JPH10174844A - Exhaust gas cleaning device - Google Patents

Exhaust gas cleaning device

Info

Publication number
JPH10174844A
JPH10174844A JP8339562A JP33956296A JPH10174844A JP H10174844 A JPH10174844 A JP H10174844A JP 8339562 A JP8339562 A JP 8339562A JP 33956296 A JP33956296 A JP 33956296A JP H10174844 A JPH10174844 A JP H10174844A
Authority
JP
Japan
Prior art keywords
carrier
catalyst
exhaust gas
alumina
reducing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8339562A
Other languages
Japanese (ja)
Other versions
JP3551346B2 (en
Inventor
Riemi Muramoto
理恵美 村本
Hiromasa Suzuki
宏昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33956296A priority Critical patent/JP3551346B2/en
Publication of JPH10174844A publication Critical patent/JPH10174844A/en
Application granted granted Critical
Publication of JP3551346B2 publication Critical patent/JP3551346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration of NOX-cleaning performance after endurance while securing the initial NOX purifying efficiency by constituting a carrier of a HC reducing means with a composite material of titania and silica or zirconia and alumina in an exhaust gas purifying device provided with a NOX occluding.reducing catalyst and the HC reducing means. SOLUTION: The HC reducing means 4 and the NOX occluding.reducing catalyst 5 are arranged from an upstream side to a downstream side of an exhaust gas passage 2 in this order. A ternary catalyst, an oxidizing catalyst, etc., are exemplified as the HC reducing means 4 and constituted by incorporating a carrier consisting of a heat resistant porous body and a catalytic noble metal. Then this carrier is composed of a composite material of at least one kind selected among the titania, silica and zirconia and the alumina. That is, the carrier of the HC reducing means 4 is an acidic material. Therefore, a formation of SOX is suppressed since a SO2 being the acidic material is hardly adsorbed to the carrier, and a sulfur poisoning of the NOX occluding material on the NOX occluding.reducing catalyst 5 arranged at downstream is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排ガス浄化装置に関
し、詳しくは、排ガス中に含まれる一酸化炭素(CO)
や炭化水素(HC)を酸化するのに必要な量より過剰な
酸素が含まれている排気ガス中の、窒素酸化物(N
x )を効率よく浄化できる排ガス浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus and, more particularly, to carbon monoxide (CO) contained in exhaust gas.
Nitrogen oxides (N) in exhaust gas containing oxygen in excess of that required to oxidize hydrocarbons and hydrocarbons (HC)
The present invention relates to an exhaust gas purification device capable of efficiently purifying O x ).

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOx の還元とを同時に行
って排ガスを浄化する三元触媒が用いられている。この
ような触媒としては、例えばコージェライトなどの耐熱
性担体にγ−アルミナからなる担持層を形成し、その担
持層にPt,Pd,Rhなどの触媒貴金属を担持させた
ものが広く知られている。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by simultaneously oxidizing CO and HC and reducing NO x has been used as a catalyst for purifying exhaust gas of automobiles. As such a catalyst, for example, a catalyst in which a support layer made of γ-alumina is formed on a heat-resistant carrier such as cordierite and a support noble metal such as Pt, Pd, and Rh is supported on the support layer is widely known. I have.

【0003】ところで、このような排ガス浄化用触媒の
浄化性能は、エンジンの空燃比(A/F)によって大き
く異なる。すなわち、空燃比の大きい、つまり燃料濃度
が希薄なリーン側では排ガス中の酸素量が多くなり、C
OやHCを浄化する酸化反応が活発である反面NOx
浄化する還元反応が不活発になる。逆に空燃比の小さ
い、つまり燃料濃度が濃いリッチ側では排ガス中の酸素
量が少なくなり、COやHCの酸化反応は不活発となる
がNOx の還元反応は活発になる。
[0003] The purifying performance of such an exhaust gas purifying catalyst varies greatly depending on the air-fuel ratio (A / F) of the engine. That is, on the lean side where the air-fuel ratio is large, that is, the fuel concentration is lean, the amount of oxygen in the exhaust gas increases, and C
Oxidation reactions of purifying O and HC to purify although NO x is active reducing reaction becomes inactive. Conversely small air-fuel ratio, that is the less oxygen content in the exhaust gas in the fuel concentration dark rich side, the oxidation reaction of CO and HC reduction reaction of but a inactive NO x becomes active.

【0004】一方、自動車の走行において、市街地走行
の場合には加速・減速が頻繁に行われ、空燃比はストイ
キ(理論空燃比)近傍からリッチ状態までの範囲内で頻
繁に変化する。このような走行における低燃費化の要請
に応えるには、なるべく酸素過剰の混合気を供給するリ
ーン側での運転が必要となり、近年リーンバーンエンジ
ンが利用されている。したがってリーンバーンにおいて
もNOx を十分に還元浄化できる触媒の開発が望まれて
いる。
On the other hand, in the case of driving in a city, acceleration and deceleration are frequently performed in a car, and the air-fuel ratio frequently changes within a range from near stoichiometric (stoichiometric air-fuel ratio) to a rich state. In order to respond to such a demand for low fuel consumption during traveling, it is necessary to operate on a lean side that supplies an air-fuel mixture with an excess of oxygen as much as possible, and a lean burn engine has been used in recent years. Development of the catalyst is desirable to be able to sufficiently reduce and purify NO x even Therefore lean burn.

【0005】そこで本願出願人は、先にアルカリ土類金
属とPtをアルミナなどの多孔質担体に担持した排ガス
浄化用触媒(NOx 吸蔵還元触媒)を提案している(特
開平5−317652号)。この触媒によれば、NOx
はストイキ〜リッチ雰囲気でアルカリ土類金属に吸収さ
れ、それがリーン側で放出されてHCなどの還元性ガス
と反応して浄化されるため、リーンバーンにおいてもN
x の浄化性能に優れている。
Accordingly, the applicant of the present application has previously proposed an exhaust gas purifying catalyst (NO x storage reduction catalyst) in which an alkaline earth metal and Pt are supported on a porous carrier such as alumina (Japanese Patent Laid-Open No. Hei 5-317652). ). According to this catalyst, NO x
Is absorbed by the alkaline earth metal in a stoichiometric to rich atmosphere, and is released on the lean side and reacted with a reducing gas such as HC to be purified.
Excellent O x purification performance.

【0006】なお特開平5−317652号に開示され
た触媒では、例えばバリウムが単独酸化物として担体に
担持され、それがNOx と反応して硝酸バリウム(Ba
(NO3 2 )を生成することでNOx を吸蔵するもの
と考えられている。また、ゼオライト又はアルミナから
なる耐熱性無機酸化物に、バリウムに代表されるアルカ
リ土類金属やランタンに代表される希土類元素からなる
NOx 吸蔵材と白金等を担持させた排ガス浄化用触媒も
知られている(特開平5−168860号公報、特開平
6−31139号公報)。
In the catalyst disclosed in JP-A-5-317652, for example, barium is supported on a carrier as a single oxide, which reacts with NO x to form barium nitrate (Ba).
It is considered that NO x is occluded by generating (NO 3 ) 2 ). Further, the heat-resistant inorganic oxide comprising a zeolite or alumina, also the NO x storage material and the exhaust gas purifying catalyst in which platinum is supported such that a rare earth element typified by an alkaline earth metal or lanthanum typified by barium knowledge (JP-A-5-168860 and JP-A-6-31139).

【0007】さらに特開平5−187230号公報に
は、希薄燃焼可能な内燃機関の排気通路に上記したよう
なNOx 吸蔵還元触媒を配置し、その上流に三元触媒又
は酸化触媒からなるHC低減手段を配置した排ガス浄化
装置が提案されている。この排ガス浄化装置によれば、
排気通路のエンジンに近く高温である上流側でHCが酸
化除去されるため、始動時などの低温域におけるHC浄
化性能に優れている。また触媒貴金属にHCが吸着して
活性が低下するのを抑制できるため、長期間にわたって
高いNOx 浄化率を維持することが可能となる。
[0007] More Hei 5-187230 discloses, place the NO x storage reduction catalyst as described above in an exhaust passage of a lean burn internal combustion engine capable, a three way catalyst or an oxidation catalyst on the upstream HC reduction An exhaust gas purifying apparatus in which means are arranged has been proposed. According to this exhaust gas purification device,
Since HC is oxidized and removed on the upstream side near the engine in the exhaust passage and at a high temperature, the HC purification performance in a low temperature range such as at the time of starting is excellent. Also since it is possible to suppress the HC to the catalyst noble metal is reduced the activity adsorbed, it is possible to maintain high the NO x purification rate over a long period of time.

【0008】[0008]

【発明が解決しようとする課題】ところが排ガス中に
は、燃料中に含まれる硫黄(S)が燃焼して生成したS
2 が含まれ、それが酸素過剰雰囲気中で触媒貴金属に
より酸化されてSO3 となる。そしてそれがやはり排ガ
ス中に含まれる水蒸気により容易に硫酸となり、これら
がバリウムなどと反応して亜硫酸塩や硫酸塩が生成し、
これによりNOx 吸蔵材が被毒劣化することが明らかと
なった。また、アルミナなどの多孔質担体はSOx を吸
収しやすいという性質があることから、上記硫黄被毒が
促進されるという問題がある。
However, in the exhaust gas,
Represents sulfur generated by combustion of sulfur (S) contained in fuel.
O TwoContained in the catalyst noble metal in an oxygen-rich atmosphere
More oxidized SOThreeBecomes And that is also exhaust gas
The sulfuric acid easily becomes sulfuric acid by the water vapor contained in
Reacts with barium etc. to produce sulfites and sulfates,
This makes NOxIt is clear that the occlusion material is poisoned and deteriorated.
became. A porous carrier such as alumina is made of SO.xSuck
Due to the property of easy absorption, the above sulfur poisoning
There is a problem of being promoted.

【0009】さらに特開平5−187230号公報に開
示された排ガス浄化装置では、上流側のHC低減手段に
より排ガス中の硫黄が酸化されるため生成するSOx
が多く、下流側のNOx 吸蔵還元触媒の硫黄被毒が一層
促進されるという不具合がある。そして、このようにN
x 吸蔵材が硫黄被毒により亜硫酸塩や硫酸塩となる
と、もはやNOx を吸蔵することが困難となり、その結
果上記触媒や排ガス浄化装置では、耐久後のNOx の浄
化性能が著しく低下するという不具合があった。
Furthermore in the exhaust gas purifying device disclosed in JP-A 5-187230 discloses, often the amount of SO x to produce because the sulfur in the exhaust gas are oxidized by the HC reduction means upstream, downstream the NO x storage There is a problem that sulfur poisoning of the reduction catalyst is further promoted. And thus N
When the O x storage material becomes a sulfite or a sulfate due to sulfur poisoning, it is no longer possible to store NO x , and as a result, in the above-described catalyst and exhaust gas purification device, the purification performance of NO x after durability is significantly reduced. There was a problem.

【0010】なお、チタニアはSO2 を吸収しないの
で、チタニア担体を用いることが想起され実験が行われ
た。その結果、SO2 はチタニアには吸収されずそのま
ま下流に流れ、触媒貴金属と直接接触したSO2 のみが
酸化されるだけであるので硫黄被毒の程度は小さいこと
が明らかとなった。ところがチタニア担体では初期活性
が低く、耐久後のNOx の浄化性能も低いままであると
いう致命的な不具合があることも明らかとなった。
[0010] Since titania does not absorb SO 2 , an experiment was conducted with the supposition of using a titania carrier. As a result, SO 2 intact flows downstream without being absorbed by the titania, the degree of sulfur poisoning since only only SO 2 in direct contact with the catalyst noble metal is oxidized to be small revealed. However low initial activity in the titania carrier, it has been found that there is a critical problem that the purification performance of the NO x after the durability also remains low.

【0011】本発明はこのような事情に鑑みてなされた
ものであり、初期のNOx 浄化率を確保しつつ、耐久後
におけるNOx 浄化性能の低下を防止することを目的と
する。
[0011] The present invention has been made in view of such circumstances, while maintaining the initial of the NO x purification rate, and to prevent the deterioration of the NO x purifying performance after endurance.

【0012】[0012]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化装置の特徴は、希薄空燃比域で燃焼可能
な内燃機関及びその排気通路と、排気通路に設置された
希薄空燃比域の排気中でNOx を浄化可能なNOx 吸蔵
還元触媒と、排気通路のうちNOx 吸蔵還元触媒の上流
側に配置され耐熱性多孔質体よりなる担体と担体に担持
された触媒貴金属とを含むHC低減手段と、を備えた排
ガス浄化装置において、HC低減手段の担体がチタニ
ア、シリカ及びジルコニアから選ばれる少なくとも1種
とアルミナとの複合体から構成されていることにある。
The exhaust gas purifying apparatus of the present invention that solves the above-mentioned problems is characterized by an internal combustion engine capable of burning in a lean air-fuel ratio range, an exhaust passage thereof, and a lean air-fuel ratio range installed in the exhaust passage. of the NO x storage-and-reduction catalyst capable purifying NO x in the exhaust, and the NO x storage located upstream of the reduction catalyst heat resistance made of a porous body carrier and the catalyst noble metal supported on a carrier in the exhaust passage And an HC purifying means, wherein the carrier of the HC reducing means comprises a composite of alumina and at least one selected from titania, silica and zirconia.

【0013】[0013]

【発明の実施の形態】本発明の排ガス浄化装置では、H
C低減手段とNOx 吸蔵還元触媒とが排気通路の上流か
ら下流側にこの順で配置されている。HC低減手段とし
ては、三元触媒、酸化触媒などが例示され、耐熱性多孔
質体よりなる担体と触媒貴金属とを含んで構成されてい
る。そして本発明の最大の特徴は、この担体がチタニア
(TiO2)、シリカ(SiO2)及びジルコニア(ZrO2)から
選ばれる少なくとも1種とアルミナ(Al2O3 )との複合
体から構成されているところにある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the exhaust gas purifying apparatus of the present invention, H
The C reducing means and the NO x storage reduction catalyst are arranged in this order from upstream to downstream of the exhaust passage. Examples of the HC reducing means include a three-way catalyst, an oxidation catalyst, and the like, and include a carrier made of a heat-resistant porous body and a catalytic noble metal. The greatest feature of the present invention is that the carrier is composed of a complex of at least one selected from titania (TiO 2 ), silica (SiO 2 ) and zirconia (ZrO 2 ) and alumina (Al 2 O 3 ). Where it is.

【0014】すなわち、チタニア、シリカ及びジルコニ
アから選ばれる少なくとも1種とアルミナとを複合する
ことにより、HC低減手段の担体は酸性質となる。した
がって酸性質である硫黄分(SO2 )が担体に吸着され
にくくなるため、SOx の生成が抑制され、下流に配置
されたNOx 吸蔵還元触媒上でのNOx 吸蔵材の硫黄被
毒が抑制される。
That is, by combining at least one selected from titania, silica and zirconia with alumina, the carrier of the HC reducing means has an acid property. Therefore, sulfur (SO 2 ), which is acidic, is less likely to be adsorbed on the carrier, so that the generation of SO x is suppressed, and the sulfur poisoning of the NO x storage material on the NO x storage reduction catalyst disposed downstream is reduced. Is suppressed.

【0015】また担体は、アルミナのみの場合に比べて
比表面積を小さくすることができ、そうすれば硫黄分が
吸着しにくくなるという作用も加わって、SOx の生成
が一層抑制されNOx 吸蔵材の硫黄被毒が一層抑制され
る。さらに比表面積の低下した担体を用いれば、熱的な
安定性が増すという作用もある。この担体の比表面積と
しては、10〜100程度が望ましい。
The carrier can have a smaller specific surface area as compared with the case of using only alumina, and in addition to the effect that the sulfur content is hardly adsorbed, the generation of SO x is further suppressed, and the NO x storage is suppressed. Sulfur poisoning of the material is further suppressed. The use of a carrier having a reduced specific surface area also has the effect of increasing thermal stability. The specific surface area of the carrier is desirably about 10 to 100.

【0016】チタニア、シリカ及びジルコニアから選ば
れる少なくとも1種とアルミナとを複合して複合体とす
る場合、以下に示す比率で複合することが好ましい。以
下、TiO2、SiO2及びZrO2を総称してMO2 という。MO2
Al2O3 との複合化比率は、金属Mと金属Alに換算した
モル比で、M/Al=5/95〜50/50の範囲とす
るのが好ましい。M/Alが5/95より小さくなると
耐久後のNO x 浄化率が低下し、50/50より大きく
なると初期のNOx 浄化率が低下しその値に応じて耐久
後のNOx 浄化率も低いものとなる。特に望ましい範囲
はM/Al=20/80〜30/70である。
Selected from titania, silica and zirconia
And alumina to form a composite.
In such a case, it is preferable that the composition is combined at the ratio shown below. Less than
Bottom, TiOTwo, SiOTwoAnd ZrOTwoMOTwoThat. MOTwoWhen
AlTwoOThreeThe compounding ratio with was converted to metal M and metal Al.
M / Al = 5/95 to 50/50 in molar ratio.
Preferably. When M / Al is smaller than 5/95
NO after endurance xPurification rate decreases, greater than 50/50
When it comes to early NOxPurification rate decreases and durable according to the value
Later NOxThe purification rate is also low. Particularly desirable range
Is M / Al = 20/80 to 30/70.

【0017】またMO2 とAl2O3 とは、できるだけ小さな
レベルで複合化していることが望ましい。これによりS
x の生成を一層抑制することができる。例えば単なる
混合よりは複合酸化物とするのが望ましく、原子レベル
での複合化が最も望ましい。このように原子レベルで複
合化させるには、共沈法、ゾル−ゲル法などの方法があ
る。
It is desirable that MO 2 and Al 2 O 3 are combined at the smallest possible level. This gives S
O x generation can be further suppressed. For example, a composite oxide is more preferable than a simple mixture, and a composite at the atomic level is most preferable. In order to form a composite at the atomic level, there are methods such as a coprecipitation method and a sol-gel method.

【0018】HC低減手段は、上記担体にPt、Rh、
Pdなどの触媒貴金属、及び/又はFe、Mn、Cuな
どの卑金属を担持して構成することができる。例えばH
C低減手段が三元触媒であれば、触媒貴金属は担体1リ
ットルに対して0.05〜20g担持することが望まし
い。0.05g未満ではHCの酸化が困難となり、20
gを超えて担持しても酸化作用が飽和するとともにコス
トが高騰するため好ましくない。
The HC reducing means comprises Pt, Rh,
It can be configured to support a catalytic noble metal such as Pd and / or a base metal such as Fe, Mn, or Cu. For example, H
If the C reducing means is a three-way catalyst, it is desirable that 0.05 to 20 g of the catalytic noble metal be supported per liter of the carrier. If the amount is less than 0.05 g, it becomes difficult to oxidize HC.
It is not preferable that the amount exceeds g, since the oxidizing action is saturated and the cost increases.

【0019】HC低減手段の担体は、担体自体を成形し
てハニカム形状やペレット形状としてもよいし、コーデ
ィエライトやメタル製のハニカム形状などの担体基材に
上記複合体の粉末をコートした構成とすることもでき
る。NOx 吸蔵還元触媒は、従来と同様に耐熱性多孔質
担体に触媒貴金属とNOx吸蔵元素を担持した構成とす
ることができる。耐熱性多孔質担体としては、アルミ
ナ、チタニア、シリカ、ジルコニア、シリカ−アルミナ
などを用いることができ、触媒貴金属としてはPt、R
h、Pdなどが用いられる。またNOx 吸蔵元素として
は、Na、K、Cs、Rbなどのアルカリ金属、Ba、
Ca、Srなどのアルカリ土類金属、Y、Ce、La、
Prなどの希土類元素を必要に応じて用いることができ
る。
The carrier for the HC reducing means may be a honeycomb shape or a pellet shape by molding the carrier itself, or a structure in which a carrier base material such as cordierite or a metal honeycomb shape is coated with a powder of the composite. It can also be. The NO x storage-reduction catalyst may have a configuration in which a catalytic noble metal and a NO x storage element are supported on a heat-resistant porous carrier as in the conventional case. Alumina, titania, silica, zirconia, silica-alumina and the like can be used as the heat-resistant porous carrier, and Pt, R
h, Pd and the like are used. Examples of NO x storage elements include alkali metals such as Na, K, Cs and Rb, Ba,
Alkaline earth metals such as Ca and Sr, Y, Ce, La,
A rare earth element such as Pr can be used as needed.

【0020】NOx 吸蔵還元触媒の触媒貴金属の担持量
としては、多孔質担体1リットルに対して0.05〜2
0g担持することが望ましい。0.05g未満ではNO
x の還元が困難となり、20gを超えて担持しても還元
作用が飽和するとともにコストが高騰するため好ましく
ない。またNOx 吸蔵材の担持量としては、多孔質担体
1リットルに対して0.05〜10モルの範囲とするこ
とが望ましい。0.05モル未満ではNOx 吸蔵能の発
現が困難でNOx の還元が困難であり、10モルを超え
て担持すると耐熱性が低下するようになる。
The loading amount of the catalytic noble metal of the NO x storage reduction catalyst is 0.05 to 2 per liter of the porous carrier.
It is desirable to carry 0 g. NO if less than 0.05g
It becomes difficult to reduce x , and even if it exceeds 20 g, it is not preferable because the reducing action is saturated and the cost rises. The amount of the NO x storage material to be carried is preferably in the range of 0.05 to 10 mol per liter of the porous carrier. If it is less than 0.05 mol, it is difficult to exhibit NO x storage ability and it is difficult to reduce NO x , and if it exceeds 10 mol, the heat resistance will be reduced.

【0021】[0021]

【実施例】以下、実施例により具体的に説明する。 (実施例1) <HC低減手段の調製>γ−アルミナ粉末とチタニア粉
末を重量比で1:1となるように混合し、ボールミルで
5時間湿式混合して担体粉末を調製した。この担体粉末
の比表面積は130m2 /gである。
The present invention will be specifically described below with reference to examples. (Example 1) <Preparation of HC reducing means> A γ-alumina powder and a titania powder were mixed at a weight ratio of 1: 1 and wet-mixed with a ball mill for 5 hours to prepare a carrier powder. The specific surface area of this carrier powder is 130 m 2 / g.

【0022】この担体粉末100重量部と、アルミナゾ
ル(アルミナ10重量%)70重量部と、さらに水30
重量部を混合してスラリーを調製し、コーディエライト
製のハニカム担体基材をスラリーに浸漬後引き出して余
分なスラリーを吹き払い、120℃で1時間乾燥後50
0℃で1時間焼成して、TiO2−Al2O3 からなるコート層
を形成した。コート層はハニカム担体基材1リットル当
たり200gである。
100 parts by weight of this carrier powder, 70 parts by weight of alumina sol (10% by weight of alumina), and 30 parts of water
A slurry was prepared by mixing parts by weight, and a cordierite honeycomb carrier substrate was immersed in the slurry, pulled out, blown off excess slurry, dried at 120 ° C. for 1 hour, and dried at 50 ° C. for 1 hour.
By firing at 0 ° C. for 1 hour, a coat layer composed of TiO 2 —Al 2 O 3 was formed. The coating layer is 200 g per liter of the honeycomb carrier substrate.

【0023】次にコート層を形成したハニカム担体を所
定濃度の硝酸パラジウム水溶液に浸漬し、引き上げて余
分な液滴を吹き払った後、120℃で1時間乾燥し25
0℃で1時間焼成してPdを担持し、HC低減手段であ
る三元触媒を調製した。Pdの担持量は、ハニカム担体
基材1リットルに対して5gである。 <NOx 吸蔵還元触媒の調製>γ−アルミナ粉末100
重量部と、アルミナゾル(アルミナ10重量%)70重
量部と、40重量%硝酸アルミニウム水溶液15重量
部、及び水30重量部を混合し、コーティング用スラリ
ーを調製した。
Next, the honeycomb carrier having the coating layer formed thereon is immersed in an aqueous solution of palladium nitrate having a predetermined concentration, pulled up to blow off excess liquid droplets, and then dried at 120 ° C. for 1 hour.
The mixture was calcined at 0 ° C. for 1 hour to carry Pd to prepare a three-way catalyst as a means for reducing HC. The supported amount of Pd is 5 g per liter of the honeycomb carrier substrate. <Preparation of NO x storage reduction catalyst> γ-alumina powder 100
A coating slurry was prepared by mixing parts by weight, 70 parts by weight of alumina sol (10% by weight of alumina), 15 parts by weight of a 40% by weight aqueous solution of aluminum nitrate, and 30 parts by weight of water.

【0024】次にコーディエライト製のハニカム担体基
材を用意し、上記スラリーに浸漬し、引き上げて余分な
スラリーを吹き払った後、乾燥し600℃で1時間焼成
してアルミナコート層を形成して担体を調製した。コー
ト量はハニカム担体基材の体積1リットル当たり120
gである。この担体をジニトロジアンミン白金水溶液に
浸漬し、引き上げて余分な水滴を吹き払った後、250
℃で乾燥してPtを担持した。次いで硝酸ロジウム水溶
液に浸漬し、同様にしてRhを担持した。Pt及びRh
の担持量は、それぞれ担体1リットル当たり2g及び
0.1gである。
Next, a cordierite honeycomb carrier substrate is prepared, immersed in the slurry, pulled up and blow off excess slurry, dried, and fired at 600 ° C. for 1 hour to form an alumina coat layer. Thus, a carrier was prepared. The coating amount is 120 per liter of the volume of the honeycomb carrier substrate.
g. This carrier was immersed in an aqueous solution of dinitrodiammine platinum, pulled up and blow off excess water droplets,
It was dried at ℃ to support Pt. Then, the sample was immersed in an aqueous rhodium nitrate solution, and Rh was supported in the same manner. Pt and Rh
Are 2 g and 0.1 g per liter of the carrier, respectively.

【0025】次に所定濃度の酢酸バリウム水溶液を用意
し、上記のPt−Rh担持担体を浸漬し、引き上げて余
分な水滴を吹き払って乾燥後、600℃で1時間焼成し
てBaを担持した。次に所定濃度の酢酸リチウム水溶液
に浸漬し、引き上げて余分な水滴を吹き払って乾燥後、
600℃で1時間焼成してLiを担持した。さらに所定
濃度の酢酸カリウム水溶液浸漬し、引き上げて余分な水
滴を吹き払って乾燥後、600℃で1時間焼成してKを
担持した。それぞれのNOx 吸蔵元素の担持量は、ハニ
カム担体基材1リットル当たりBaが0.3モル、Li
が0.1モル、Kが0.1モルである。
Next, an aqueous solution of barium acetate having a predetermined concentration was prepared, the above-mentioned Pt-Rh carrier was immersed, pulled up, dried by blowing off excess water droplets, and calcined at 600 ° C. for 1 hour to carry Ba. . Next, immerse in a predetermined concentration of lithium acetate aqueous solution, pull up, blow off excess water drops, and dry.
It was fired at 600 ° C. for 1 hour to carry Li. Further, it was immersed in an aqueous solution of potassium acetate having a predetermined concentration, pulled up, dried by blowing off excess water droplets, and baked at 600 ° C. for 1 hour to carry K. The loading amount of each NO x storage element was such that 0.3 mol of Ba was contained per liter of
Is 0.1 mol and K is 0.1 mol.

【0026】<触媒装置及び評価試験>図1に示すよう
に、リーンバーンエンジン1を搭載した車両の排気通路
2の排気マニホールド3付近に上記三元触媒4を配置
し、それから1m離れた下流側にNOx 吸蔵還元触媒5
を配置した。そして10・15モードで運転してNOx
浄化率を測定し、初期浄化率として結果を表1に示す。
<Catalyst Device and Evaluation Test> As shown in FIG. 1, the three-way catalyst 4 is disposed near the exhaust manifold 3 in the exhaust passage 2 of the vehicle equipped with the lean burn engine 1, and is located 1 m away from the downstream side. NO x storage-reduction catalyst 5 to
Was placed. And NO x operating at 10 · 15 mode
The purification rate was measured, and the results are shown in Table 1 as the initial purification rate.

【0027】また上記と同様にリーンバーンエンジン搭
載車両に両触媒を配置し、市街地走行を模した運転条件
にて200時間排ガスを流通させる耐久試験を行った。
その後上記と同様にしてNOx 浄化率を測定し、耐久後
浄化率として結果を表1に示す。 (実施例2)γ−アルミナ粉末とチタニア粉末を重量比
で1:1となるように混合し、ボールミルで5時間湿式
混合した後、800℃で3時間焼成して担体粉末を調製
した。この担体粉末の比表面積は100m2 /gであ
る。
In the same manner as described above, a durability test was conducted in which both catalysts were arranged in a vehicle equipped with a lean burn engine and exhaust gas was circulated for 200 hours under operating conditions simulating running in an urban area.
Thereafter, the NO x purification rate was measured in the same manner as above, and the results are shown in Table 1 as the post-durability purification rate. (Example 2) γ-alumina powder and titania powder were mixed at a weight ratio of 1: 1 and wet-mixed in a ball mill for 5 hours, and then calcined at 800 ° C for 3 hours to prepare a carrier powder. The specific surface area of this carrier powder is 100 m 2 / g.

【0028】この担体粉末を用いたこと以外は実施例1
と同様に三元触媒を調製し、実施例1と同様のNOx
蔵還元触媒とともにリーンバーンエンジン搭載車両の排
気通路に同様に配置して、同様に初期及び耐久後のNO
x 浄化率を測定した。結果を表1に示す。 (実施例3)γ−アルミナ粉末とチタニア粉末を重量比
で1:1となるように混合し、ボールミルで5時間湿式
混合した後、1000℃で3時間焼成して担体粉末を調
製した。この担体粉末の比表面積は60m2 /gであ
る。
Example 1 except that this carrier powder was used
Similarly prepared a three-way catalyst and, arranged in the same manner in an exhaust passage of a lean-burn engine equipped vehicles with similar NO x storage reduction catalyst as in Example 1, likewise initial and NO after the endurance
x The purification rate was measured. Table 1 shows the results. Example 3 A γ-alumina powder and a titania powder were mixed at a weight ratio of 1: 1 and wet-mixed in a ball mill for 5 hours, and then calcined at 1000 ° C. for 3 hours to prepare a carrier powder. The specific surface area of this carrier powder is 60 m 2 / g.

【0029】この担体粉末を用いたこと以外は実施例1
と同様に三元触媒を調製し、実施例1と同様のNOx
蔵還元触媒とともにリーンバーンエンジン搭載車両の排
気通路に同様に配置して、同様に初期及び耐久後のNO
x 浄化率を測定した。結果を表1に示す。 (実施例4)γ−アルミナ粉末とシリカ粉末を重量比で
1:1となるように混合し、ボールミルで5時間湿式混
合した後、1000℃で3時間焼成して担体粉末を調製
した。この担体粉末の比表面積は60m2 /gである。
Example 1 except that this carrier powder was used.
Similarly prepared a three-way catalyst and, arranged in the same manner in an exhaust passage of a lean-burn engine equipped vehicles with similar NO x storage reduction catalyst as in Example 1, likewise initial and NO after the endurance
x The purification rate was measured. Table 1 shows the results. Example 4 γ-alumina powder and silica powder were mixed at a weight ratio of 1: 1 and wet-mixed in a ball mill for 5 hours, and then calcined at 1000 ° C. for 3 hours to prepare a carrier powder. The specific surface area of this carrier powder is 60 m 2 / g.

【0030】この担体粉末を用いたこと以外は実施例1
と同様に三元触媒を調製し、実施例1と同様のNOx
蔵還元触媒とともにリーンバーンエンジン搭載車両の排
気通路に同様に配置して、同様に初期及び耐久後のNO
x 浄化率を測定した。結果を表1に示す。 (実施例5)γ−アルミナ粉末とジルコニア粉末を重量
比で1:1となるように混合し、ボールミルで5時間湿
式混合した後、1000℃で3時間焼成して担体粉末を
調製した。この担体粉末の比表面積は60m2 /gであ
る。
Example 1 except that this carrier powder was used.
Similarly prepared a three-way catalyst and, arranged in the same manner in an exhaust passage of a lean-burn engine equipped vehicles with similar NO x storage reduction catalyst as in Example 1, likewise initial and NO after the endurance
x The purification rate was measured. Table 1 shows the results. Example 5 A γ-alumina powder and a zirconia powder were mixed at a weight ratio of 1: 1 and wet-mixed in a ball mill for 5 hours, and then calcined at 1000 ° C. for 3 hours to prepare a carrier powder. The specific surface area of this carrier powder is 60 m 2 / g.

【0031】この担体粉末を用いたこと以外は実施例1
と同様に三元触媒を調製し、実施例1と同様のNOx
蔵還元触媒とともにリーンバーンエンジン搭載車両の排
気通路に同様に配置して、同様に初期及び耐久後のNO
x 浄化率を測定した。結果を表1に示す。 (比較例1)γ−アルミナ粉末のみを担体粉末とした。
この担体粉末の比表面積は180m 2 /gである。そし
て、この担体粉末を用いたこと以外は実施例1と同様に
三元触媒を調製し、実施例1と同様のNOx 吸蔵還元触
媒とともにリーンバーンエンジン搭載車両の排気通路に
同様に配置して、同様に初期及び耐久後のNOx 浄化率
を測定した。結果を表1に示す。
Example 1 except that this carrier powder was used
In the same manner as in Example 1, a three-way catalyst was prepared.xSucking
Emissions of vehicles equipped with lean burn engines together with the storage reduction catalyst
NO in the initial stage and after endurance
xThe purification rate was measured. Table 1 shows the results. Comparative Example 1 Only the γ-alumina powder was used as the carrier powder.
The specific surface area of this carrier powder is 180 m Two/ G. Soshi
In the same manner as in Example 1 except that this carrier powder was used
A three-way catalyst was prepared, and the same NOxOcclusion reduction
In the exhaust passage of vehicles equipped with a lean burn engine together with the medium
In the same manner, the NO after initial and endurancexPurification rate
Was measured. Table 1 shows the results.

【0032】(比較例2)三元触媒を用いず、実施例1
と同様のNOx 吸蔵還元触媒のみをリーンバーンエンジ
ン搭載車両の排気通路に実施例1同様に配置して、同様
に初期及び耐久後のNOx 浄化率を測定した。結果を表
1に示す。
Comparative Example 2 Example 1 without using a three-way catalyst
Only the same NO x storage reduction catalyst was placed in the exhaust passage of the vehicle equipped with a lean burn engine as in Example 1, and the initial and endurance NO x purification rates were measured. Table 1 shows the results.

【0033】[0033]

【表1】 表1より、各実施例の排ガス浄化装置では初期に比べて
耐久後のNOx 浄化率の低下度合いが比較例に比べて小
さくなり、これは三元触媒の担体にTiO2-Al2O3、SiO2-A
l2O3又はZrO2-Al2O3からなる複合体を用いた効果である
ことが明らかである。
[Table 1] According to Table 1, the exhaust gas purifying apparatus of each embodiment has a smaller decrease in the NO x purification rate after the endurance as compared with the initial stage compared with the comparative example, which indicates that the TiO 2 -Al 2 O 3 , SiO 2 -A
it is clear that the l 2 O 3 or ZrO 2 -Al effect using a complex consisting of 2 O 3.

【0034】また実施例1〜3及び比較例1の比較よ
り、三元触媒の担体の比表面積が小さくなるにつれて耐
久後のNOx 浄化率が向上していることもわかる。な
お、焼結温度が高くなるほど比表面積が小さくなるが、
同時にチタニアとアルミナの複合酸化物の生成量も多く
なるので、この効果は比表面積の効果と、原子レベルで
複合化した複合酸化物としての効果が複合しているもの
と考えられる。
From the comparison between Examples 1 to 3 and Comparative Example 1, it can be seen that as the specific surface area of the carrier of the three-way catalyst decreases, the NO x purification rate after durability increases. The specific surface area decreases as the sintering temperature increases,
At the same time, the amount of the composite oxide of titania and alumina increases, so this effect is considered to be a combination of the effect of the specific surface area and the effect of the composite oxide compounded at the atomic level.

【0035】さらに比較例2では初期のNOx 浄化率が
実施例より低いことから、NOx 吸蔵還元触媒の上流側
に三元触媒を配置した効果も明らかである。
Further, in Comparative Example 2, since the initial NO x purification rate is lower than that of the embodiment, the effect of arranging the three-way catalyst upstream of the NO x storage reduction catalyst is apparent.

【0036】[0036]

【発明の効果】すなわち本発明の排ガス浄化装置によれ
ば、空燃比がリーンからストイキ又はリッチに変化して
排ガス中のHC濃度が増加しても、それをHC低減手段
で充分に低減できるので、NOx 吸蔵還元触媒の触媒貴
金属のHC被毒を抑制でき、耐久性が向上する。
According to the exhaust gas purifying apparatus of the present invention, even if the air-fuel ratio changes from lean to stoichiometric or rich and the concentration of HC in the exhaust gas increases, it can be sufficiently reduced by the HC reducing means. In addition, HC poisoning of the catalytic noble metal of the NO x storage reduction catalyst can be suppressed, and durability can be improved.

【0037】そしてHC低減手段によるSO2 の酸化が
抑制されるため、NOx 吸蔵還元触媒とSOx との接触
頻度が低下し、NOx 吸蔵元素の硫黄被毒が抑制され
る。したがって初期のNOx 浄化率を確保しつつ耐久後
のNOx 浄化率の低下を抑制することができ、耐久性が
向上する。
Since the oxidation of SO 2 by the HC reducing means is suppressed, the frequency of contact between the NO x storage reduction catalyst and SO x is reduced, and the sulfur poisoning of the NO x storage element is suppressed. Therefore, it is possible to suppress the decrease in the NO x purification rate after the durability while securing the initial NO x purification rate, and the durability is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の排ガス浄化装置の系統図で
ある。
FIG. 1 is a system diagram of an exhaust gas purifying apparatus according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:エンジン 2:排気通路 3:排気マ
ニホールド 4:三元触媒(HC低減手段) 5:NOx
吸蔵還元触媒
1: engine 2: exhaust passage 3: exhaust manifold 4: three-way catalyst (HC reducing means) 5: NO x
Storage reduction catalyst

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希薄空燃比域で燃焼可能な内燃機関及び
その排気通路と、該排気通路に設置された希薄空燃比域
の排気中でNOx を浄化可能なNOx 吸蔵還元触媒と、
該排気通路のうち該NOx 吸蔵還元触媒の上流側に配置
され耐熱性多孔質体よりなる担体と該担体に担持された
触媒貴金属とを含むHC低減手段と、を備えた排ガス浄
化装置において、 前記HC低減手段の前記担体がチタニア、シリカ及びジ
ルコニアから選ばれる少なくとも1種とアルミナとの複
合体から構成されていることを特徴とする排ガス浄化装
置。
1. A combustion possible internal combustion engine and an exhaust passage lean air fuel ratio zone, and can purify the NO x storage reduction catalyst the NO x in the exhaust gas of lean air fuel ratio zone which is installed in the exhaust passage,
In the exhaust gas purifying apparatus and a HC reduction means including a said the NO x storage located upstream of the reduction catalyst heat resistance made of porous carrier and carrier carried on the catalyst noble metal of the exhaust passage, The exhaust gas purifying apparatus, wherein the carrier of the HC reducing means is composed of a composite of alumina and at least one selected from titania, silica and zirconia.
JP33956296A 1996-12-19 1996-12-19 Exhaust gas purification equipment Expired - Lifetime JP3551346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33956296A JP3551346B2 (en) 1996-12-19 1996-12-19 Exhaust gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33956296A JP3551346B2 (en) 1996-12-19 1996-12-19 Exhaust gas purification equipment

Publications (2)

Publication Number Publication Date
JPH10174844A true JPH10174844A (en) 1998-06-30
JP3551346B2 JP3551346B2 (en) 2004-08-04

Family

ID=18328651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33956296A Expired - Lifetime JP3551346B2 (en) 1996-12-19 1996-12-19 Exhaust gas purification equipment

Country Status (1)

Country Link
JP (1) JP3551346B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253968A (en) * 2001-03-02 2002-09-10 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
JP2018038974A (en) * 2016-09-08 2018-03-15 株式会社豊田中央研究所 NOx PURIFYING CATALYST AND NOx PURIFYING METHOD USING THE SAME

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453700B2 (en) 2006-12-28 2010-04-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2008163871A (en) 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4497158B2 (en) 2006-12-28 2010-07-07 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253968A (en) * 2001-03-02 2002-09-10 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas
WO2002070127A1 (en) * 2001-03-02 2002-09-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Exhaust gas purifying catalyst
JP2018038974A (en) * 2016-09-08 2018-03-15 株式会社豊田中央研究所 NOx PURIFYING CATALYST AND NOx PURIFYING METHOD USING THE SAME

Also Published As

Publication number Publication date
JP3551346B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP4098835B2 (en) Exhaust gas purification catalyst
JP3363564B2 (en) Exhaust gas purification catalyst
JP3358766B2 (en) Exhaust gas purification catalyst
JP3291086B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3311012B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
EP1188908A2 (en) Exhaust gas purifying system
WO2000000283A1 (en) Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
JP3821343B2 (en) Exhaust gas purification device
JPH09215922A (en) Catalyst for purifying exhaust gas
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3789231B2 (en) Exhaust gas purification catalyst
JP2002326033A (en) Catalyst for cleaning exhaust gas
JP3374999B2 (en) Exhaust gas purification catalyst
JP3555694B2 (en) Exhaust gas purification device
JP3589383B2 (en) Exhaust gas purification catalyst
JP3224054B2 (en) Exhaust gas purification method
JP3551346B2 (en) Exhaust gas purification equipment
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JPH0985093A (en) Catalyst for cleaning exhaust gas
JP3664201B2 (en) Exhaust gas purification catalyst
JPH07132226A (en) Catalyst for purifying exhaust gas
JP7288331B2 (en) Exhaust gas purification catalyst device
JPH07171349A (en) Exhaust gas purification
JP2001079405A (en) Exhaust gas cleaning catalyst, exhaust gas cleaning catalyst carrying honeycomb structure and exhaust gas cleaning method
JP2004000978A (en) Cleaning method of exhaust gas and catalyst for cleaning of exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

EXPY Cancellation because of completion of term