱流によるガス密度の不均一に起因する
脱硝効果の低下を防止することができる脱硝装置を提供
することを目的とするものである。
Accordingly, the present invention solves the above-mentioned problems of the conventional denitration apparatus, and reduces the denitration effect caused by unevenness of the gas density due to drift or turbulence of the exhaust gas flowing into the reactor. It is an object of the present invention to provide a denitration apparatus capable of preventing the deterioration.

【0014】[0014]

【課題を解決するための手段】本発明は上記課題を解決
するために、密閉型の反応器内部にハニカム状に構成さ
れた触媒で成る脱硝剤を積層配置し、該反応器の側部か
ら該反応器内の上方空間部に内燃機関の排気ガスを流入
すると同時に該排気ガス中に還元剤を噴霧して、接触還
元法に基づいて排気ガス中の窒素酸化物を除去し、排出
部から放出するようにした脱硝装置において、請求項1
により、上記反応器内の上方空間部にあって排気ガスの
導入部と対向する部位に遮蔽板を配設し、流入する排気
ガスが該遮蔽板に衝突した際に後流渦を生成して整流す
るようにした脱硝装置の構成にしてある。
According to the present invention, in order to solve the above-mentioned problems, a denitration agent comprising a catalyst formed in a honeycomb shape is laminated and arranged inside a closed type reactor, and the denitration agent is arranged from the side of the reactor. At the same time as the exhaust gas of the internal combustion engine flows into the upper space in the reactor, a reducing agent is sprayed into the exhaust gas to remove nitrogen oxides in the exhaust gas based on the catalytic reduction method. In a denitration apparatus configured to discharge the gas, a claim 1 is provided.
By disposing a shielding plate in a portion of the upper space in the reactor opposite to the exhaust gas introduction portion, and when a flowing exhaust gas collides with the shielding plate, a wake vortex is generated. It has a configuration of a denitration device that performs rectification.

【0015】請求項2により、上方空間部内の隅部に単
数もしくは複数個の反射板を固定して、流入する排気ガ
スが上記反射板により空間部内を平面的に旋回すること
により、均一に分布して整流するようにした脱硝装置の
構成にしてある。これら遮蔽板もしくは反射板の形状
は、円盤状又は角盤状の何れかとする。
According to a second aspect of the present invention, one or more reflectors are fixed to the corners in the upper space, and the exhaust gas flowing in is uniformly distributed by swirling the space in the space by the reflectors. The denitration device is configured to perform rectification. The shape of the shielding plate or the reflecting plate is either a disk shape or a square disk shape.

【0016】かかる請求項1記載の脱硝装置によれば、
排気ガスのガス密度が不均一な偏流もしくは乱流状態と
して反応器内に送り込まれた際に、この排気ガスが遮蔽
板に衝突し、後流渦を生成して整流されてから脱硝剤を
通過し、選択接触還元法の主反応に基づいて窒素酸化物
(NOX)が均一な脱硝反応により除去される。従って
遮蔽板による整流作用によって圧力分布の偏りが低減さ
れ、ガス密度が平均化されるという作用が得られる。
According to the denitration apparatus of the first aspect,
When the exhaust gas is fed into the reactor as a non-uniform drift or turbulent gas density, this exhaust gas collides with the shielding plate, generates a wake vortex and is rectified before passing through the denitration agent and, nitrogen oxides (NO X) is removed by uniform denitration reaction based on the main reaction of selective catalytic reduction. Therefore, the bias of the pressure distribution is reduced by the rectifying action of the shielding plate, and the action of averaging the gas density is obtained.

【0017】請求項2記載の脱硝装置によれば、上記と
同様にガス密度が不均一な偏流もしくは乱流状態として
流入した排気ガスが反射板に衝突した後、空間部内を平
面的に旋回することにより流体が均一に分布され、圧力
分布の偏りが低減してガス密度が平均化されてから脱硝
剤を通過し、窒素酸化物が均一な脱硝反応により除去さ
れる。
According to the second aspect of the present invention, similarly to the above, after the exhaust gas that has flowed in a non-uniform or turbulent state having a non-uniform gas density collides with the reflector, it turns in a plane in the space. As a result, the fluid is evenly distributed, the bias in the pressure distribution is reduced, the gas density is averaged, and then the gas passes through the denitration agent, and the nitrogen oxides are removed by a uniform denitration reaction.

【0018】[0018]

【発明の実施の形態】以下図面に基づいて本発明にかか
る脱硝装置の各種実施例を、前記従来の構成部分と同一
の構成部分に同一の符号を付して詳述する。図1は本発
明の第1実施例にかかる脱硝装置10の構成を示す要部
縦断面図であって、本実施例では反応器1の側部に排気
ガスGが流入する配管5を連結した構造を基本構成とし
ている。この反応器1の内部にはハニカム状に構成され
た脱硝剤2が積層されており、配管5の前段に配置した
ノズル(図示省略)から排気ガスG中に還元剤を散布し
て接触還元反応を行わせている。15は反応器1内の空
間部、6は排気ガスGの排出部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of a denitration apparatus according to the present invention will be described below in detail with reference to the drawings, in which the same reference numerals are given to the same components as the above-mentioned conventional components. FIG. 1 is a vertical sectional view showing a configuration of a denitration apparatus 10 according to a first embodiment of the present invention. In this embodiment, a pipe 5 into which exhaust gas G flows is connected to a side of the reactor 1. It has a basic structure. Inside the reactor 1, a honeycomb-shaped denitration agent 2 is laminated, and a reducing agent is sprayed into the exhaust gas G from a nozzle (not shown) arranged in a preceding stage of the pipe 5 to perform a catalytic reduction reaction. Is done. Reference numeral 15 denotes a space in the reactor 1, and reference numeral 6 denotes a discharge part of the exhaust gas G.

【0019】上記反応器1内の配管5に近接する部分、
還元すれば排気ガスGの導入方向と対向する部位に相当
する空間部15内には、遮蔽板11が配設されている。
この遮蔽板11は、図2(A)(B)に示したように中
心部に取付用の孔部11aが開口された円盤状の部材で
構成されている。
A portion close to the pipe 5 in the reactor 1,
If reduced, the shielding plate 11 is disposed in the space 15 corresponding to a portion facing the direction of introduction of the exhaust gas G.
As shown in FIGS. 2A and 2B, the shielding plate 11 is formed of a disc-shaped member having a mounting hole 11a opened in the center.

【0020】尚、遮蔽板11の固定手段としては、反応
器1の外方から壁部を貫通して設けた図外の支持杆の先
端部に前記取付用の孔部11aを固定すればよい。この
遮蔽板11の形状は円盤状に限定されるものではなく、
後流渦を生成するものであれば他の形状であってもよ
い。この第1実施例では反応器1内の空間部15の容積
が従来例(図7)の空間部15の容積よりも小さくなっ
ている。
As the means for fixing the shielding plate 11, the mounting hole 11a may be fixed to the tip of a support rod (not shown) provided through the wall from the outside of the reactor 1. . The shape of the shielding plate 11 is not limited to a disk shape,
Other shapes that generate wake vortices may be used. In the first embodiment, the volume of the space 15 in the reactor 1 is smaller than the volume of the space 15 of the conventional example (FIG. 7).

【0021】かかる第1実施例の動作を以下に説明す
る。即ち、内燃機関から発生する排気ガスGが還元剤と
ともに配管5を介して反応器1内に導入されるが、この
排気ガスGのガス密度が不均一な偏流もしくは乱流状態
として反応器1内に送り込まれた際に、排気ガスGの導
入方向と対向する部位に配設された遮蔽板11に衝突し
た後、この遮蔽板11によって後流渦を生成して整流さ
れてから脱硝剤2,2内を通過する。そして選択接触還
元法の主反応(前記の1式を参照)に基づいて、排気ガ
スG中に含まれている窒素酸化物(NOX)が均一な脱
硝反応により除去され、排出部6から放出される。
The operation of the first embodiment will be described below. That is, the exhaust gas G generated from the internal combustion engine is introduced into the reactor 1 through the pipe 5 together with the reducing agent, and the gas density of the exhaust gas G is changed into an uneven drift or turbulent state. When it is sent to the exhaust gas G, it collides with a shielding plate 11 disposed at a portion opposite to the introduction direction of the exhaust gas G, and generates a wake vortex by the shielding plate 11 to be rectified. Pass through 2. Then, based on the main reaction of the selective catalytic reduction method (see the above formula 1), nitrogen oxides (NO x ) contained in the exhaust gas G are removed by a uniform denitration reaction and released from the discharge unit 6. Is done.

【0022】従って反応器1内に流入する排気ガスGに
偏流とか乱流が存在しても、遮蔽板11による整流作用
によって圧力分布の偏りが低減され、更に脱硝剤2を構
成するハニカム体の均一な圧力抵抗によっても整流作用
が生じるため、偏流とか乱流整流効果が大きく、ガス密
度が平均化されるという動作態様が得られる。
Therefore, even if there is a drift or turbulence in the exhaust gas G flowing into the reactor 1, the bias of the pressure distribution is reduced by the rectifying action of the shielding plate 11, and the honeycomb body constituting the denitration agent 2 Since the rectifying action is generated even by the uniform pressure resistance, the effect of rectifying the turbulent flow or the turbulent flow is large, and an operation mode in which the gas density is averaged is obtained.

【0023】図5は第1実施例におけるハニカム内流速
分布図であり、遮蔽板11の存在に伴って図9に示した
従来例に比較して中心部分での流速突出部が消滅してお
り、全体的に流速分布が平坦となっていることにより、
排気ガスGの偏流の影響をなくして脱硝効果の均一化が
はかれることが理解される。
FIG. 5 is a diagram showing the flow velocity distribution in the honeycomb in the first embodiment. In comparison with the conventional example shown in FIG. , Because the flow velocity distribution is flat overall,
It is understood that the effect of the drift of the exhaust gas G is eliminated and the denitration effect is made uniform.

【0024】図3は本発明の第2実施例を示す要部縦断
面図、図4は同平断面図であって、装置としての基本的
な構成は前記第1実施例と一致しているため、同一の符
号を付して表示してある。この第2実施例では、反応器
1内の上方空間部15内の隅部に単数もしくは複数個の
反射板12が固定されている。該反射板12の形状は円
盤状又は角盤状の何れであってもよく、空間部15内の
隅部に少なくとも1個、好ましくは各隅部に計4個配置
して固定する。
FIG. 3 is a longitudinal sectional view of a main part showing a second embodiment of the present invention, and FIG. 4 is a plan sectional view of the same. The basic structure of the device is the same as that of the first embodiment. For this reason, the same reference numerals are attached and displayed. In the second embodiment, one or a plurality of reflectors 12 are fixed to a corner in the upper space 15 in the reactor 1. The shape of the reflection plate 12 may be any of a disk shape or a square shape, and at least one reflector is disposed at a corner in the space 15, preferably a total of four reflectors are disposed at each corner, and fixed.

【0025】この第2実施例では、空間部15の容積が
第1実施例よりもさらに小さくなっている。なお、図3
に示したように反射板12の径方向の寸法Lは、配管5
の内径長lよりも大きくなるように形成してある。他の
構成要素は第1実施例と同一である。
In the second embodiment, the volume of the space 15 is smaller than in the first embodiment. Note that FIG.
As shown in the figure, the radial dimension L of the reflection plate 12 is
Is formed so as to be larger than the inner diameter length l. Other components are the same as those of the first embodiment.

【0026】かかる構成に基づく第2実施例によれば、
内燃機関から発生する排気ガスGが還元剤とともに配管
5を介してガス密度が不均一な偏流もしくは乱流状態と
して反応器1内に導入されるが、流入した排気ガスGが
反射板12に衝突した後、図4の矢印Cに示したように
空間部15内を平面的に旋回することにより、脱硝剤2
を構成するハニカム体表面に流体が均一に分布され、こ
れに伴って排気ガスGの整流が行われる。
According to the second embodiment based on such a configuration,
Exhaust gas G generated from the internal combustion engine is introduced into the reactor 1 together with the reducing agent through the pipe 5 as a non-uniform drift or turbulent gas density. After that, as shown by the arrow C in FIG.
The fluid is uniformly distributed on the surface of the honeycomb body constituting the exhaust gas G, and accordingly, the exhaust gas G is rectified.

【0027】その後に排気ガスGは脱硝剤2,2内を通
過して、前記した選択接触還元法の主反応に基づいて排
気ガスG中に含まれている窒素酸化物(NOX)が均一
な脱硝反応により除去され、排出部6から放出される。
Thereafter, the exhaust gas G passes through the denitration agents 2 and 2, and the nitrogen oxides (NO x ) contained in the exhaust gas G are uniformed based on the main reaction of the selective catalytic reduction method described above. It is removed by an appropriate denitration reaction and is discharged from the discharge unit 6.

【0028】従って反応器1内に流入する排気ガスGに
偏流とか乱流が存在しても、反射板12による空間部1
5内での旋回に伴う整流作用によって圧力分布の偏りが
低減され、且つ脱硝剤2を構成するハニカム体の均一な
圧力抵抗によっても整流作用が生じるため、排気ガスG
の持つ偏流とか乱流が消滅してガス密度が平均化される
という動作態様が得られる。
Therefore, even if the exhaust gas G flowing into the reactor 1 has a drift or a turbulent flow, the space 1
The bias of the pressure distribution is reduced by the rectifying action accompanying the turning in the inside 5, and the rectifying action occurs even by the uniform pressure resistance of the honeycomb body constituting the denitration agent 2.
An operation mode in which the drift or the turbulent flow of the gas is eliminated and the gas density is averaged is obtained.

【0029】図6は第2実施例におけるハニカム内流速
分布図であり、反射板12の存在に伴って第1実施例と
同様に中心部分での流速突出部が消滅し、流速分布が平
坦となって脱硝効果の均一性をはかることができる。
FIG. 6 is a diagram showing the flow velocity distribution in the honeycomb according to the second embodiment. In the same manner as in the first embodiment, the flow velocity protruding portion disappears with the presence of the reflection plate 12, and the flow velocity distribution becomes flat. As a result, the uniformity of the denitration effect can be measured.

【0030】[0030]

【発明の効果】以上詳細に説明したように、本発明の第
1実施例にかかる脱硝装置によれば、反応器に流入する
排気ガスに偏流とか乱流が存在しても、反応器に流入す
るのと同時に導入部と対向する部位に配設された遮蔽板
に衝突して後流渦を生成することにより、整流されると
ともにガスの流速と密度がほぼ均一化されから脱硝剤を
通過し、選択接触還元法の均一な主反応に基づいて排気
ガス中に含まれている窒素酸化物(NOX)を除去する
ことができる。
As described above in detail, according to the denitration apparatus according to the first embodiment of the present invention, even if the exhaust gas flowing into the reactor has a drift or a turbulent flow, it flows into the reactor. At the same time, it collides with the shielding plate arranged at the part opposite to the introduction part to generate wake vortices, so that the flow is rectified and the gas flow rate and density are almost uniform, and then the gas passes through the denitration agent. In addition, nitrogen oxides (NO x ) contained in exhaust gas can be removed based on the uniform main reaction of the selective catalytic reduction method.

【0031】更に本発明の第2実施例によれば、流入し
た排気ガスが反射板に衝突した後、空間部内を平面的に
旋回することによって流体が均一に分布され、これに伴
って排気ガスの整流を行ってから脱硝剤を通過して効果
的な脱硝を遂行することができる。
Further, according to the second embodiment of the present invention, after the inflowing exhaust gas collides with the reflector, the fluid is uniformly distributed by swirling in the space partly in a plane, whereby the exhaust gas is distributed. After the rectification, the denitration agent can be passed to perform effective denitration.

【0032】従って周囲のスペースとかレイアウトの都
合上から反応器内に排気ガスを送り込む配管を曲折した
場合に生じやすい排気ガスの偏流もしくは乱流の状態に
も的確に対処可能となり、偏流,乱流状態が反応器の排
出部まで残ることがなく、しかも排気ガスが還元剤と充
分に混合されて脱硝剤内を通過するので、還元剤濃度が
均一となって脱硝効率を向上させることができる。又、
反応器内に従来のような広い空間部を設ける必要がない
ので、反応器自体の小型化がはかれると同時に広い設置
スペースが要求されないという効果がある。
Therefore, due to the surrounding space and the layout, it is possible to accurately cope with the state of the drift or turbulence of the exhaust gas which is likely to occur when the pipe for feeding the exhaust gas into the reactor is bent. The state does not remain up to the outlet of the reactor, and the exhaust gas is sufficiently mixed with the reducing agent and passes through the denitration agent, so that the concentration of the reducing agent becomes uniform and the denitration efficiency can be improved. or,
Since there is no need to provide a wide space in the reactor as in the related art, there is an effect that the size of the reactor itself can be reduced and a large installation space is not required.

【0033】従って本発明によれば、偏流とか乱流に伴
うガス密度の不均一に起因する該排気ガスの拡散状態を
整えて、排気ガス全体に対して触媒に基づく均一な脱硝
効果が得られる脱硝装置を提供することが出来る。
Therefore, according to the present invention, a uniform denitration effect based on the catalyst can be obtained for the entire exhaust gas by adjusting the diffusion state of the exhaust gas caused by uneven gas density due to drift or turbulence. A denitration device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を適用した脱硝装置の構成
を示す要部縦断面図。
FIG. 1 is a vertical sectional view of a main part showing a configuration of a denitration apparatus to which a first embodiment of the present invention is applied.

【図2】図1の遮蔽板を示す(A)側断面図及び(B)
平面図。
2A is a side sectional view showing the shielding plate of FIG. 1, and FIG.
Plan view.

【図3】本発明の第2実施例を適用した脱硝装置の構成
を示す要部縦断面図。
FIG. 3 is a vertical sectional view of a main part showing a configuration of a denitration apparatus to which a second embodiment of the present invention is applied.

【図4】図3の平断面図。FIG. 4 is a plan sectional view of FIG. 3;

【図5】第1実施例におけるハニカム内流速分布図。FIG. 5 is a view showing a flow velocity distribution in a honeycomb in the first embodiment.

【図6】第2実施例におけるハニカム内流速分布図。FIG. 6 is a view showing a flow velocity distribution in a honeycomb in the second embodiment.

【図7】従来の脱硝装置の構成を示す概要図。FIG. 7 is a schematic diagram showing a configuration of a conventional denitration apparatus.

【図8】従来の他の脱硝装置の構成を示す概要図。FIG. 8 is a schematic diagram showing the configuration of another conventional denitration apparatus.

【図9】従来例におけるハニカム内流速分布図。FIG. 9 is a diagram showing a flow velocity distribution in a honeycomb in a conventional example.

【符号の説明】[Explanation of symbols]

1…反応器 2…脱硝剤 5…配管 6…排出部 10…脱硝装置 11…遮蔽板 11a…孔部 12…反射板 15…空間部 DESCRIPTION OF SYMBOLS 1 ... Reactor 2 ... Denitration agent 5 ... Piping 6 ... Discharge part 10 ... Denitration device 11 ... Shielding plate 11a ... Hole 12 ... Reflection plate 15 ... Space

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/28 301 B01D 53/36 102A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 3/28 301 B01D 53/36 102A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密閉型の反応器内部にハニカム状に構成
された触媒で成る脱硝剤を積層配置し、該反応器の側部
から該反応器内の上方空間部に内燃機関の排気ガスを流
入すると同時に該排気ガス中に還元剤を噴霧して、接触
還元法に基づいて排気ガス中の窒素酸化物を除去し、排
出部から放出するようにした脱硝装置において、 上記反応器内の上方空間部にあって排気ガスの導入部と
対向する部位に遮蔽板を配設し、流入する排気ガスが該
遮蔽板に衝突した際に後流渦を生成して整流することを
特徴とする脱硝装置。
1. A denitration agent comprising a catalyst formed in a honeycomb shape is laminated and disposed inside a closed-type reactor, and exhaust gas of an internal combustion engine is supplied from a side of the reactor to an upper space in the reactor. At the same time as the inflow, the reducing agent is sprayed into the exhaust gas to remove the nitrogen oxides in the exhaust gas based on the catalytic reduction method, and is discharged from the discharge portion. A denitration characterized by disposing a shielding plate in a space portion facing an exhaust gas introduction portion, and generating and rectifying a wake vortex when inflowing exhaust gas collides with the shielding plate. apparatus.
【請求項2】 密閉型の反応器内部にハニカム状に構成
された触媒で成る脱硝剤を積層配置し、該反応器の側部
から該反応器内に上方空間部に内燃機関の排気ガスを流
入すると同時に該排気ガス中に還元剤を噴霧して、接触
還元法に基づいて排気ガス中の窒素酸化物を除去し、排
出部から放出するようにした脱硝装置において、 上記上方空間部内の隅部に単数もしくは複数個の反射板
を固定して、流入する排気ガスが上記反射板により空間
部内を平面的に旋回することにより、均一に分布して整
流することを特徴とする脱硝装置。
2. A denitration agent comprising a catalyst formed in a honeycomb shape is laminated and arranged inside a closed type reactor, and exhaust gas of an internal combustion engine is fed from a side of the reactor into an upper space inside the reactor. A denitration apparatus in which a reducing agent is sprayed into the exhaust gas at the same time as it flows in to remove nitrogen oxides in the exhaust gas based on a catalytic reduction method and discharge the exhaust gas from an exhaust portion. A denitration apparatus characterized in that one or a plurality of reflectors are fixed to a portion, and the exhaust gas flowing in is swirled in a space by the reflectors in a plane so as to be uniformly distributed and rectified.
【請求項3】 前記遮蔽板及び反射板の形状は、円盤状
又は角盤状の何れかとした請求項1又は2記載の脱硝装
置。
3. The denitration apparatus according to claim 1, wherein the shape of each of the shielding plate and the reflecting plate is one of a disk shape and a square shape.
JP33919296A 1996-12-19 1996-12-19 Denitration equipment Expired - Fee Related JP3409617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33919296A JP3409617B2 (en) 1996-12-19 1996-12-19 Denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33919296A JP3409617B2 (en) 1996-12-19 1996-12-19 Denitration equipment

Publications (2)

Publication Number Publication Date
JPH10176527A true JPH10176527A (en) 1998-06-30
JP3409617B2 JP3409617B2 (en) 2003-05-26

Family

ID=18325114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33919296A Expired - Fee Related JP3409617B2 (en) 1996-12-19 1996-12-19 Denitration equipment

Country Status (1)

Country Link
JP (1) JP3409617B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077576A (en) * 2004-09-07 2006-03-23 Meidensha Corp Denitration reactor
WO2011068054A1 (en) * 2009-12-01 2011-06-09 トヨタ自動車 株式会社 Exhaust purification device
CN102773014A (en) * 2012-08-17 2012-11-14 浙江富春江环保热电股份有限公司 Vortex generating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077576A (en) * 2004-09-07 2006-03-23 Meidensha Corp Denitration reactor
WO2011068054A1 (en) * 2009-12-01 2011-06-09 トヨタ自動車 株式会社 Exhaust purification device
JP2011117328A (en) * 2009-12-01 2011-06-16 Toyota Motor Corp Exhaust purification device
CN102630269A (en) * 2009-12-01 2012-08-08 丰田自动车株式会社 Exhaust purification device
CN102773014A (en) * 2012-08-17 2012-11-14 浙江富春江环保热电股份有限公司 Vortex generating device

Also Published As

Publication number Publication date
JP3409617B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
JP3409593B2 (en) Denitration equipment with shielding plate
EP2256313B1 (en) Exhaust emission purifying apparatus for engine
EP2530269B1 (en) SCR Muffler
KR101198968B1 (en) Exhaust gas denitrifing system having noise-reduction structure
US20030051449A1 (en) Exhaust gas purifying system for internal combustion engine
BR122021010883B1 (en) MIXTURE DISPOSAL
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
KR20110047020A (en) An Exhaust Gas Denitrifing System having Reducer-mixing and Noise-diminution Structure
WO2018068667A1 (en) Tail gas after-treatment device
US8850801B2 (en) Catalytic converter and muffler
US8470253B2 (en) Exhaust flow distribution device
JP2010144569A (en) Selective reduction catalyst device
JP2003184546A (en) Method and device for catalytic conversion of gaseous pollutant in exhaust gas of combustion engine
CN109184863B (en) SCR mixing system and SCR mixer thereof
JP3409617B2 (en) Denitration equipment
JP2006077576A (en) Denitration reactor
JPH0988558A (en) Nox removal system
KR101724429B1 (en) Exhaust gas denitrifing system having noise-reduction structure
JP3686666B1 (en) Engine exhaust purification system
JPH0975672A (en) Exhaust gas denitration apparatus
JP2005214186A (en) Scr muffler
JP2018115586A (en) Exhaust emission control device
KR20200071532A (en) An apparatus for reducing nitrogen oxide
WO2018082381A1 (en) Box-type exhaust aftertreatment device
JP6745401B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees