JP2001029983A - Method and apparatus for treating food wastewater - Google Patents

Method and apparatus for treating food wastewater

Info

Publication number
JP2001029983A
JP2001029983A JP20847499A JP20847499A JP2001029983A JP 2001029983 A JP2001029983 A JP 2001029983A JP 20847499 A JP20847499 A JP 20847499A JP 20847499 A JP20847499 A JP 20847499A JP 2001029983 A JP2001029983 A JP 2001029983A
Authority
JP
Japan
Prior art keywords
sludge
tank
reaction tank
alkali
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20847499A
Other languages
Japanese (ja)
Inventor
甬生 ▲葛▼
Yousei Katsura
Toshihiro Tanaka
俊博 田中
Kiyomi Arakawa
清美 荒川
Akira Watanabe
昭 渡辺
Hiroshi Sakuma
博司 佐久間
Nobukazu Kobata
信和 木幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP20847499A priority Critical patent/JP2001029983A/en
Publication of JP2001029983A publication Critical patent/JP2001029983A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for treating food wastewater that is high in decomposition and removal ratio in a biological reaction tank without using ozone and that can obtain treated water of good quality. SOLUTION: In the treatment method wherein food wastewater is supplied to a biological reaction tank 5 and a sedimentation basin 11 through a raw water conditioning tank 2 to be treated with activated sludge and a part of sludge is drawn out of the sedimentation basin 11 and/or the biological reaction tank 5 to be treated in an alkali reaction tank 13 to which an alkali agent is added and the treated sludge is returned to the biological treatment tank 5, the alkali agent is added by a pump 14 so that the sludge liquefying ratio in the alkali reaction tank becomes 5-20% and the alkali treated sludge is allowed to flow in the raw water conditioning tank 2 to be brought into contact with raw water in an anaerobic state while mixed with raw mater by a stirring pump 3 and the resulting mixture is allowed to flow in the biological reaction tank 5 and the sludge treated in the alkali reaction tank is pref. set to an amt. of 5-25% by wt. of the sludge of the biological reaction tank.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食品廃水の処理に
係り、特に、飲料製造廃水や食品製造廃水などの食品廃
水を活性汚泥法で処理する際に、余剰汚泥を減容化する
ことができる処理方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of food wastewater, and more particularly, to reducing excess sludge when treating food wastewater such as beverage production wastewater or food production wastewater by the activated sludge method. It relates to a possible processing method and its device.

【0002】[0002]

【従来の技術】従来、活性汚泥による食品廃水処理で
は、処理に伴なう余剰汚泥の処理処分法として、引き抜
き、濃縮、脱水、焼却等の工程を得て、系外に排出する
必要があった。その費用はかなり莫大なものであり、全
体のランニングコストの増大を招いていた。更に、汚泥
脱水処理においても、適切な薬注率等の管理に伴なうメ
ンテナンスの煩雑さも残る。最近、活性汚泥処理と組み
合わせた汚泥減容化処理として、余剰汚泥量以上の汚泥
を沈殿池又は生物反応曝気槽から引き抜き、オゾンを注
入する別個のオゾン反応槽に導入し、オゾン処理を受け
た汚泥を再び生物反応曝気槽へ返送すると、曝気槽でオ
ゾン処理汚泥の一部が生物処理によって分解することが
知られている(特開平6−206088号公報)。ま
た、アルカリ添加による汚泥可溶化処理法としては、返
送汚泥の一部を別個にアルカリ添加の処理槽に返送し、
汚泥の可溶化処理を行った後、中和することなく曝気槽
に返送することが知られている(特公平6−61550
号公報)。
2. Description of the Related Art Conventionally, in the treatment of food wastewater by activated sludge, it is necessary to obtain processes such as drawing, concentration, dehydration, incineration, etc., as a method of treating and disposing of excess sludge accompanying the treatment, and to discharge the sludge to the outside of the system. Was. The costs were quite enormous, leading to an increase in overall running costs. Furthermore, even in the sludge dewatering treatment, the complexity of maintenance associated with management of an appropriate chemical injection rate and the like remains. Recently, as sludge volume reduction treatment combined with activated sludge treatment, sludge of excess sludge amount or more was withdrawn from a sedimentation tank or biological reaction aeration tank, introduced into a separate ozone reaction tank into which ozone was injected, and subjected to ozone treatment. It is known that when the sludge is returned to the biological reaction aeration tank, a part of the ozone-treated sludge is decomposed by the biological treatment in the aeration tank (Japanese Patent Laid-Open No. 6-2060888). In addition, as a method of solubilizing sludge by adding alkali, a part of the returned sludge is separately returned to the treatment tank for adding alkali,
It is known that sludge is solubilized and then returned to the aeration tank without neutralization (Japanese Patent Publication No. 6-61550).
No.).

【0003】更に、し尿系汚水の生物学的硝化脱窒素法
において、活性汚泥の一部を取り出して、これに酸又は
アルカリを添加し、加温条件下で滞留させて汚泥を可溶
化したのち、該汚泥をし尿系汚水と共に嫌気的に滞留さ
せたのち、生物学的硝化脱窒素工程に供給することも知
られている(特公昭5−36118号公報)。しかし、
オゾン注入による汚泥減容化処理では、新たにオゾンガ
ス発生器の設置が必要なだけでなく、排オゾン処理の必
要も生じる。また、アルカリ添加による汚泥可溶化処理
では、アルカリ反応槽に供給する汚泥量が多く、アルカ
リ処理による汚泥可溶化率が高いと、アルカリ処理汚泥
の生物反応槽での分解除去率が低下し、処理水質の悪化
及び汚泥減容化効果の低下を招くといった問題点が残
る。更に、し尿汚水の処理においても加温処理が必要で
あり、汚泥可溶化率が高くて前記の方法と同様な問題点
が残る。
Further, in the biological nitrification denitrification method of human wastewater, a part of activated sludge is taken out, an acid or an alkali is added thereto, and the sludge is retained under a heating condition to solubilize the sludge. It is also known that the sludge is anaerobically retained together with urine-based sewage and then supplied to a biological nitrification denitrification process (Japanese Patent Publication No. 5-36118). But,
In the sludge volume reduction treatment by ozone injection, not only is it necessary to newly install an ozone gas generator, but also it becomes necessary to perform exhaust ozone treatment. In addition, in the sludge solubilization treatment by adding alkali, the amount of sludge supplied to the alkali reaction tank is large, and if the sludge solubilization rate by the alkali treatment is high, the decomposition removal rate of the alkali-treated sludge in the biological reaction tank decreases, and Problems remain, such as deterioration of water quality and reduction of sludge volume reduction effect. Further, in the treatment of night soil wastewater, a heating treatment is necessary, and the sludge solubilization rate is high, so that the same problem as the above method remains.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記に従来
技術の問題点を解決するもので、オゾンを用いることな
く、生物反応槽での分解除去率が高く、処理水質の良好
な食品廃水の処理方法とその装置を提供することを課題
とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and does not use ozone, has a high decomposition removal rate in a biological reaction tank, and has a high quality of treated water. It is an object to provide a processing method and an apparatus therefor.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、食品廃水を原水調整槽を介して生物反
応槽及び沈殿池で活性汚泥処理し、沈殿池及び/又は生
物反応槽より汚泥の一部を抜き出して、アルカリ剤を添
加するアルカリ反応槽で処理し、該処理汚泥を生物処理
槽へ返送する処理方法において、前記アルカリ反応槽で
の汚泥液化率が5〜20%となるようにアルカリ剤を添
加し、該アルカリ処理汚泥を前記原水調整槽に流入さ
せ、嫌気状態において原水と接触混合した後、生物反応
槽に流入させることとしたものである。前記処理方法に
おいて、アルカリ反応槽で処理する汚泥は、生物反応槽
の汚泥の5〜25重量%の量とするのが良い。
In order to solve the above-mentioned problems, according to the present invention, food wastewater is treated with activated sludge in a biological reaction tank and a sedimentation basin via a raw water regulating tank, and the sedimentation basin and / or the biological reaction tank are treated. In the treatment method in which a part of the sludge is withdrawn and treated in an alkali reaction tank to which an alkali agent is added, and the treated sludge is returned to the biological treatment tank, the sludge liquefaction rate in the alkali reaction tank is 5 to 20%. Thus, an alkali agent is added so that the alkali-treated sludge flows into the raw water adjusting tank, is mixed in contact with raw water in an anaerobic state, and then flows into a biological reaction tank. In the treatment method, the amount of sludge to be treated in the alkaline reaction tank is preferably 5 to 25% by weight of the sludge in the biological reaction tank.

【0006】また、本発明では、食品廃水を処理する原
水調整槽と生物反応槽と沈殿池とを順次配備して接続
し、別にアルカリ反応槽を設け、該アルカリ反応槽に
は、前記沈殿池又は生物反応槽の汚泥の一部を導入する
流路を設けると共に、前記生物反応槽に沈殿池の汚泥の
残部を返送する流路を設けた処理装置において、前記ア
ルカリ反応槽には、pH計を設置し、該pH計の測定値
に基づいて汚泥液化率が5〜20%になるようにアルカ
リ剤を添加する制御手段を設け、該アルカリ反応槽と前
記原水調整槽とを処理汚泥を供給する流路で接続すると
共に、該原水調整槽には嫌気状態を保持して攪拌する手
段が備えられていることとしたものである。
In the present invention, a raw water regulating tank for treating food wastewater, a biological reaction tank, and a sedimentation tank are sequentially arranged and connected, and an alkali reaction tank is separately provided. Alternatively, in a processing apparatus provided with a flow path for introducing a part of the sludge of the biological reaction tank and a flow path for returning the remaining sludge of the sedimentation basin to the biological reaction tank, the alkaline reaction tank may have a pH meter. And a control means for adding an alkali agent so that the sludge liquefaction rate becomes 5 to 20% based on the measured value of the pH meter, and supplies the treated sludge to the alkali reaction tank and the raw water adjusting tank. The raw water adjusting tank is provided with a means for stirring while maintaining an anaerobic state, while connecting the raw water adjusting tank.

【0007】[0007]

【発明の実施の形態】本発明によれば、生物反応槽及び
沈殿池より構成する活性汚泥処理装置において、沈殿池
もしくは生物反応槽より生物反応槽汚泥量の5〜25%
の汚泥をアルカリ剤の添加するアルカリ反応槽に供給
し、アルカリ処理による汚泥液化率が5〜20%となる
ように、アルカリ剤をアルカリ反応槽に添加すれば、汚
泥中の有機物が効果的に加水分解し、低分子化すること
ができる。上記の条件で得られた可溶化アルカリ処理汚
泥を、原水調整槽に供給することによって、調整槽の嫌
気状態を促進し、該アルカリ処理汚泥の液化有機物のみ
でなく、流入原水中の有機物も酸醗酵の促進効果及び酸
醗酵に伴なう必要アルカリの補給効果も得られる。な
お、アルカリ反応槽に導入されるアルカリ処理汚泥が生
物反応槽全汚泥量の25%以内であれば、調整槽での有
機物酸醗酵が十分に進行できる一方、酸醗酵に伴なう不
足アルカリも適量となるため、調整槽のpHがほぼ中性
に維持される。この結果、生物反応槽におけるこれらの
有機物の分解効率が高く、活性汚泥によってほとんどが
分解除去され、処理水中への残留が少なく、良好な処理
水質を得ることができる。また、生物分解において、液
化有機物の一部がCO2及びH2 Oに分解されることか
ら、系内汚泥発生量を抑制することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, a biological reactor and
Activated sludge treatment equipment consisting of sedimentation basin
Or 5 to 25% of the sludge amount in the biological reactor from the biological reactor
Sludge supplied to an alkaline reaction tank to which an alkali agent is added
And the sludge liquefaction rate by the alkali treatment becomes 5 to 20%.
As described above, if an alkaline agent is added to an alkaline reaction tank,
Organic matter in mud is effectively hydrolyzed to lower molecular weight
Can be. Solubilized alkali treated soil obtained under the above conditions
By supplying the mud to the raw water adjustment tank,
Promotes gaseous state, and only liquefied organic matter of the alkali-treated sludge
In addition, the organic matter in the influent raw water is also
The effect of replenishment of necessary alkali accompanying fermentation can also be obtained. What
The alkali-treated sludge introduced into the alkali reaction tank
If it is within 25% of the total sludge volume of the waste reactor,
While acid fermentation can proceed satisfactorily, acid fermentation
The pH of the adjustment tank is almost neutral because foot alkali is also in an appropriate amount.
Is maintained. As a result, these bioreactors
High efficiency in decomposing organic substances.
Decomposed and removed, little residue in treated water, good treatment
Water quality can be obtained. In biodegradation,
Some organic chemicals are COTwoAnd HTwo Is it decomposed into O
Therefore, the amount of sludge generated in the system can be suppressed.

【0008】[0008]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 図1は、本発明を実施するための一例を示すフロー構成
図である。図1に示す如く、流入原水1は原水調整槽2
に一旦導入される。ここには、アルカリ反応槽からのア
ルカリ処理汚泥9も導入され、調整槽攪拌ポンプ3によ
って原水と均一混合され、嫌気状態において原水及びア
ルカリ処理汚泥中の有機物の酸醗酵が進行する。酸醗酵
に伴ない、pH調製に必要なアルカリは、アルカリ処理
汚泥より補給でき、調整槽pHの上昇が少なく、調整槽
出口原水4のpHがほぼ中性付近に維持できる。
The present invention will be described below in more detail with reference to examples. Embodiment 1 FIG. 1 is a flow configuration diagram showing an example for implementing the present invention. As shown in FIG. 1, inflow raw water 1 is a raw water adjustment tank 2
Once introduced. Here, the alkali-treated sludge 9 from the alkali reaction tank is also introduced, uniformly mixed with the raw water by the adjusting tank stirring pump 3, and the acid fermentation of the raw water and the organic matter in the alkali-treated sludge proceeds in an anaerobic state. With the acid fermentation, the alkali required for pH adjustment can be supplied from the alkali-treated sludge, the pH of the adjusting tank pH rise is small, and the pH of the raw water 4 at the outlet of the adjusting tank can be maintained near neutrality.

【0009】調整槽出口原水4は曝気槽7に導入され、
活性汚泥によって原水中の有機物は分解除去される。混
合液は曝気槽出口10を経て、沈殿池11に流出し、固
液分離され、処理水16を得る。一方、沈殿池11で分
離された返送汚泥より、全生物反応槽汚泥量の10%を
アルカリ反応槽流入汚泥12として、アルカリ反応槽1
3に導入し、アルカリ反応槽pH計15がpH10〜1
1となるように、NaOH注入ポンプ14よりNaOH
の注入を行う。この場合、アルカリ反応槽処理槽による
汚泥の液化率が14%となる。アルカリ反応槽13で加
水分解を受け、液化したアルカリ処理汚泥9は、原水調
整槽2に返送される。表1にアルカリ反応槽の処理結果
を示す。MLSS 11000mg/lである返送汚泥
を、アルカリ反応槽でpH10.5の条件で約4時間処
理することによって、処理後MLSSが9100mg/
lに低下する一方、溶解性BODが処理前の5mg/l
以下から450mg/lに増加し、汚泥の可溶化が進行
している。
The raw water 4 at the outlet of the regulating tank is introduced into the aeration tank 7,
Organic matter in raw water is decomposed and removed by the activated sludge. The mixed solution flows out to the sedimentation basin 11 through the aeration tank outlet 10 and is separated into solid and liquid to obtain treated water 16. On the other hand, from the returned sludge separated in the sedimentation basin 11, 10% of the total biological reaction tank sludge is used as the alkali reaction tank inflow sludge 12 as the alkali reaction tank 1
3 and the pH of the alkaline reaction tank pH meter 15 is adjusted to pH 10-1.
1 from the NaOH injection pump 14
Is performed. In this case, the liquefaction rate of the sludge by the alkali reaction tank treatment tank is 14%. The alkali-treated sludge 9 that has undergone hydrolysis in the alkali reaction tank 13 and is liquefied is returned to the raw water adjustment tank 2. Table 1 shows the processing results of the alkali reaction tank. The returned sludge having MLSS of 11,000 mg / l is treated in an alkaline reaction tank at a pH of 10.5 for about 4 hours.
l while the soluble BOD is 5 mg / l before treatment.
From the following, it increased to 450 mg / l, and the solubilization of sludge is progressing.

【0010】[0010]

【表1】 [Table 1]

【0011】表2に原水調整槽の条件及び水質変化を示
す。調整槽に原水量1000m3/d、アルカリ処理汚
泥量1000m3/dを流入し、約10時間の滞留時間
で調整槽出口の水質は調整槽入口と比較すると、pHが
9.0から7.3に低下したのに対し、全有機酸が10
mg/lから150mg/lに増加し、調整槽において
酸醗酵の進行が認めれた。
Table 2 shows the conditions of the raw water regulating tank and changes in water quality. Hara water 1000 m 3 / d, an alkali treatment sludge volume 1000 m 3 / d flows into the adjustment tank, the water quality adjusting tank outlet with a residence time of about 10 hours compared to adjusting tank inlet, pH from 9.0 7. 3, while all organic acids were 10
mg / l increased to 150 mg / l, and the progress of acid fermentation was observed in the adjustment tank.

【表2】 [Table 2]

【0012】表3に生物反応槽の処理条件及び原水、処
理水の水質を示す。生物反応槽のBOD汚泥負荷が0.
12kg/kg・d、槽内MLSS 6080mg/l
の条件下、流入原水BODが約640mg/lであるの
に対し、処理水のBODが5mg/l以下であり、生物
処理が良好であると認められた。
Table 3 shows the treatment conditions of the biological reaction tank and the quality of raw water and treated water. The BOD sludge load of the biological reactor is 0.
12kg / kg ・ d, MLSS in the tank 6080mg / l
Under the conditions described above, the BOD of the inflowing raw water was about 640 mg / l, whereas the BOD of the treated water was 5 mg / l or less, indicating that the biological treatment was good.

【表3】 [Table 3]

【0013】比較例1 表4に図1と同様な処理フローで、アルカリ反応槽への
処理汚泥量を系内全汚泥量の30%、アルカリ反応槽の
pHを12とし、汚泥液化率が30%となった場合の原
水及び処理水質の結果を示す。表4に示すように、曝気
槽BOD負荷が0.12kg/kg・d、MLSSが平
均で6200mg/lであり、いずれも実施例1とほぼ
同じである。実施例1と同一な原水を処理した結果、処
理水のpHが8.3となり、実施例1の7.5より約
0.8高くなった。SSが21mg/lで実施例1の
5.5mg/lより15.5mg/l高い。さらにCO
Dが32.5mg/l、BODが13.5mg/lな
り、実施例1よりそれぞれ13.9mg/l及び8.5
mg/l以上高くなった。上記のようにいずれの項目に
おいても、実施例より悪化する結果となり、実施例の効
果が認められた。
Comparative Example 1 Table 4 shows a treatment flow similar to that shown in FIG. 1, wherein the amount of sludge treated in the alkali reaction tank was 30% of the total amount of sludge in the system, the pH of the alkali reaction tank was 12, and the sludge liquefaction rate was 30. % Shows the results of raw water and treated water quality. As shown in Table 4, the aeration tank BOD load was 0.12 kg / kg · d, and the MLSS was 6200 mg / l on average, all of which were almost the same as in Example 1. As a result of treating the same raw water as in Example 1, the pH of the treated water was 8.3, which was about 0.8 higher than 7.5 in Example 1. SS is 21 mg / l, which is 15.5 mg / l higher than 5.5 mg / l in Example 1. More CO
D was 32.5 mg / l and BOD was 13.5 mg / l, which were 13.9 mg / l and 8.5 respectively from Example 1.
mg / l or more. As described above, in any of the items, the result was worse than that of the example, and the effect of the example was recognized.

【0014】[0014]

【表4】 [Table 4]

【0015】図2に実施例1及び比較例1の余剰汚泥排
出を行わない場合での、系内汚泥量の経過を示す。約2
ケ月間において実施例1の系内汚泥量がほぼ一定の12
500kg前後であり、余剰汚泥の排出がなくても、系
内汚泥量の増加がほとんどなく、前記のアルカリ処理条
件での汚泥減容化効果がきわめて高いことが認められ
た。一方、比較例1では、余剰汚泥の引き抜きを行わな
い場合、系内汚泥量が経過日数の増加とともに徐々に増
加した。60日後に系内汚泥量が初期の約1.6倍とな
り、実施例1より汚泥の減容効果が低下していることが
認められた。
FIG. 2 shows the progress of the amount of sludge in the system when the excess sludge is not discharged in Example 1 and Comparative Example 1. About 2
The sludge amount in the system of Example 1 was almost constant for 12 months.
It was around 500 kg, and even if there was no discharge of excess sludge, there was almost no increase in the amount of sludge in the system, and it was recognized that the sludge volume reduction effect under the alkaline treatment conditions was extremely high. On the other hand, in Comparative Example 1, when the excess sludge was not extracted, the amount of sludge in the system gradually increased as the number of elapsed days increased. After 60 days, the amount of sludge in the system was about 1.6 times the initial amount, and it was recognized that the sludge volume reduction effect was lower than in Example 1.

【0016】[0016]

【発明の効果】本発明によれば、生物反応槽及び沈殿池
より構成する活性汚泥処理装置において、沈殿池もしく
は生物反応槽より生物反応槽汚泥量の5〜25%の汚泥
をアルカリ剤の添加するアルカリ反応槽に供給し、アル
カリ処理による汚泥液化率が5〜20%となるように、
アルカリ剤をアルカリ反応槽に添加すれば、汚泥中の有
機物が効果的に加水分解し、低分子化することができ
る。上記の条件で得られた可溶化アルカリ処理汚泥を、
原水調整槽に供給することによって、調整槽の嫌気状態
を促進し、該アルカリ処理汚泥の液化有機物のみでな
く、流入原水中の有機物も酸醗酵の促進効果及び酸醗酵
に伴なう必要アルカリの補給効果も得られる。
According to the present invention, in an activated sludge treatment apparatus comprising a biological reaction tank and a sedimentation basin, the sludge of 5 to 25% of the amount of the biological reaction tank sludge is added to the sludge basin or the biological reaction tank with an alkali agent. So that the sludge liquefaction rate by the alkali treatment is 5 to 20%.
If an alkali agent is added to the alkali reaction tank, organic substances in the sludge can be effectively hydrolyzed to lower the molecular weight. The solubilized alkali-treated sludge obtained under the above conditions,
By supplying to the raw water adjusting tank, the anaerobic state of the adjusting tank is promoted, and not only the liquefied organic matter of the alkali-treated sludge, but also the organic matter in the inflowing raw water can promote the acid fermentation and reduce the alkali required for the acid fermentation. A replenishment effect is also obtained.

【0017】なお、アルカリ反応槽に導入されるアルカ
リ処理汚泥量が、生物反応槽全汚泥量の25%以内であ
れば、調整槽での有機物酸醗酵が十分に進行できる一
方、酸醗酵に伴なう不足アルカリも適量となるため、調
整槽のpHがほぼ中性に維持される。この結果、生物反
応槽におけるこれらの有機物の分解効率が高く、活性汚
泥によってほとんどが分解除去され、処理水中への残留
が少なく、良好な処理水質を得ることができる。また、
生物分解において、液化有機物の一部がCO2及びH2
に分解されることから、系内汚泥発生量を抑制すること
ができる。
If the amount of the alkali-treated sludge introduced into the alkaline reaction tank is within 25% of the total sludge amount in the biological reaction tank, the organic acid fermentation in the adjusting tank can proceed sufficiently, while the acid fermentation is not accompanied. Since the amount of the insufficient alkali is also an appropriate amount, the pH of the adjustment tank is maintained substantially neutral. As a result, the decomposition efficiency of these organic substances in the biological reaction tank is high, most of them are decomposed and removed by the activated sludge, and there is little residue in the treated water, so that good treated water quality can be obtained. Also,
In biodegradation, some of the liquefied organic matter is CO 2 and H 2 O
Therefore, the amount of sludge generated in the system can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための一例を示すフロー構成
図。
FIG. 1 is a flowchart showing an example for implementing the present invention.

【図2】実施例1と比較例1の系内汚泥量の経過日数に
よる変化を示すグラフ。
FIG. 2 is a graph showing the change in the amount of sludge in the system according to the number of elapsed days in Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1:流入原水、2:原水調整槽、3:調整槽攪拌ポン
プ、4:調整槽出口原水、5:返送汚泥、7:曝気槽、
8:散気ライン、9:アルカリ処理汚泥、10:曝気槽
出口、11:沈殿池、12:アルカリ反応槽流入汚泥、
13:アルカリ反応槽、14:NaOH注入ポンプ、1
5:アルカリ反応槽pH計、16:処理水
1: Inflow raw water, 2: Raw water adjustment tank, 3: Adjustment tank stirring pump, 4: Adjustment tank outlet raw water, 5: Returned sludge, 7: Aeration tank,
8: aeration line, 9: alkali-treated sludge, 10: aeration tank outlet, 11: settling tank, 12: alkali reaction tank inflow sludge,
13: alkaline reaction tank, 14: NaOH injection pump, 1
5: Alkaline reaction tank pH meter, 16: treated water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒川 清美 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 渡辺 昭 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 佐久間 博司 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 木幡 信和 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D028 AA02 AC03 AC09 BB07 BC11 BC22 BC26 BC28 BD00 BD01 BD10 BD11 CA00 CA11 CB02 CD01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyomi Arakawa 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside the Ebara Works Co., Ltd. (72) Inventor Akira Watanabe 11-1 Asahi-cho Haneda, Ota-ku, Tokyo Inside Ebara Works (72) Inventor Hiroshi Sakuma 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Works Co., Ltd. Terms (reference) 4D028 AA02 AC03 AC09 BB07 BC11 BC22 BC26 BC28 BD00 BD01 BD10 BD11 CA00 CA11 CB02 CD01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 食品廃水を原水調整槽を介して生物反応
槽及び沈殿池で活性汚泥処理し、沈殿池及び/又は生物
反応槽より汚泥の一部を抜き出して、アルカリ剤を添加
するアルカリ反応槽で処理し、該処理汚泥を生物処理槽
へ返送する処理方法において、前記アルカリ反応槽での
汚泥液化率が5〜20%となるようにアルカリ剤を添加
し、該アルカリ処理汚泥を前記原水調整槽に流入させ、
嫌気状態において原水と接触混合した後、生物反応槽に
流入させることを特徴とする食品廃水の処理方法。
1. An alkaline reaction in which food wastewater is subjected to activated sludge treatment in a biological reaction tank and a sedimentation basin via a raw water adjusting tank, a part of the sludge is extracted from the sedimentation basin and / or the biological reaction tank, and an alkali agent is added. In a treatment method of treating in a tank and returning the treated sludge to the biological treatment tank, an alkali agent is added so that the sludge liquefaction rate in the alkali reaction tank is 5 to 20%, and the alkali-treated sludge is treated with the raw water. Flow into the adjustment tank,
A method for treating food wastewater, comprising contacting and mixing raw water in an anaerobic state and then flowing the mixture into a biological reaction tank.
【請求項2】 前記アルカリ反応槽で処理する汚泥は、
生物反応槽の汚泥の5〜25重量%であることを特徴と
する請求項1に記載の食品廃水の処理方法。
2. The sludge treated in the alkaline reaction tank,
The method for treating food wastewater according to claim 1, wherein the amount of the sludge in the biological reaction tank is 5 to 25% by weight.
【請求項3】 食品廃水を処理する原水調整槽と生物反
応槽と沈殿池とを順次配備して接続し、別にアルカリ反
応槽を設け、該アルカリ反応槽には、前記沈殿池又は生
物反応槽の汚泥の一部を導入する流路を設けると共に、
前記生物反応槽に沈殿池の汚泥の残部を返送する流路を
設けた処理装置において、前記アルカリ反応槽には、p
H計を設置し、該pH計の測定値に基づいて汚泥液化率
が5〜20%になるようにアルカリ剤を添加する制御手
段を設け、該アルカリ反応槽と前記原水調整槽とを処理
汚泥を供給する流路で接続すると共に、該原水調整槽に
は嫌気状態を保持して攪拌する手段が備えられているこ
とを特徴とする食品廃水の処理装置。
3. A raw water regulating tank for treating food wastewater, a biological reaction tank, and a sedimentation tank are sequentially arranged and connected, and a separate alkaline reaction tank is provided, wherein the alkaline reaction tank is provided with the sedimentation tank or the biological reaction tank. A channel for introducing part of the sludge
In the processing apparatus provided with a flow path for returning the remaining sludge of the sedimentation basin to the biological reaction tank, the alkaline reaction tank may include p.
An H meter is installed, and control means for adding an alkali agent is provided based on the measured value of the pH meter so that the sludge liquefaction rate becomes 5 to 20%. The alkali reaction tank and the raw water adjusting tank are treated sludge. And a means for stirring the raw water adjusting tank while maintaining an anaerobic state.
JP20847499A 1999-07-23 1999-07-23 Method and apparatus for treating food wastewater Pending JP2001029983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20847499A JP2001029983A (en) 1999-07-23 1999-07-23 Method and apparatus for treating food wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20847499A JP2001029983A (en) 1999-07-23 1999-07-23 Method and apparatus for treating food wastewater

Publications (1)

Publication Number Publication Date
JP2001029983A true JP2001029983A (en) 2001-02-06

Family

ID=16556780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20847499A Pending JP2001029983A (en) 1999-07-23 1999-07-23 Method and apparatus for treating food wastewater

Country Status (1)

Country Link
JP (1) JP2001029983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202469A (en) * 2012-03-28 2013-10-07 Nippon Steel & Sumikin Eco-Tech Corp Biotreatment process for organic wastewater
CN111153494A (en) * 2020-01-14 2020-05-15 浙江工业大学 Catering wastewater treatment device and method for sludge collection and digestion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202469A (en) * 2012-03-28 2013-10-07 Nippon Steel & Sumikin Eco-Tech Corp Biotreatment process for organic wastewater
CN111153494A (en) * 2020-01-14 2020-05-15 浙江工业大学 Catering wastewater treatment device and method for sludge collection and digestion

Similar Documents

Publication Publication Date Title
JP2010505603A (en) Wastewater ozone treatment to reduce sludge or control foam and bulking
JPH07116685A (en) Aerobic biological treatment of organic waste liquor
JP2002224699A (en) Treatment equipment for excess sludge
JP2001029983A (en) Method and apparatus for treating food wastewater
JP3483081B2 (en) Organic wastewater treatment method and treatment device
JPH08103786A (en) Aerobic treating method for organic waste liquid
WO2001062676A1 (en) Method for treating organic wastewater
JP3877262B2 (en) Organic wastewater treatment method and equipment
JP3750923B2 (en) Method for adjusting activated sludge, method and apparatus for treating organic wastewater using the same
JP2004275820A (en) Wastewater treatment apparatus
JP2002001384A (en) Treating method for organic waste water and treating apparatus for the same
JP2004105872A (en) Method of treating waste water
JP3271322B2 (en) Treatment of wastewater containing dimethyl sulfoxide
JP3447037B2 (en) Aerobic digestion of activated sludge
JP4411850B2 (en) Biological dephosphorization method and apparatus
JP3400622B2 (en) Method and apparatus for treating organic sewage
JP2005246346A (en) Method and apparatus for treating sewage
JP2003053377A (en) Method for treating organic waste water and treating device
JP2000263091A (en) Sewage and sludge treatment method
KR0178670B1 (en) Nitrogen removal method of organic wastewater in the water phase corrosion method
JPH06142685A (en) Method and device for treating waste fluid containing organic nitrogen
JP2003053376A (en) Method for treating organic waste water and treating device
JP2002320992A (en) Method for treating organic waste water and equipment therefor
JPH0788495A (en) Method for aerobic treatment of organic drainage
JPH10216799A (en) Treatment method for excess sludge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070509