JPH10175000A - Method and apparatus for sludge ozonization - Google Patents

Method and apparatus for sludge ozonization

Info

Publication number
JPH10175000A
JPH10175000A JP33919496A JP33919496A JPH10175000A JP H10175000 A JPH10175000 A JP H10175000A JP 33919496 A JP33919496 A JP 33919496A JP 33919496 A JP33919496 A JP 33919496A JP H10175000 A JPH10175000 A JP H10175000A
Authority
JP
Japan
Prior art keywords
sludge
ozone
viscosity
treatment
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33919496A
Other languages
Japanese (ja)
Other versions
JP3552436B2 (en
Inventor
Koichi Shimizu
公一 清水
Shigeo Aoyanagi
重夫 青柳
Norimasa Yoshino
徳正 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP33919496A priority Critical patent/JP3552436B2/en
Publication of JPH10175000A publication Critical patent/JPH10175000A/en
Application granted granted Critical
Publication of JP3552436B2 publication Critical patent/JP3552436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for ozonization with higher concentration by inactivating anaerobic bacteria primarily responsible for sludge decay by using ozone. SOLUTION: In a treatment where sludge is allowed to flow in an ozonization reaction chamber 1 so that ozone gas diffuses inside the sludge, viscosities of sludge ozonization-processed and a viscosity of sludge to be ozonization- processed are measured by each viscometer 6a, and a controller 7 obtains an ozone injection rate based on the viscosity of the sludge ozonization-processed and a viscosity of a predetermined control target value, and send a control output signal 7a to an ozonizer 3 and determines the optimum ozone-injecting volume. In addition to the above operation, a concentration meter for measuring concentration of sludge drawn out from the ozonization reaction chamber 1 is provided and a viscosity ratio is calculated from the viscosity of the sludge to be ozonization-processed, and the viscosity of the control target value and the ozone injection rate obtained by the viscosity and the concentration of the sludge is corrected by the viscosity ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は汚泥のオゾン処理を
行うことによって効率的に濃縮処理を行うようにした処
理方法と装置に関し、特に集約処理における汚泥腐敗の
主原因である嫌気性細菌をオゾンを用いて不活性化する
ことにより、汚泥の濃縮性を高めることができるオゾン
処理方法及び処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for efficiently concentrating sludge by performing ozone treatment. More particularly, the present invention relates to an anaerobic bacterium which is a main cause of sludge decay in intensive treatment. TECHNICAL FIELD The present invention relates to an ozone treatment method and a treatment apparatus that can increase the concentration of sludge by inactivating the sludge using the method.

【0002】[0002]

【従来の技術】近年の生活水準の向上とか下水排除方式
の変遷と整備の進捗に伴って下水処理場に流入する下水
中の有機物濃度が増加しており、そのため濃縮装置にお
ける汚泥の腐敗が進行して濃縮性が低下し、後続する汚
泥処理システムの処理効率の低下とか返流水による水処
理システムへの有機物負荷増大を引き起こす要因となっ
ている。
2. Description of the Related Art The concentration of organic matter in sewage flowing into a sewage treatment plant has increased with the recent improvement of living standards and the transition of sewage elimination systems and the progress of maintenance. As a result, the concentration property is reduced, which causes a reduction in the treatment efficiency of the subsequent sludge treatment system and an increase in the organic matter load on the water treatment system due to the return water.

【0003】更に下水道の普及に伴って下水処理水量も
年々増加しており、汚泥の発生量もほぼ同じ比率で増加
している(1992年度下水道年鑑,水道産業新聞社発
行を参照)。この汚泥の処理は処分地の制約条件が大き
い大都市のみならず、中小都市の場合でも大きな問題と
なる。
[0003] Further, with the spread of sewers, the amount of treated sewage has been increasing year by year, and the amount of generated sludge has also increased at almost the same rate (see the 1992 Sewerage Yearbook, published by Water Supply Industry Newspaper). This treatment of sludge poses a serious problem not only in large cities with large restrictions on disposal sites, but also in small and medium cities.

【0004】他方で都市下水処理場における水処理施設
で発生した余剰汚泥とか最初沈澱池で発生した生汚泥
は、水処理施設の系外に引き抜かれて汚泥処理施設に輸
送され、濃縮,消化,脱水,焼却等の工程を経て最終処
分が行われる。特に大都市圏においては、人口の集中等
の要因により複数の下水処理場が近接している場合が多
く、これら各下水処理場の発生汚泥を一カ所に集中して
汚泥の集約処理を行うことによって汚泥処理コストを低
くすることができる。
On the other hand, surplus sludge generated in a water treatment facility in an urban sewage treatment plant or raw sludge initially generated in a sedimentation basin is drawn out of the system of the water treatment facility, transported to the sludge treatment facility, and concentrated, digested, and digested. Final disposal is performed through processes such as dehydration and incineration. Especially in large metropolitan areas, multiple sewage treatment plants are often in close proximity due to factors such as population concentration, and the sludge generated at each of these sewage treatment plants should be concentrated in one place to carry out sewage treatment. Thereby, the sludge treatment cost can be reduced.

【0005】上記汚泥処理の各種方法を図12に基づい
て説明すると、(1)は生汚泥を濃縮,消化後に最終処
分もしくは天日乾燥を経て最終処分する方法、(2)は
生汚泥を濃縮後に調整、もしくは消化,調整後に機械脱
水し、コンポスト化してから最終処分する方法、(3)
は生汚泥を濃縮後に調整、もしくは消化,調整後に機械
脱水し、最終処分もしくは乾燥,焼却してから最終処分
する方法、(4)は生汚泥を濃縮,熱処理後に機械脱水
し、焼却してから最終処分する方法、(5)は生汚泥を
濃縮,湿式酸化後に機械脱水してから最終処分する方法
である(下水道施設設計指針と解説−第423ページ,
1984年版,(社)日本下水道協会発行を参照)。
[0005] Various methods of the above-mentioned sludge treatment will be described with reference to Fig. 12. (1) A method of concentrating raw sludge, a final disposal after digestion or a final disposal through solar drying, and (2) a method of concentrating raw sludge. Adjustment or digestion afterwards, mechanical dehydration after adjustment, composting and final disposal, (3)
In the method, the raw sludge is adjusted after concentration, or digested, mechanically dehydrated after adjustment, final disposal or drying, incineration, and then final disposal. (4) The raw sludge is concentrated, heat-treated, mechanically dehydrated, and incinerated. The final disposal method, (5) is a method for concentrating raw sludge, mechanically dewatering after wet oxidation, and then final disposal (sewerage facility design guidelines and commentary-page 423,
1984 edition, published by the Japan Sewerage Association).

【0006】上記(3)の汚泥を焼却する場合の消化過
程は、汚泥の減量化によってそれ以降の施設の規模の縮
小とか消化ガスの利用、汚泥の貯留効果等の利点がある
反面、水処理施設への脱離液の影響,汚泥発熱量の低
下,敷地とか施設の複雑さ等の問題があり、これらの得
失を判断して決める必要がある。
[0006] The digestion process in the case of incineration of the above-mentioned (3) has advantages such as a reduction in the size of the facility due to a reduction in the amount of sludge, the use of digestion gas, and the effect of storing the sludge. There are problems such as the effect of the desorbed liquid on the facility, the decrease in the amount of heat generated by sludge, and the complexity of the site and facilities.

【0007】上記(4)の方法は熱処理によって濾過性
が向上し、汚泥の脱水に薬品を使用しないので、(2)
(3)の方法よりも脱水ケーキが少なくなる利点がある
が、加熱エネルギーが必要なため汚泥焼却の廃熱利用を
前提とし、濾液のBODが高く、厳密な運転管理が要求
される。
In the method (4), the heat treatment improves the filterability and does not use any chemicals for dewatering the sludge.
Although the method has the advantage of reducing the number of dewatered cakes as compared with the method (3), heating energy is required, so that waste heat of sludge incineration is used, the BOD of the filtrate is high, and strict operation management is required.

【0008】上記(5)の方法は湿式酸化法により高温
高圧の下で液状のままで有機物を燃焼させるもので、消
化及び焼却過程に替わるものとして用いられる。前記
(4)の方法よりも温度と圧力が高くなるため、維持管
理は厳密となる。
The above method (5) involves burning organic matter in a liquid state under high temperature and high pressure by a wet oxidation method, and is used as an alternative to the digestion and incineration processes. Since the temperature and pressure are higher than in the method (4), the maintenance is strict.

【0009】汚泥の集約処理を行うには、各処理場にて
発生する汚泥を集中汚泥処理場に輸送する必要があり、
その輸送方法としてはトラック輸送、船舶輸送、パイプ
輸送等が考えられる。集約処理の長所は、汚泥処理施
設のスケールメリット、環境対策の集約化、エネル
ギー回収の効率化、維持管理費のコスト低減、汚泥
の資源化の向上等が挙げられる。送泥管を用いる場合に
は自然流下区間と圧送ポンプによる圧送区間に大別でき
る。現在最も遠い下水処理場から汚泥処理施設までの送
泥にかかる時間は24時間程度である。
[0009] In order to carry out the intensive treatment of sludge, it is necessary to transport the sludge generated in each treatment plant to a centralized sludge treatment plant.
As the transportation method, truck transportation, ship transportation, pipe transportation and the like can be considered. The advantages of intensive treatment include the economies of scale of sludge treatment facilities, the convergence of environmental measures, the efficiency of energy recovery, the reduction of maintenance and management costs, and the improvement of sludge recycling. When a mud pipe is used, it can be broadly divided into a naturally flowing section and a pumping section using a pump. It takes about 24 hours to send the sludge from the farthest sewage treatment plant to the sludge treatment facility.

【0010】濃縮装置の運転の良否は、後続の汚泥処理
システムのみならず、水処理システムにも影響を与え
る。例えば汚泥量は含水率によって著しく左右されるの
で汚泥を濃縮して減量することは以後の処理過程での施
設の容量が節約されるという効果を生む。含水率99%
の汚泥を含水率96%に濃縮すると汚泥量は1/4にな
る。特に濃縮が十分に行われない場合には、消化処理す
るために多量の熱を必要とし、消化日数にも影響を与え
る。更に濃縮汚泥を直接脱水する場合の脱水性が悪化す
る。
[0010] The quality of the operation of the concentrator affects not only the subsequent sludge treatment system but also the water treatment system. For example, since the amount of sludge is greatly affected by the water content, concentrating and reducing the amount of sludge has the effect of saving the capacity of the facility in the subsequent process. 99% water content
When the sludge is concentrated to a water content of 96%, the sludge amount is reduced to 1/4. In particular, when the concentration is not sufficiently performed, a large amount of heat is required for digestion treatment, which affects the number of digestion days. Furthermore, the dewatering property when directly dewatering the concentrated sludge deteriorates.

【0011】汚泥濃縮タンクでの固形物回収率が低い
と、分離液中に多量のss(浮遊物質)成分が含まれ、
水処理施設に影響を与えることがある。汚泥の濃縮には
重力式,浮上式及び遠心濃縮式があり、一般に重力式が
多用されているが、近時は汚泥の沈降性及び濃縮性が悪
くなってきており、特に夏季には濃縮汚泥の濃度低下と
か汚泥の一部が浮上して固形物回収率が低下することが
ある。そこで先ず重力式を用いて沈降性が悪くなってき
たときに余剰汚泥だけを浮上式又は遠心濃縮する方法も
考えられるが、2種類の汚泥濃縮タンクを設けると維持
管理が複雑になって不経済であるという問題が生じる。
When the solids recovery rate in the sludge concentration tank is low, a large amount of ss (suspended matter) component is contained in the separated liquid,
May affect water treatment facilities. There are gravity type, floating type and centrifugal concentration type for sludge concentration. Generally, gravity type is frequently used, but recently the sedimentation and concentration of sludge have become worse, especially in the summer, concentrated sludge. The solids recovery rate may decrease due to a decrease in the concentration of the sludge or a part of the sludge floating. Therefore, it is conceivable to first use a gravity method to separate only the excess sludge by floating or centrifugal concentrating when the sedimentation becomes poor. However, if two types of sludge thickening tanks are provided, the maintenance and management becomes complicated and uneconomical Problem arises.

【0012】[0012]

【発明が解決しようとする課題】前記したように下水処
理場に流入する下水中の有機物濃度の増加に起因して濃
縮装置における汚泥の腐敗が進行して濃縮性が低下し、
後続する汚泥処理システムの処理効率の低下とか返流水
による水処理システムへの有機物負荷増大を引き起こす
問題がある。汚泥集約処理の場合、下水汚泥のパイプ輸
送を行う際に輸送中の圧送区間で管内が満管になるた
め、嫌気状態になった汚泥中で嫌気性微生物が有機物を
分解して汚泥の腐敗が進行し、施設の腐食、悪臭の発
生、濃縮性の悪化、脱水性の悪化、返流水負荷の増大等
の問題を引き起こす。
SUMMARY OF THE INVENTION As described above, the sludge in a thickening device progresses due to an increase in the concentration of organic matter in sewage flowing into a sewage treatment plant, and the thickening property is reduced.
There is a problem that the treatment efficiency of the succeeding sludge treatment system is reduced or the organic matter load on the water treatment system due to the return water is increased. In the case of sludge consolidation treatment, when pipes are transported for sewage sludge, the inside of the pipe becomes full in the pumping section during transportation, so anaerobic microorganisms decompose organic matter in sludge that has become anaerobic and decompose sludge. It causes problems such as corrosion of facilities, generation of odor, deterioration of concentration, deterioration of dehydration, and increase of return water load.

【0013】上記に対処して、汚泥腐敗の主な原因であ
る嫌気性微生物を過酸化水素とか次亜塩素酸ナトリウム
等の化学薬品を用いて不活性化する方法があるが、効果
上の問題点がクリヤされていないので実用化には至って
おらず、実際には送泥管を洗浄する手段が用いられてい
るにすぎない(汚泥の腐敗抑制による重力濃縮タンクの
機能改善に関する調査、日本下水道時事業団技術開発部
報1985,送汚泥に伴う汚泥性状の変化の実態及び腐
敗抑制のための調査、東京都下水道局1992参照)。
To cope with the above, there is a method of inactivating anaerobic microorganisms, which are the main cause of sludge rot, using chemicals such as hydrogen peroxide and sodium hypochlorite. Since the points have not been cleared, they have not yet been put to practical use, and in fact, only means for washing the sludge pipes have been used. (Survey on improvement of the function of gravity concentration tanks by controlling decay of sludge, Japanese sewerage system The Japan Business Development Agency Technical Development Bulletin 1985, Survey on the actual state of sludge property change accompanying sludge transfer and control of decay, Tokyo Metropolitan Sewerage Bureau 1992).

【0014】そこで本発明は上記の問題点に鑑みてなさ
れたものであって、汚泥腐敗の主原因である嫌気性細菌
をオゾンを用いて不活性化することにより、汚泥の濃縮
性を高めることができるオゾン処理方法及び処理装置を
提供することを目的とするものである。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to improve the concentration of sludge by inactivating anaerobic bacteria, which is a main cause of sludge decay, with ozone. It is an object of the present invention to provide an ozone treatment method and a treatment apparatus capable of performing the above-mentioned steps.

【0015】[0015]

【課題を解決するための手段】本発明は上記の課題を解
決するために、汚泥を密閉型のオゾン処理反応槽に流入
して、該汚泥中にオゾンガスを放散することによって濃
縮処理を行うようにした下水汚泥のオゾン処理におい
て、先ず請求項1により、オゾン処理した汚泥の粘度を
測定して、予め設定されている制御目標値の粘度と測定
されたオゾン処理汚泥の粘度に基づいて最適なオゾン注
入率をコントローラにより演算し、該コントローラの出
力に基づいてオゾン処理反応槽へオゾンガスを供給する
オゾン発生機の駆動制御を行う汚泥のオゾン処理方法を
提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to performing a concentration treatment by flowing sludge into a closed type ozonation reaction tank and dispersing ozone gas into the sludge. In the ozonation of sewage sludge, first, the viscosity of the ozone-treated sludge is measured according to claim 1, and the optimum viscosity is determined based on the viscosity of a preset control target value and the measured viscosity of the ozone-treated sludge. Provided is a sludge ozone treatment method in which an ozone injection rate is calculated by a controller, and drive control of an ozone generator for supplying ozone gas to an ozone treatment reaction tank is performed based on an output of the controller.

【0016】請求項2により、オゾン未処理汚泥の粘度
を測定して、予め設定されている制御目標値の粘度に基
づいて「粘度の比」を求め、この粘度の比から最適なオ
ゾン注入率をコントローラにより演算し、該コントロー
ラの出力に基づいてオゾン処理反応槽へオゾンガスを供
給するオゾン発生機の駆動制御を行うオゾン処理方法を
提供し、請求項3により、オゾン処理反応槽にオゾン処
理した汚泥の粘度を測定する粘度計と、オゾン未処理汚
泥の粘度を測定する粘度計とを配備して、測定されたオ
ゾン未処理汚泥の粘度と制御目標値の粘度とからコント
ローラにより「粘度の比」を算出し、オゾン処理汚泥の
粘度と制御目標値の粘度とからオゾン注入率を演算によ
り求めて、このオゾン注入率を先に求めた粘度の比で補
正してから該コントローラの出力に基づいてオゾン処理
反応槽へオゾンガスを供給するオゾン発生機の駆動制御
を行うようにした汚泥のオゾン処理方法を用いる。
According to the present invention, the viscosity of the untreated ozone sludge is measured, and the "viscosity ratio" is determined based on the viscosity of a preset control target value. Is calculated by a controller, and based on the output of the controller, an ozone treatment method for controlling the driving of an ozone generator that supplies ozone gas to the ozone treatment reaction tank is provided. A viscometer for measuring the viscosity of the sludge and a viscometer for measuring the viscosity of the ozone-untreated sludge are provided, and the controller calculates the ratio of the viscosity based on the measured viscosity of the ozone-untreated sludge and the viscosity of the control target value. Is calculated, the ozone injection rate is calculated from the viscosity of the ozone-treated sludge and the viscosity of the control target value, and this ozone injection rate is corrected by the ratio of the previously obtained viscosity. Using ozone treatment method of sludge to perform the drive control of the ozone generator for supplying ozone gas to the ozonation reaction vessel based on the output of the roller.

【0017】請求項4により、上記オゾン処理反応槽
に、オゾン処理した汚泥の粘度を測定する粘度計と、オ
ゾン未処理汚泥の粘度を測定する粘度計と、オゾン処理
反応槽から引き抜いた汚泥の濃度を測定する汚泥濃度計
を配備し、測定されたオゾン未処理汚泥の粘度と制御目
標値の粘度とからコントローラにより「粘度の比」を算
出し、オゾン処理汚泥の粘度及びオゾン処理汚泥の濃度
とからオゾン注入率を演算により求めて、このオゾン注
入率を先に求めた粘度の比で補正してから該コントロー
ラの出力に基づいてオゾン処理反応槽へオゾンガスを供
給するオゾン発生機の駆動制御を行う汚泥のオゾン処理
方法を提供する。
According to a fourth aspect of the present invention, a viscometer for measuring the viscosity of the ozone-treated sludge, a viscometer for measuring the viscosity of the non-ozone-treated sludge, and a sludge meter for measuring the viscosity of the sludge extracted from the ozone-treated reaction tank are provided in the ozonation reaction tank. A sludge densitometer for measuring the concentration is provided, and the controller calculates a "viscosity ratio" from the measured viscosity of the untreated ozone sludge and the viscosity of the control target value, and calculates the viscosity of the ozone treated sludge and the concentration of the ozone treated sludge. From the above, the ozone injection rate is obtained by calculation, the ozone injection rate is corrected by the previously obtained viscosity ratio, and then the drive control of the ozone generator for supplying the ozone gas to the ozone treatment reaction tank based on the output of the controller. To provide an ozonation method for sludge.

【0018】更に請求項5により、密閉型のオゾン処理
反応槽と、汚泥とオゾンガスの混合物をオゾン注入部か
ら該オゾン処理反応槽の上壁を貫通してオゾン処理反応
槽内に自然落下させる接触管と、オゾン処理反応槽の下
側部から導出されて前記オゾン注入部に連結された汚泥
循環管と、オゾン未処理汚泥とオゾン処理汚泥の粘度を
測定する粘度計と、オゾン処理反応槽から引き抜いた汚
泥の濃度を測定する汚泥濃度計とを配備してなる汚泥の
オゾン処理処理装置の構成にしてある。
According to a fifth aspect of the present invention, there is provided a closed type ozonation reaction tank, and a contact in which a mixture of sludge and ozone gas is allowed to spontaneously fall from the ozone injection portion through the upper wall of the ozonation reaction tank into the ozone treatment reaction tank. Pipe, a sludge circulation pipe led out from the lower part of the ozonation reaction tank and connected to the ozone injection section, a viscometer for measuring the viscosity of the ozone-untreated sludge and the ozone-treated sludge, and The sludge ozone treatment apparatus is provided with a sludge concentration meter for measuring the concentration of the extracted sludge.

【0019】かかる下水汚泥のオゾン処理方法及び処理
装置によれば、基本的作用として、オゾン処理汚泥及び
/もしくはオゾン未処理汚泥の粘度が各粘度計により測
定され、且つオゾン処理反応槽から引き抜かれた汚泥の
濃度が汚泥濃度計により測定されてこれらの測定値がコ
ントローラに入力される。コントローラは測定されたオ
ゾン未処理汚泥の粘度と制御目標値の粘度とから「粘度
の比」を算出し、オゾン処理汚泥の濃度と粘度とからオ
ゾン注入率を演算により求めて、このオゾン注入率を先
に求めた粘度の比で補正してからオゾン発生機に制御出
力信号を発して最適な注入オゾン量が決定される。
According to the sewage sludge ozonation method and treatment apparatus, as a basic operation, the viscosities of the ozone-treated sludge and / or the non-ozone-treated sludge are measured by the respective viscometers, and the sludge is extracted from the ozonation reaction tank. The sludge concentration is measured by a sludge densitometer, and these measured values are input to the controller. The controller calculates the "viscosity ratio" from the measured viscosity of the untreated ozone sludge and the viscosity of the control target value, and calculates the ozone injection rate from the concentration and the viscosity of the ozone treated sludge by calculation. Is corrected by the previously determined viscosity ratio, and then a control output signal is issued to the ozone generator to determine the optimal amount of injected ozone.

【0020】[0020]

【発明の実施の形態】以下に本発明にかかる汚泥のオゾ
ン処理方法及び処理装置の具体的な実施例について説明
する。この汚泥の処理方式は該汚泥の最終処分によって
種々の方式があるが、本実施例では濃縮の前段にオゾン
処理を行い、汚泥の腐敗防止をはかってから以後の処理
に移行する。即ち、ステップを簡単に説明すると、「汚
泥のオゾン処理」,「濃縮処理」,「脱水処理」,「焼
却処理」,「最終処分」となる。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments of the method and apparatus for treating ozone of sludge according to the present invention will be described below. There are various methods for treating this sludge depending on the final disposal of the sludge. In this embodiment, the ozone treatment is performed before the concentration to prevent the sludge from being putrefactive, and the process is shifted to the subsequent treatment. That is, the steps are simply described as "sludge ozone treatment", "concentration treatment", "dehydration treatment", "incineration treatment", and "final disposal".

【0021】図1は本発明の第1実施例にかかる汚泥処
理システムの概要図であり、先ず主要な構成要素を説明
すると、1は密閉型のオゾン処理反応槽、2はオゾン注
入部、2aはオゾン処理反応槽1の上壁を貫通して嵌入
された接触管、2bは汚泥循環管、3はオゾン発生機、
4は排オゾン処理装置、5は水位調整槽、6aは粘度
計、7はコントローラである。
FIG. 1 is a schematic diagram of a sludge treatment system according to a first embodiment of the present invention. First, main components will be described. 1 is a sealed ozone treatment reaction tank, 2 is an ozone injection section, 2a Is a contact pipe fitted through the upper wall of the ozone treatment reaction tank 1, 2b is a sludge circulation pipe, 3 is an ozone generator,
4 is an exhaust ozone treatment device, 5 is a water level adjusting tank, 6a is a viscometer, and 7 is a controller.

【0022】かかる構成によれば、汚泥は汚泥供給ポン
プP1により汚泥循環管2bに供給され、オゾン発生機
3で得られたオゾンガスがオゾン注入部2で汚泥中に注
入されてから接触管2a内を自由落下してオゾン処理反
応槽1に送り込まれる。この下降時の混合作用によりオ
ゾンガスと汚泥とが充分に接触する。オゾン処理反応槽
1内に貯留された汚泥の一部は汚泥循環ポンプP2の駆
動に伴ってオゾン処理反応槽1の下側部から引き抜か
れ、汚泥循環管2b内でオゾン未処理汚泥と混合されて
からオゾン注入部2で再度オゾンガスが注入され、接触
管2aからオゾン処理反応槽1に送り込まれて循環す
る。
According to such a configuration, the sludge is fed to the sludge circulation pipe 2b by the sludge feed pump P 1, the contact tubes 2a ozone gas obtained by the ozone generator 3 from being injected in the sludge by an ozone injection section 2 It falls freely inside and is fed into the ozone treatment reaction tank 1. Ozone gas and sludge come into sufficient contact due to the mixing action at the time of descending. Some of the sludge stored in the ozonation reaction tank 1 is withdrawn from the lower portion of the ozonation reaction vessel 1 by the actuation of the sludge circulation pump P 2, mixed with ozone untreated sludge in the sludge circulation pipe 2b After that, the ozone gas is injected again by the ozone injection unit 2 and sent into the ozone treatment reaction tank 1 from the contact pipe 2a to circulate.

【0023】オゾン処理液は水位調整槽5を経てから次
工程に送り込まれ、反応に使われずに排出されるオゾン
ガスは排オゾン処理装置4で基準値以下に分解処理され
てから大気中に放散される。
The ozonized liquid is sent to the next step after passing through the water level adjusting tank 5, and the ozone gas discharged without being used for the reaction is decomposed to a reference value or less by the exhausted ozone processing apparatus 4 and then released into the atmosphere. You.

【0024】上記の作用中に、ポンプP3によってオゾ
ン処理汚泥が粘度計6aに送り込まれて粘度が測定さ
れ、この測定値がコントローラ7に入力される。
[0024] During the above action, ozonated sludge by the pump P 3 is measured viscosity is fed into the viscometer 6a, the measured value is input to the controller 7.

【0025】コントローラ7は測定されたオゾン処理汚
泥の粘度と、予め設定されている制御目標値の粘度に基
づいてオゾン注入率を演算により求めて、オゾン発生機
3に制御出力信号7aを発して最適な注入オゾン量を決
定する。
The controller 7 calculates the ozone injection rate based on the measured viscosity of the ozonized sludge and the viscosity of a preset control target value, and sends a control output signal 7a to the ozone generator 3. Determine the optimal amount of injected ozone.

【0026】図1の汚泥処理システムによれば、オゾン
処理反応槽1に送り込まれる汚泥を連続的にオゾン処理
することができる。特に接触管2a内に注入されたオゾ
ンガスは、下降する汚泥液流量とのバランスによって均
一な気泡となってから汚泥と接触しながら流下し、汚泥
とオゾンガスとの混合液はオゾン処理反応槽1内の底壁
近傍まで深く潜入することによって槽内の汚泥の撹拌作
用をもたらしてオゾン反応の進行が促進される。
According to the sludge treatment system shown in FIG. 1, the sludge fed into the ozonation reaction tank 1 can be continuously ozone-treated. In particular, the ozone gas injected into the contact pipe 2a becomes uniform bubbles due to the balance with the descending sludge liquid flow rate, and then flows down while contacting the sludge, and the mixed liquid of the sludge and the ozone gas flows into the ozone treatment reaction tank 1. By infiltrating deeply into the vicinity of the bottom wall of the tank, the effect of stirring the sludge in the tank is brought about, and the progress of the ozone reaction is promoted.

【0027】以下に本実施例の基礎となる各種実験例を
説明する。先ず都市下水から得られた汚泥試料につい
て、オゾン処理による濃縮性の変化を沈降実験により求
めた。このオゾン処理実験は濃縮性の改善を目的として
おり、図2に示す半回分式で行った。
Hereinafter, various experimental examples which are the basis of this embodiment will be described. First, with respect to a sludge sample obtained from municipal sewage, a change in concentration due to ozone treatment was determined by a sedimentation experiment. This ozone treatment experiment was performed for the purpose of improving the enrichment, and was carried out by a semi-batch method shown in FIG.

【0028】即ち、オゾン発生機3で得られるオゾンガ
スをオゾン注入部2で汚泥中に注入し、接触管2a内を
自由落下状態でオゾン処理反応槽1に送り込み、オゾン
処理反応槽1内に貯留された汚泥の一部を汚泥循環ポン
プP2の駆動によってオゾン処理反応槽1の下部から引
き抜き、汚泥循環管2bを通過させてオゾン注入部2に
送り込み、再度オゾンガスを注入して接触管2aからオ
ゾン処理反応槽1に送り込んで循環させる。オゾン処理
した汚泥をサンプリング口8から適宜にサンプリングし
て粘度と汚泥濃度を分析した。サンプリング汚泥のう
ち、1リットルを以下に記す沈降実験の試料とした。
That is, the ozone gas obtained by the ozone generator 3 is injected into the sludge by the ozone injection section 2, sent to the ozone treatment reaction tank 1 in a free fall state in the contact pipe 2 a, and stored in the ozone treatment reaction tank 1. has been a part of the sludge withdrawal from the bottom of the ozonation reaction vessel 1 by the drive of the sludge circulation pump P 2, passed through a sludge circulation pipe 2b fed to the ozone injection section 2, the catalyst tube 2a by injecting ozone gas again It is sent to the ozone treatment reaction tank 1 and circulated. The ozone-treated sludge was appropriately sampled from the sampling port 8 and analyzed for viscosity and sludge concentration. One liter of the sampled sludge was used as a sample for a settling experiment described below.

【0029】沈降実験は、生汚泥,オゾン処理汚泥を夫
々1リットルのメスシリンダに入れて静置し、適宜の時
間に汚泥界面の高さを測定することによって実施した。
The sedimentation experiment was carried out by placing raw sludge and ozone-treated sludge in 1-liter measuring cylinders and allowing them to stand, and measuring the height of the sludge interface at an appropriate time.

【0030】図3はオゾン注入率を0(mg/l)から
150(mg/l)まで変えた場合の粘度(mPa・
S)の変化を示しており、汚泥の粘度はオゾン注入率に
よって変化していることが分かる。原汚泥の粘度は種々
な値をとるが、オゾン注入率が増加すると粘度は減少す
る。
FIG. 3 shows the viscosity (mPa · m) when the ozone injection rate was changed from 0 (mg / l) to 150 (mg / l).
S) shows that the viscosity of the sludge changes depending on the ozone injection rate. The viscosity of raw sludge takes various values, but the viscosity decreases as the ozone injection rate increases.

【0031】図4はオゾン処理直後の粘度と12時間後
の汚泥沈降率の関係を示しており、粘度と12時間後の
汚泥沈降率との寄与率r2は0.965と相関が高く、粘
度が減少するに伴って汚泥の沈降率が単調に減少してい
る。この事実から例えば濃縮槽の沈降界面を約40%に
したい場合には、粘度が7.5(mPa・S)になるよ
うにオゾン処理すればよい。
FIG. 4 shows the relationship between the viscosity immediately after the ozone treatment and the sludge settling rate after 12 hours. The contribution ratio r 2 between the viscosity and the sludge settling rate after 12 hours has a high correlation with 0.965. As the viscosity decreases, the sludge settling rate monotonically decreases. From this fact, for example, when it is desired to set the sedimentation interface of the concentration tank to about 40%, ozone treatment may be performed so that the viscosity becomes 7.5 (mPa · S).

【0032】一般的な濃縮槽の滞留時間は12時間であ
るが、濃縮槽の滞留時間は汚泥の量などによって短くす
る場合がある。この場合でもオゾン処理直後の汚泥の粘
度を測定することによって汚泥の界面高を推定すること
ができる。
The residence time of a general concentration tank is 12 hours, but the residence time of the concentration tank may be shortened depending on the amount of sludge. Even in this case, the interface height of the sludge can be estimated by measuring the viscosity of the sludge immediately after the ozone treatment.

【0033】図5はオゾン処理直後の粘度と6時間後の
汚泥沈降率の関係を示しており、粘度と6時間後の汚泥
沈降率との寄与率r2は0.958と相関が高く、粘度が
減少するに伴って汚泥の沈降率が減少している。従って
例えば6時間後の汚泥の界面を約50%にしたい場合に
は、粘度が6(mPa・S)になるようにオゾン処理す
ればよいことが分かる。
FIG. 5 shows the relationship between the viscosity immediately after the ozone treatment and the sludge settling rate after 6 hours. The contribution ratio r 2 between the viscosity and the sludge settling rate after 6 hours has a high correlation with 0.958. As the viscosity decreases, the sedimentation rate of the sludge decreases. Therefore, for example, when it is desired to reduce the interface of the sludge to about 50% after 6 hours, it is understood that ozone treatment should be performed so that the viscosity becomes 6 (mPa · S).

【0034】前記図3で説明したように、汚泥の粘度は
種々の値をとるが、汚泥中にオゾンを注入すると一定の
割合で粘度が減少する。以下オゾン処理した汚泥の粘度
をオゾン未処理の汚泥の粘度で除したものを「粘度の
比」と定義する。
As described with reference to FIG. 3, the viscosity of the sludge takes various values, but when ozone is injected into the sludge, the viscosity decreases at a constant rate. Hereinafter, the value obtained by dividing the viscosity of the sludge subjected to the ozone treatment by the viscosity of the sludge not subjected to the ozone treatment is defined as “viscosity ratio”.

【0035】図6はオゾン注入率と粘度の比との関係を
示しており、オゾン注入率と粘度との寄与率r2は0.8
25と相関が高く、オゾン注入率の上昇によって粘度の
比が減少している。従って目標とする粘度値から粘度の
比を計算により求めて図6のグラフがオゾン注入率を決
定することができる。
FIG. 6 shows the relationship between the ozone injection rate and the viscosity ratio. The contribution ratio r 2 between the ozone injection rate and the viscosity is 0.8.
25, the viscosity ratio decreases with an increase in the ozone injection rate. Therefore, the ratio of the viscosity is calculated from the target viscosity value, and the graph of FIG. 6 can determine the ozone injection rate.

【0036】図7は上記実験結果に基づいて実現した本
発明の第2実施例の汚泥処理システムの概要図であり、
基本的な構成は図1に示した第1実施例と一致している
ため、同一の構成部分に同一の符号を付して表示してあ
る。この第2実施例では汚泥供給ポンプP1の前段部分
にポンプP4と粘度計6bとを配備してあり、この粘度
計6bによる測定値をコントローラ7に入力する。その
他の構成は第1実施例と同一である。
FIG. 7 is a schematic diagram of a sludge treatment system according to a second embodiment of the present invention realized based on the above experimental results.
Since the basic configuration is the same as that of the first embodiment shown in FIG. 1, the same components are denoted by the same reference numerals. In this second embodiment Yes deploying a pump P 4 and viscometer 6b upstream portion of the sludge supply pump P 1, and inputs the measured value by the viscometer 6b to the controller 7. Other configurations are the same as those of the first embodiment.

【0037】かかる第2実施例によれば、オゾン未処理
の汚泥の粘度が先ずポンプP4に引き抜かれて粘度計6
bにより測定された後、該汚泥が汚泥供給ポンプP1
より汚泥循環管2bに供給され、オゾン発生機3で得ら
れたオゾンガスがオゾン注入部2で汚泥中に注入されて
から接触管2a内を自由落下してオゾン処理反応槽1に
送り込まれてオゾンガスと汚泥とが充分に接触する。こ
のオゾン処理反応槽1内の下側部から汚泥循環ポンプP
2の駆動に伴って引き抜かれた汚泥が汚泥循環管2b内
でオゾン未処理汚泥と混合されてからオゾン注入部2で
再度オゾンガスが注入され、接触管2aからオゾン処理
反応槽1に送り込まれて循環する。
[0037] According to the second embodiment, the viscosity of the sludge ozone untreated is first drawn into the pump P 4 viscometer 6
After being measured by b, the sludge is fed to the sludge circulation pipe 2b by the sludge feed pump P 1, the contact tube 2a ozone gas obtained by the ozone generator 3 from being injected in the sludge by an ozone injection section 2 Is freely dropped and sent into the ozone treatment reaction tank 1 so that the ozone gas and the sludge come into sufficient contact. From the lower part of the ozone treatment reaction tank 1, a sludge circulation pump P
The sludge extracted with the drive of 2 is mixed with the untreated ozone sludge in the sludge circulation pipe 2b, and then the ozone gas is injected again in the ozone injection section 2 and sent into the ozone treatment reaction tank 1 from the contact pipe 2a. Circulate.

【0038】コントローラ7は測定されたオゾン未処理
汚泥の粘度と、予め設定されている制御目標値の粘度に
基づいて「粘度の比」を算出し、この値からオゾン注入
率を演算により求めて、オゾン発生機3に制御出力信号
7aを発して最適な注入オゾン量を決定する。この実施
例2は原汚泥の粘度の変動状態を加味したオゾン処理が
行えるという特徴がある。
The controller 7 calculates a "viscosity ratio" based on the measured viscosity of the untreated ozone sludge and the viscosity of a preset control target value, and calculates the ozone injection rate from this value. The control output signal 7a is sent to the ozone generator 3 to determine the optimal amount of injected ozone. The second embodiment is characterized in that the ozone treatment can be performed in consideration of the fluctuation state of the viscosity of the raw sludge.

【0039】一方、上記粘度は汚泥濃度(TS)によっ
て変化する傾向がある。図8は1gのTS当たりのオゾ
ン注入率(オゾン注入率/TS)(mg/g)と粘度の
比との関係を示しており、オゾン注入率/TSと粘度の
比との寄与率r2は0.945と前記オゾン注入率と粘度
の比(図6)との相関よりも高く、従ってオゾン注入率
/TSを用いる方がオゾン注入率単独の場合よりも粘度
の比の減少傾向を精度よく表現することができる。
On the other hand, the viscosity tends to change depending on the sludge concentration (TS). FIG. 8 shows the relationship between the ozone injection rate per 1 g TS (ozone injection rate / TS) (mg / g) and the viscosity ratio, and the contribution ratio r 2 between the ozone injection rate / TS and the viscosity ratio. Is higher than the correlation between 0.945 and the ratio of the ozone injection rate and the viscosity (FIG. 6). Therefore, the use of the ozone injection rate / TS is more accurate than the case where the ozone injection rate is used alone. Can be well expressed.

【0040】図9は上記実験結果に基づいて実現した本
発明の第3実施例の汚泥処理システムの概要図であり、
この第3実施例では汚泥供給ポンプP1の前段部分にポ
ンプP4と粘度計6bを配備するとともに、汚泥循環ポ
ンプP2の前段にオゾン処理反応槽1内の下側部から引
き抜かれた汚泥の濃度を測定する汚泥濃度計9を配備し
てあり、この粘度計6bによる測定値と汚泥濃度計9に
よる測定値とをコントローラ7に入力する。その他の構
成は第1実施例と同一である。
FIG. 9 is a schematic diagram of a sludge treatment system according to a third embodiment of the present invention realized based on the above experimental results.
With in the third embodiment deploying a pump P 4 and viscometer 6b upstream portion of the sludge supply pump P 1, sludge is withdrawn upstream of the sludge circulation pump P 2 from the lower side of the ozonation reaction vessel 1 A sludge densitometer 9 for measuring the concentration of the sludge is provided, and the value measured by the viscometer 6b and the value measured by the sludge concentration meter 9 are input to the controller 7. Other configurations are the same as those of the first embodiment.

【0041】かかる第3実施例によれば、オゾン未処理
の汚泥の粘度が先ずポンプP4に引き抜かれて粘度計6
bにより測定された後、該汚泥が汚泥供給ポンプP1
より汚泥循環管2bに供給され、オゾン発生機3で得ら
れたオゾンガスがオゾン注入部2で汚泥中に注入されて
から接触管2a内を自由落下してオゾン処理反応槽1に
送り込まれてオゾンガスと汚泥とが充分に接触する。こ
のオゾン処理反応槽1内の下側部から汚泥循環ポンプP
2の駆動に伴って引き抜かれた汚泥の濃度が汚泥濃度計
9により測定され、更に汚泥循環管2b内でオゾン未処
理汚泥と混合されてからオゾン注入部2で再度オゾンガ
スが注入され、接触管2aからオゾン処理反応槽1に送
り込まれて循環する。
According to the third embodiment, the viscosity of the sludge not treated with ozone is first drawn out by the pump P 4, and
After being measured by b, the sludge is fed to the sludge circulation pipe 2b by the sludge feed pump P 1, the contact tube 2a ozone gas obtained by the ozone generator 3 from being injected in the sludge by an ozone injection section 2 Is freely dropped and sent into the ozone treatment reaction tank 1 so that the ozone gas and the sludge come into sufficient contact. From the lower part of the ozone treatment reaction tank 1, a sludge circulation pump P
The concentration of the sludge extracted with the drive of 2 is measured by the sludge concentration meter 9, mixed with the untreated ozone sludge in the sludge circulation pipe 2 b, and then the ozone gas is injected again by the ozone injection section 2, and the contact pipe It is sent from 2a to the ozone treatment reaction tank 1 and circulates.

【0042】コントローラ7は測定されたオゾン未処理
汚泥の粘度と制御目標値の粘度とから「粘度の比」を算
出し、この値とオゾン処理汚泥の濃度とからオゾン注入
率を演算により求めて、オゾン発生機3に制御出力信号
7aを発して最適な注入オゾン量を決定する。
The controller 7 calculates the "viscosity ratio" from the measured viscosity of the untreated ozone sludge and the viscosity of the control target value, and calculates the ozone injection rate from this value and the concentration of the ozone treated sludge by calculation. The control output signal 7a is sent to the ozone generator 3 to determine the optimal amount of injected ozone.

【0043】図10は本発明の第4実施例の概要図であ
り、この例ではオゾン処理反応槽1にポンプP3と粘度
計6aを配備してあり、更に汚泥供給ポンプP1の前段
部分にポンプP4と粘度計6bを配備してある。この粘
度計6a,6bによる測定値をコントローラ7に入力す
る。その他の構成は第1実施例と同一である。
[0043] Figure 10 is a schematic diagram of a fourth embodiment of the present invention, in this example Yes deploying the pump P 3 and viscometer 6a to ozonation reaction vessel 1, further preliminary portion of the sludge supply pump P 1 It is deployed pump P 4 and viscometer 6b on. The values measured by the viscometers 6a and 6b are input to the controller 7. Other configurations are the same as those of the first embodiment.

【0044】この第4実施例は粘度計6aで測定された
オゾン処理汚泥の粘度によるフィードバック制御に加え
て、粘度計6bで測定されたオゾン未処理汚泥の粘度に
よるフィードフォワード制御を組み合わせた制御が特徴
となっている。コントローラ7は測定されたオゾン未処
理汚泥の粘度と制御目標値の粘度とから「粘度の比」を
算出し、この値とオゾン処理汚泥の粘度と制御目標値の
粘度とからオゾン注入率を演算により求めて、このオゾ
ン注入量を先に求めた粘度の比で補正してからオゾン発
生機3に制御出力信号7aを発して最適な注入オゾン量
を決定する。
In the fourth embodiment, in addition to the feedback control based on the viscosity of the ozone-treated sludge measured by the viscometer 6a, the control is combined with the feedforward control based on the viscosity of the unozone-treated sludge measured by the viscometer 6b. It is a feature. The controller 7 calculates the “viscosity ratio” from the measured viscosity of the untreated ozone sludge and the viscosity of the control target value, and calculates the ozone injection rate from this value, the viscosity of the ozone treated sludge, and the viscosity of the control target value. The ozone injection amount is corrected by the previously calculated viscosity ratio, and then the control output signal 7a is issued to the ozone generator 3 to determine the optimum injection ozone amount.

【0045】図11は本発明の第5実施例の概要図であ
り、この例ではオゾン処理反応槽1にポンプP3と粘度
計6aを配備するとともに汚泥供給ポンプP1の前段部
分にポンプP4と粘度計6bを配備し、更に汚泥循環ポ
ンプP2の前段にオゾン処理反応槽1内の下側部から引
き抜かれた汚泥の濃度を測定する汚泥濃度計9を配備し
てある。粘度計6a,6bによる測定値と汚泥濃度計9
による測定値とをコントローラ7に入力する。その他の
構成は第1実施例と同一である。
[0045] Figure 11 is a schematic diagram of a fifth embodiment of the present invention, the pump P to the front portion of the sludge supply pump P 1 together with this example to deploy pump P 3 and viscometer 6a to ozonation reaction vessel 1 deployed 4 and viscometer 6b, it is further deployed sludge concentration meter 9 for measuring the concentration of sludge withdrawn from the lower portion in the ozonation reaction vessel 1 upstream of the sludge circulation pump P 2. Viscometers 6a and 6b and sludge concentration meter 9
Is input to the controller 7. Other configurations are the same as those of the first embodiment.

【0046】この第5実施例は、前記フィードバック制
御とフィードフォワード制御に加えて、原汚泥の濃度に
よる制御を組み合わせた制御が特徴となっている。コン
トローラ7は測定されたオゾン未処理汚泥の粘度と制御
目標値の粘度とから「粘度の比」を算出し、この値とオ
ゾン処理汚泥の粘度と制御目標値の粘度とからオゾン注
入率を演算により求めて、このオゾン注入量を先に求め
た粘度の比と、汚泥濃度計9で測定された濃度で補正し
てからオゾン発生機3に制御出力信号7aを発して最適
な注入オゾン量を決定する。
The fifth embodiment is characterized by a combination of control based on the concentration of raw sludge in addition to the feedback control and the feedforward control. The controller 7 calculates the “viscosity ratio” from the measured viscosity of the untreated ozone sludge and the viscosity of the control target value, and calculates the ozone injection rate from this value, the viscosity of the ozone treated sludge, and the viscosity of the control target value. The ozone injection amount is corrected by the ratio of the viscosity obtained previously and the concentration measured by the sludge densitometer 9, and then the control output signal 7 a is sent to the ozone generator 3 to determine the optimum injection ozone amount. decide.

【0047】以上の結果をまとめると以下の結論が得ら
れる。即ち、汚泥をオゾン処理すれば汚泥腐敗の主原因
である嫌気性細菌をオゾン処理により不活性化すること
により、汚泥の濃縮性を高めることができ、濃縮槽での
汚泥の腐敗に起因する各種トラブルを軽減することが可
能となる。
Summarizing the above results, the following conclusions are obtained. In other words, if the sludge is treated with ozone, the anaerobic bacteria, which are the main cause of sludge decay, are inactivated by ozone treatment, thereby increasing the concentration of the sludge. Trouble can be reduced.

【0048】尚、オゾン注入量を制御する方法として
は、オゾン注入時間(オゾン接触時間,汚泥滞留時
間)を制御する方法、注入オゾンガス濃度を制御する
方法、注入オゾンガス流量を制御する方法、以上3
方法の組合わせ方法がある。
The method of controlling the amount of injected ozone is a method of controlling the ozone injection time (ozone contact time, sludge residence time), a method of controlling the concentration of injected ozone gas, and a method of controlling the flow rate of injected ozone gas.
There are combinations of methods.

【0049】[0049]

【発明の効果】以上説明した本発明にかかる汚泥のオゾ
ン処理方法及び処理装置によれば、基本的な動作とし
て、オゾン処理汚泥及び/もしくはオゾン未処理汚泥の
粘度を粘度計により測定し、オゾン処理反応槽から引き
抜かれた汚泥の濃度を汚泥濃度計により測定してコント
ローラに入力し、これら測定されたオゾン未処理汚泥の
粘度と制御目標値の粘度とから「粘度の比」を算出し、
オゾン処理汚泥の濃度と粘度とからオゾン注入率を演算
により求めて、このオゾン注入率を先に求めた粘度の比
で補正してからオゾン発生機に制御出力信号を発するこ
とにより、最適な注入オゾン量を決定することができ
る。
According to the above-described method and apparatus for treating ozone of sludge according to the present invention, the basic operation is to measure the viscosity of ozone-treated sludge and / or unozone-treated sludge with a viscometer, The concentration of sludge withdrawn from the treatment reaction tank is measured by a sludge concentration meter and input to the controller, and a `` viscosity ratio '' is calculated from the measured viscosity of the ozone-untreated sludge and the viscosity of the control target value,
Calculate the ozone injection rate from the concentration and viscosity of the ozone-treated sludge, correct this ozone injection rate with the previously determined viscosity ratio, and then issue a control output signal to the ozone generator to obtain the optimum injection rate. The amount of ozone can be determined.

【0050】特に汚泥をオゾン処理すれば濃縮性の改善
が可能であり、且つ重力濃縮槽の滞留時間の短縮が可能
となって濃縮槽での汚泥の腐敗に起因する各種トラブル
が軽減されるとともに、濃縮槽以降の汚泥量が減少して
処理施設の規模を縮小することができるという効果が得
られる。
In particular, if the sludge is treated with ozone, the concentration property can be improved, and the residence time of the gravity concentration tank can be reduced, so that various troubles caused by sludge decay in the concentration tank can be reduced. In addition, the effect is obtained that the amount of sludge after the concentration tank is reduced and the scale of the treatment facility can be reduced.

【0051】又、汚泥の粘度とか濃度は粘度計又は汚泥
濃度計で連続測定できるとともに、オゾンの量はオンラ
インで測定できるので、運転と同時のモニタリング可能
であり、適量なオゾンを用いて処理する制御が可能とな
る。
Further, the viscosity and concentration of sludge can be continuously measured by a viscometer or a sludge concentration meter, and the amount of ozone can be measured on-line, so that it can be monitored at the same time as the operation and can be treated using an appropriate amount of ozone. Control becomes possible.

【0052】従って本発明によれば、汚泥の腐敗と変質
による汚泥の沈降性とか濃縮性を良好に保持して集約後
の汚泥処理を安定に行うことができる。
Therefore, according to the present invention, the sludge treatment after consolidation can be performed stably while maintaining good sedimentation and thickening properties of sludge due to decay and alteration of sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例にかかる汚泥処理システム
の概要図。
FIG. 1 is a schematic diagram of a sludge treatment system according to a first embodiment of the present invention.

【図2】本実施例におけるオゾン処理実験に用いた装置
の概要図。
FIG. 2 is a schematic diagram of an apparatus used for an ozone treatment experiment in the present embodiment.

【図3】オゾン注入率を変えた場合の粘度の変化を示す
グラフ。
FIG. 3 is a graph showing a change in viscosity when the ozone injection rate is changed.

【図4】沈降実験における粘度と12時間後の汚泥沈降
率との関係を示すグラフ。
FIG. 4 is a graph showing a relationship between viscosity and a sludge settling rate after 12 hours in a settling experiment.

【図5】沈降実験における粘度と6時間後の汚泥沈降率
との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between viscosity and sludge settling rate after 6 hours in a settling experiment.

【図6】オゾン注入率と粘度の比との関係を示すグラ
フ。
FIG. 6 is a graph showing a relationship between an ozone injection rate and a viscosity ratio.

【図7】本発明の第2実施例にかかる汚泥処理システム
の概要図。
FIG. 7 is a schematic diagram of a sludge treatment system according to a second embodiment of the present invention.

【図8】TS当たりのオゾン注入率と粘度の比との関係
を示すグラフ。
FIG. 8 is a graph showing a relationship between an ozone injection rate per TS and a viscosity ratio.

【図9】本発明の第3実施例にかかる汚泥処理システム
の概要図。
FIG. 9 is a schematic diagram of a sludge treatment system according to a third embodiment of the present invention.

【図10】本発明の第4実施例にかかる汚泥処理システ
ムの概要図。
FIG. 10 is a schematic diagram of a sludge treatment system according to a fourth embodiment of the present invention.

【図11】本発明の第5実施例にかかる汚泥処理システ
ムの概要図。
FIG. 11 is a schematic diagram of a sludge treatment system according to a fifth embodiment of the present invention.

【図12】従来の汚泥処理の各種方法を説明するための
概要図。
FIG. 12 is a schematic diagram for explaining various methods of conventional sludge treatment.

【符号の説明】[Explanation of symbols]

1…オゾン処理反応槽 2…オゾン注入部 2a…接触管 2b…汚泥循環管 3…オゾン発生機 4…排オゾン処理装置 5…水位調整機 6a,6b…粘度計 7…コントローラ 8…サンプリグ口 9…汚泥濃度計 DESCRIPTION OF SYMBOLS 1 ... Ozone treatment reaction tank 2 ... Ozone injection part 2a ... Contact pipe 2b ... Sludge circulation pipe 3 ... Ozone generator 4 ... Exhaust ozone treatment apparatus 5 ... Water level adjuster 6a, 6b ... Viscometer 7 ... Controller 8 ... Samp rig opening 9 ... Sludge concentration meter

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 汚泥を密閉型のオゾン処理反応槽に流入
して、該汚泥中にオゾンガスを放散することによって濃
縮処理を行うようにした下水汚泥のオゾン処理におい
て、 オゾン処理した汚泥の粘度を測定して、予め設定されて
いる制御目標値の粘度と測定されたオゾン処理汚泥の粘
度に基づいて最適なオゾン注入率をコントローラにより
演算し、該コントローラの出力に基づいてオゾン処理反
応槽へオゾンガスを供給するオゾン発生機の駆動制御を
行うことを特徴とする汚泥のオゾン処理方法。
In the ozone treatment of sewage sludge in which sludge flows into a closed type ozonation reaction tank, and the ozone gas is diffused into the sludge to perform the concentration treatment, the viscosity of the ozone-treated sludge is reduced. The controller calculates the optimum ozone injection rate based on the viscosity of the preset control target value and the measured viscosity of the ozone-treated sludge, and outputs the ozone gas to the ozone-treatment reaction tank based on the output of the controller. A method for treating ozone in sludge, comprising controlling the driving of an ozone generator for supplying sludge.
【請求項2】 汚泥を密閉型のオゾン処理反応槽に流入
して、該汚泥中にオゾンガスを放散することによって濃
縮処理を行うようにした下水汚泥のオゾン処理におい
て、 オゾン未処理汚泥の粘度を測定して、予め設定されてい
る制御目標値の粘度に基づいて「粘度の比」を求め、こ
の粘度の比から最適なオゾン注入率をコントローラによ
り演算し、該コントローラの出力に基づいてオゾン処理
反応槽へオゾンガスを供給するオゾン発生機の駆動制御
を行うことを特徴とする汚泥のオゾン処理方法。
2. The ozone treatment of sewage sludge in which sludge flows into a closed-type ozonation reaction tank and is subjected to concentration treatment by dispersing ozone gas into the sludge. Measure and calculate the "viscosity ratio" based on the viscosity of the preset control target value, calculate the optimum ozone injection rate from the viscosity ratio by the controller, and perform the ozone treatment based on the output of the controller. An ozone treatment method for sludge, comprising controlling the driving of an ozone generator for supplying ozone gas to a reaction tank.
【請求項3】 汚泥を密閉型のオゾン処理反応槽に流入
して、該汚泥中にオゾンガスを放散することによって濃
縮処理を行うようにした下水汚泥のオゾン処理におい
て、 上記オゾン処理反応槽に、オゾン処理した汚泥の粘度を
測定する粘度計と、オゾン未処理汚泥の粘度を測定する
粘度計とを配備して、測定されたオゾン未処理汚泥の粘
度と制御目標値の粘度とからコントローラにより「粘度
の比」を算出し、オゾン処理汚泥の粘度と制御目標値の
粘度とからオゾン注入率を演算により求めて、このオゾ
ン注入率を先に求めた粘度の比で補正してから該コント
ローラの出力に基づいてオゾン処理反応槽へオゾンガス
を供給するオゾン発生機の駆動制御を行うことを特徴と
する汚泥のオゾン処理方法。
3. The ozone treatment of sewage sludge in which the sludge flows into a closed type ozonation reaction tank and the concentration treatment is performed by dispersing ozone gas into the sludge. A viscometer that measures the viscosity of the ozone-treated sludge and a viscometer that measures the viscosity of the ozone-untreated sludge are provided. The ratio of the viscosity is calculated, the ozone injection rate is obtained by calculation from the viscosity of the ozone-treated sludge and the viscosity of the control target value, and the ozone injection rate is corrected by the previously obtained viscosity ratio before the controller of the controller. An ozone treatment method for sludge, comprising controlling the driving of an ozone generator for supplying ozone gas to an ozone treatment reaction tank based on the output.
【請求項4】 汚泥を密閉型のオゾン処理反応槽に流入
して、該汚泥中にオゾンガスを放散することによって濃
縮処理を行うようにした下水汚泥のオゾン処理におい
て、 上記オゾン処理反応槽に、オゾン処理した汚泥の粘度を
測定する粘度計と、オゾン未処理汚泥の粘度を測定する
粘度計と、オゾン処理反応槽から引き抜いた汚泥の濃度
を測定する汚泥濃度計を配備し、測定されたオゾン未処
理汚泥の粘度と制御目標値の粘度とからコントローラに
より「粘度の比」を算出し、オゾン処理汚泥の粘度及び
オゾン処理汚泥の濃度とからオゾン注入率を演算により
求めて、このオゾン注入率を先に求めた粘度の比で補正
してから該コントローラの出力に基づいてオゾン処理反
応槽へオゾンガスを供給するオゾン発生機の駆動制御を
行うことを特徴とする汚泥のオゾン処理方法。
4. The ozone treatment of sewage sludge in which the sludge flows into a closed type ozonation reaction tank and the concentration treatment is performed by dispersing ozone gas into the sludge. A viscometer for measuring the viscosity of the ozone-treated sludge, a viscometer for measuring the viscosity of the ozone-untreated sludge, and a sludge concentration meter for measuring the concentration of the sludge withdrawn from the ozonation reactor are provided. The controller calculates a “viscosity ratio” from the viscosity of the untreated sludge and the viscosity of the control target value, and calculates the ozone injection rate from the viscosity of the ozone-treated sludge and the concentration of the ozone-treated sludge. Is corrected by the previously determined viscosity ratio, and then the drive control of the ozone generator for supplying ozone gas to the ozone treatment reaction tank is performed based on the output of the controller. Ozone treatment method of sludge.
【請求項5】 密閉型のオゾン処理反応槽と、汚泥とオ
ゾンガスの混合物をオゾン注入部から該オゾン処理反応
槽の上壁を貫通してオゾン処理反応槽内に自然落下させ
る接触管と、オゾン処理反応槽の下側部から導出されて
前記オゾン注入部に連結された汚泥循環管と、オゾン未
処理汚泥とオゾン処理汚泥の粘度を測定する粘度計と、
オゾン処理反応槽から引き抜いた汚泥の濃度を測定する
汚泥濃度計とを配備したことを特徴とする汚泥のオゾン
処理装置。
5. A closed ozone treatment reaction tank, a contact tube for allowing a mixture of sludge and ozone gas to drop naturally from an ozone injection section through an upper wall of the ozone treatment reaction tank into the ozone treatment reaction tank, A sludge circulation pipe led out from the lower side of the treatment reaction tank and connected to the ozone injection section, a viscometer for measuring the viscosities of the ozone-untreated sludge and the ozone-treated sludge,
A sludge ozone treatment apparatus comprising a sludge concentration meter for measuring the concentration of sludge drawn from an ozone treatment reaction tank.
JP33919496A 1996-12-19 1996-12-19 Sludge ozone treatment method and treatment apparatus Expired - Fee Related JP3552436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33919496A JP3552436B2 (en) 1996-12-19 1996-12-19 Sludge ozone treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33919496A JP3552436B2 (en) 1996-12-19 1996-12-19 Sludge ozone treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JPH10175000A true JPH10175000A (en) 1998-06-30
JP3552436B2 JP3552436B2 (en) 2004-08-11

Family

ID=18325134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33919496A Expired - Fee Related JP3552436B2 (en) 1996-12-19 1996-12-19 Sludge ozone treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP3552436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104507876A (en) * 2012-07-31 2015-04-08 巴斯夫欧洲公司 Concentration of suspensions
CN112919751A (en) * 2019-12-06 2021-06-08 三菱电机株式会社 Sludge treatment system and sludge treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104507876A (en) * 2012-07-31 2015-04-08 巴斯夫欧洲公司 Concentration of suspensions
CN112919751A (en) * 2019-12-06 2021-06-08 三菱电机株式会社 Sludge treatment system and sludge treatment method

Also Published As

Publication number Publication date
JP3552436B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JP6749313B2 (en) Water treatment method and water treatment device
Chiavola et al. Techno-economic evaluation of ozone-oxidation for sludge reduction at the full-scale. Comparison between the application to the return activated sludge (RAS) and the sludge digestion unit
KR101471053B1 (en) Organic oxidation tank having a manure treatment device
KR20140063454A (en) Apparatus and method for treatment wastewater
KR20000033408A (en) Method for degrading organic matters using autothemal thermophilic aerobic digestion
JP3552436B2 (en) Sludge ozone treatment method and treatment apparatus
Moussavi et al. Effect of ozonation on reduction of volume and mass of waste activated sludge
WO2020157914A1 (en) Sewage treatment device and sewage treatment method
KR20090005067A (en) A method and system of digesting excess sludge
JP2001113150A (en) Pressurized gas-liquid mixing device and waste liquid treating device using the same
JP6533676B2 (en) Water treatment apparatus and water treatment method
JPH10151499A (en) Method and apparatus for treating sludge with ozone
JP2002001384A (en) Treating method for organic waste water and treating apparatus for the same
JP3572727B2 (en) Ozone injection amount control method and ozone injection amount control device in sludge treatment system
KR100457698B1 (en) Livestock wastewater treatment method and equipment using STP waste excess sludge
JPH08192197A (en) Method and device for treating sludge using ozone
JP3877262B2 (en) Organic wastewater treatment method and equipment
JP2004275996A (en) Sludge volume reduction method
JPH09187798A (en) Method for ozone treatment of waste water sludge and apparatus therefor
JP2000246293A (en) Sludge treatment method and apparatus
JP6909147B2 (en) Organic wastewater treatment equipment, organic wastewater treatment method and renovation method of organic wastewater treatment equipment
JPH08192198A (en) Method and device for preventing decomposition of sludge
JP3446401B2 (en) Ozone treatment method and treatment device for sewage sludge
JPH10192897A (en) Sludge treating method
JP2001029983A (en) Method and apparatus for treating food wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees