JPH10174330A - Three-phase armature winding - Google Patents

Three-phase armature winding

Info

Publication number
JPH10174330A
JPH10174330A JP33652296A JP33652296A JPH10174330A JP H10174330 A JPH10174330 A JP H10174330A JP 33652296 A JP33652296 A JP 33652296A JP 33652296 A JP33652296 A JP 33652296A JP H10174330 A JPH10174330 A JP H10174330A
Authority
JP
Japan
Prior art keywords
winding
main
auxiliary
windings
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33652296A
Other languages
Japanese (ja)
Inventor
Katsumi Ishikawa
勝己 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33652296A priority Critical patent/JPH10174330A/en
Publication of JPH10174330A publication Critical patent/JPH10174330A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase a conductor space factor in a stator slot and to lower the temperature rise of a winding by using magnet-wires as main windings and disposing auxiliary windings having a specific ratio to the main windings into clearances among the main windings while being connected in parallel with the main windings. SOLUTION: An insulator 2 is laid in a stator slot 1 for a stator core, and main windings 13, in which main magnet-wires are wound in a random winding manner, are housed inside the insulator 2. Auxiliary windings 15 consisting of auxiliary magnet-wires having diameters of 1/10-154/1000 to the main windings 13 are arranged into spaces formed among the adjacent mutual main windings 13 while being connected in parallel with the main windings 13. Accordingly, heat generated by the primary copper loss of the stator winding is transmitted through the auxiliary windings 15, and heat transfer to the stator core is also improved. The temperature rise of a motor is lowered by synergism, in which the efficiency of the motor is also improved by the reduction of primary copper loss.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固定子スロット内
にマグネット・ワイヤーを乱巻きに巻回し収納した三相
電機子巻線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase armature winding in which a magnet wire is wound around a stator slot and stored.

【0002】[0002]

【従来の技術】従来のマグネット・ワイヤーを乱巻きに
巻回した巻線を、固定子スロット内に収納した状態断面
図を図4に示す。図において、固定子鉄心(図示しな
い)の固定子スロット1内には絶縁物2が敷かれ、この
絶縁物2の内側にマグネット・ワイヤーを乱巻きに巻回
した巻線3が収納されている。そして、固定子スロット
1のオープニング部に絶縁楔4を打ち込み、巻線3を固
定子スロット1内に位置決めし巻線3端を糸縛り後に図
示しないワニス処理装置により固定子鉄心全体をワニス
含浸して、固定子スロット1内に巻線3を固定する。こ
の巻線3を構成するマグネット・ワイヤーは同一線径で
本数は例えば34本である。そして、ワニス処理後の固
定子スロット1内ではマグネット・ワイヤーとスロット
壁との隙間にワニス5が充填されている。
2. Description of the Related Art FIG. 4 is a cross-sectional view showing a state in which a conventional magnet wire wound in a random winding is accommodated in a stator slot. In the figure, an insulator 2 is laid in a stator slot 1 of a stator core (not shown), and a winding 3 formed by randomly winding a magnet wire is accommodated inside the insulator 2. . Then, an insulating wedge 4 is driven into the opening of the stator slot 1, the winding 3 is positioned in the stator slot 1, the end of the winding 3 is tied, and the entire stator core is varnish-impregnated with a varnish processing device (not shown). Then, the winding 3 is fixed in the stator slot 1. The number of the magnet wires constituting the winding 3 is, for example, 34 with the same wire diameter. In the stator slot 1 after the varnish treatment, a varnish 5 is filled in a gap between the magnet wire and the slot wall.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな構成では、固定子スロット1内での巻線3を構成す
るマグネット・ワイヤーの占める導体占積率が低く、マ
グネット・ワイヤー間の隙間やマグネット・ワイヤーと
スロット壁との隙間が、電動機のトルクや温度などの運
転特性に寄与せず、1次銅損の増加や効率低下の要因に
なっている。また、これらの隙間は一般的に小さいため
にワニス処理されたワニスが充分に浸透せず、マグネッ
ト・ワイヤー間には隙間が存在してワニス5を介しての
熱伝達が悪くなり、巻線3の温度上昇が高くなる要因に
もなっている。
However, in such a configuration, the conductor space factor occupied by the magnet wires constituting the windings 3 in the stator slot 1 is low, and the gap between the magnet wires and the magnet -The gap between the wire and the slot wall does not contribute to the operating characteristics such as the torque and temperature of the electric motor and causes an increase in primary copper loss and a decrease in efficiency. In addition, since these gaps are generally small, the varnish-treated varnish does not sufficiently penetrate, and there is a gap between the magnet and the wire, so that heat transfer via the varnish 5 is deteriorated. This is also a factor that increases the temperature rise.

【0004】本発明はこれらの課題を解決するもので、
固定子スロット内での導体占積率を高くすもと共に巻線
の温度上昇を低くする。また電動機停止中の巻線の水滴
付着防止をする等を目的とする三相電機子巻線を提供す
る。
The present invention solves these problems,
The conductor space factor in the stator slot is increased, and the temperature rise of the winding is reduced. Further, the present invention provides a three-phase armature winding for preventing water droplets from adhering to the winding while the motor is stopped.

【0005】[0005]

【課題を解決するための手段】本発明における三相電機
子巻線は、請求項1では固定子スロット内にマグネット
・ワイヤーを乱巻きに巻回し収納した三相電機子巻線に
おいて、前記マグネット・ワイヤーを主巻線とし、この
主巻線に対し直径が1/10〜154/1000の補助
マグネット・ワイヤーから成る補助巻線を主巻線と並列
に接続しながら主巻線間の隙間に配設することを特徴と
する。
According to a first aspect of the present invention, there is provided a three-phase armature winding in which a magnet wire is wound and housed in a stator slot in a random manner. A wire is used as a main winding, and an auxiliary winding made of an auxiliary magnet wire having a diameter of 1/10 to 154/1000 is connected to the main winding in parallel with the main winding while a gap is formed between the main windings. It is characterized by being arranged.

【0006】このように構成すると、固定子スロット内
における巻線の占める占積率が向上し、1次巻線の発生
する1次銅損が低下し電動機効率が向上する。また主巻
線相互間に補助巻線を収めるので熱伝達率が向上し1次
銅損低下の相乗作用で電動機温度上昇が低下する。
With this configuration, the space factor occupied by the winding in the stator slot is improved, the primary copper loss generated by the primary winding is reduced, and the motor efficiency is improved. Further, since the auxiliary winding is housed between the main windings, the heat transfer coefficient is improved, and the temperature rise of the motor is reduced due to the synergistic effect of the reduction of the primary copper loss.

【0007】次に請求項2では、前記主巻線と補助巻線
の夫々の回路の接続端子をモータ外部に出したので、主
巻線と補助巻線を並列接続した場合と、主巻線のみに電
源を接続する場合の2種類の特性が得られる。
According to a second aspect of the present invention, the connection terminals of the respective circuits of the main winding and the auxiliary winding are provided outside the motor, so that the main winding and the auxiliary winding are connected in parallel. Two kinds of characteristics when a power supply is connected only to the power supply are obtained.

【0008】また請求項3では、前記補助巻線を電動機
停止時にスペース・ヒーターとして単相電流加熱で使用
するので、主巻線を使用する場合に比べ小電流で結露防
止ができる。更に請求項4及び5では、前記補助巻線を
主巻線とは異なる抵抗の材質とする或いは抵抗を主巻線
より低抵抗としたので、更に1次銅損の低下が可能とな
る。
According to the third aspect, since the auxiliary winding is used as a space heater when the motor is stopped by single-phase current heating, dew condensation can be prevented with a smaller current than when the main winding is used. Further, since the auxiliary winding is made of a material having a different resistance from that of the main winding or the resistance is made lower than that of the main winding, the primary copper loss can be further reduced.

【0009】[0009]

【発明の実施の形態】以下本発明の第1実施例について
図1及び図2を参照し、従来構成と同じものは同じ符号
を使用して説明する。図1は、従来と同じマグネット・
ワイヤーを乱巻きに巻回して主巻線とし、この主巻線よ
り線径が小で成る補助巻線を固定子スロット内に収納し
た状態断面図である。図において、固定子鉄心(図示し
ない)の固定子スロット1内には絶縁物2が敷かれ、こ
の絶縁物2の内側に主マグネット・ワイヤーを乱巻きに
巻回して成る主巻線13が収納されている(マグネット
・ワイヤーの本数は例えば34本である)。そして、隣
接する主巻線13相互間で形成される空間に、主巻線1
3を形成する主マグネット・ワイヤーより線径が154
/1000の補助マグネット・ワイヤーを主巻線13と
同数巻回して形成される補助巻線15を収める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. Figure 1 shows the same magnet
FIG. 4 is a cross-sectional view of a state in which a wire is wound in random winding to form a main winding, and an auxiliary winding having a smaller wire diameter than the main winding is accommodated in a stator slot. In the figure, an insulator 2 is laid in a stator slot 1 of a stator core (not shown), and a main winding 13 formed by randomly winding a main magnet wire is housed inside the insulator 2. (The number of magnet wires is, for example, 34). The main winding 1 is inserted into a space formed between the adjacent main windings 13.
The wire diameter of the main magnet wire forming No. 3 is 154
The auxiliary winding 15 formed by winding the same number of / 1000 auxiliary magnet wires as the main winding 13 is accommodated.

【0010】この後、固定子スロット1のオープニング
部に絶縁楔4を打ち込み、主巻線13と補助巻線15を
固定子スロット1内に位置決めし、夫々の巻線端を糸縛
りした後に図示しないワニス処理装置により固定子鉄心
全体をワニス含浸して、固定子スロット1内に主巻線1
3と補助巻線15を固定する。そして、ワニス処理後の
固定子スロット1内では主,補助マグネット・ワイヤー
と固定子スロット1壁との隙間にワニス5が充填されて
いる。
Thereafter, an insulating wedge 4 is driven into the opening of the stator slot 1, the main winding 13 and the auxiliary winding 15 are positioned in the stator slot 1, and the respective winding ends are thread-tied. The entire stator core is impregnated with varnish using a non-varnish treatment device, and the main winding 1 is inserted into the stator slot 1.
3 and the auxiliary winding 15 are fixed. In the stator slot 1 after the varnish treatment, a varnish 5 is filled in a gap between the main and auxiliary magnet wires and the wall of the stator slot 1.

【0011】尚、補助巻線15の収納は、主巻線13相
互間または主巻線13と固定子スロット1壁との空間
(この場合は補助マグネット・ワイヤーが複数本の塊り
となる)と、更には主巻線13と固定子スロット1壁と
の空間だけでもよい。
The auxiliary winding 15 is housed between the main windings 13 or in the space between the main winding 13 and the wall of the stator slot 1 (in this case, a plurality of auxiliary magnet wires form a lump). Alternatively, only the space between the main winding 13 and the wall of the stator slot 1 may be used.

【0012】このように固定子スロット1内に収納され
た主巻線13と補助巻線15は、例えば図2に示すよう
に並列回路のY結線に接続される。図2は2極の場合の
接続図で、R1は主巻線13の1極1相分の抵抗で、R
2は補助巻線15の1極1相分の抵抗である。そして、
主巻線13と補助巻線15は各相とも並列接続されてい
るので、1相分の抵抗値Raは2×(R1×R2)/
(R1+R2)となる。これに対し従来の1相分の抵抗
値Rbは2×R1である。
The main winding 13 and the auxiliary winding 15 housed in the stator slot 1 as described above are connected to, for example, a Y-connection of a parallel circuit as shown in FIG. FIG. 2 is a connection diagram in the case of two poles, and R1 is a resistance of one phase and one phase of the main winding 13, and R1 is
Reference numeral 2 denotes a resistance corresponding to one pole and one phase of the auxiliary winding 15. And
Since the main winding 13 and the auxiliary winding 15 are connected in parallel for each phase, the resistance value Ra for one phase is 2 × (R1 × R2) /
(R1 + R2). On the other hand, the conventional resistance value Rb for one phase is 2 × R1.

【0013】ここで、主巻線13の抵抗(1極1相分)
R1=1Ωとすると、補助巻線15の抵抗(1極1相
分)R2はマグネット・ワイヤーの直径比の2乗に逆比
例するので、 R2=1×[(1000/154)/1]2 =42.4
Ω となる。このR1=1ΩとR2=42.2Ωを用いて従
来の1相分の抵抗値Rbを求めると、Rb=2×1=2
Ωとなる。
Here, the resistance of the main winding 13 (for one pole and one phase)
If R1 = 1Ω, the resistance (for one pole and one phase) R2 of the auxiliary winding 15 is inversely proportional to the square of the diameter ratio of the magnet wire, so that R2 = 1 × [(1000/154) / 1] 2 = 42.4
Ω. Using the R1 = 1Ω and R2 = 42.2Ω, a conventional resistance value Rb for one phase is calculated as Rb = 2 × 1 = 2
Ω.

【0014】これに対し本実施例の1相分の抵抗値Ra
を求めると、 Ra=2×(1×42.2)/(1+42.2)=1.
95Ω となり、従来に対し1次銅損を約(1.95/2)×1
00=97.6%に低減できる。
On the other hand, the resistance value Ra of one phase of the present embodiment is
Is obtained, Ra = 2 × (1 × 42.2) / (1 + 42.2) = 1.
95Ω, and the primary copper loss is about (1.95 / 2) × 1
00 = 97.6%.

【0015】このように、補助巻線15を主巻線13の
相互間に収めることにより、従来空隙であった部分に導
体(補助マグネット・ワイヤー)が入るので、固定子巻
線の1次銅損による発生熱が補助巻線15を介して伝達
され固定子鉄心への熱伝達が良くなる。そして、1次銅
損の減少によりモータ効率も向上する相乗作用でモータ
温度上昇が低下する。
As described above, since the conductor (auxiliary magnet wire) is inserted into the space which has been conventionally a gap by placing the auxiliary winding 15 between the main windings 13, the primary copper of the stator winding is formed. The heat generated by the loss is transmitted through the auxiliary winding 15 and heat transfer to the stator core is improved. Then, the motor temperature rise is reduced due to a synergistic effect that the motor efficiency is also improved by reducing the primary copper loss.

【0016】次に第2実施例について図3を参照して説
明する。図3は2極の場合の接続図で、第1実施例と異
なるところは補助巻線25に夫々の口出端子があって、
主巻線23の口出端子と接続することにより第1実施例
と同様の効果が得られる。即ち、図において、Mu,M
v,Mwは主巻線23の口出端子であり、Au,Av,
Awは補助巻線25の口出端子である。これらの各口出
端子であるMuとAu,MvとAv,MwとAwを夫々
接続すると、図2と同様の2極の接続図が形成されるの
で、第1実施例と同様の作用効果が得られる。又、主巻
線23の口出端子Mu,Mv,Mwだけを電源端子に接
続すると第1実施例とは異なるモータ特性が得られ、接
続変更するだけで2種類のモータ特性が得られる電動機
を提供することができる。
Next, a second embodiment will be described with reference to FIG. FIG. 3 is a connection diagram in the case of two poles. The difference from the first embodiment is that the auxiliary winding 25 has respective output terminals.
By connecting to the output terminal of the main winding 23, the same effect as in the first embodiment can be obtained. That is, in the figure, Mu, M
v and Mw are output terminals of the main winding 23, and Au, Av, and
Aw is a lead terminal of the auxiliary winding 25. When these output terminals Mu and Au, Mv and Av, and Mw and Aw are respectively connected, a two-pole connection diagram similar to that of FIG. 2 is formed, and the same operation and effect as those of the first embodiment are obtained. can get. Further, when only the output terminals Mu, Mv, Mw of the main winding 23 are connected to the power supply terminal, a motor characteristic different from that of the first embodiment can be obtained. Can be provided.

【0017】続いて第3実施例を図3を参照して説明す
る。第3実施例は補助巻線25回路を電動機内部の結露
防止のスペース・ヒータとして使用する事例である。図
において、補助巻線25の補助マグネット・ワイヤーを
主巻線23マグネット・ワイヤーの線径の154/10
00とし、R1=1Ωとした場合はR2=42.2Ωと
なる。ここで補助巻線25に単相電流加熱をする。単相
電流加熱の計算式は、W=2×I2 R(Rは1相分)で
電動機の大きさよってWは一般的に決められる為、Rの
大きさにより単相電流が変わることになる。よって、補
助巻線25回路を単相電流加熱する場合は、主巻線23
回路に比べて電流がR1/R2の平方根の比で小さくな
り、低電流で単相電流加熱が可能となる。このように単
相電流加熱することにより電動機内部は暖かくなり、電
動機の停止中に電動機内部で内気と外気との差で発生す
る結露を防止することができ、補助巻線25回路が結露
防止用のスペース・ヒータ作用を小電流でする効果があ
る。
Next, a third embodiment will be described with reference to FIG. The third embodiment is an example in which the auxiliary winding 25 circuit is used as a space heater for preventing dew condensation inside an electric motor. In the drawing, the auxiliary magnet wire of the auxiliary winding 25 is 154/10 of the wire diameter of the main winding 23 magnet wire.
00 and R1 = 1Ω, then R2 = 42.2Ω. Here, the auxiliary winding 25 is subjected to single-phase current heating. The calculation formula for single-phase current heating is W = 2 × I 2 R (R is one phase), and W is generally determined by the size of the motor, so that the single-phase current varies depending on the size of R. Become. Therefore, when heating the auxiliary winding 25 circuit with single-phase current, the main winding 23
Compared with the circuit, the current is reduced by the ratio of the square root of R1 / R2, and single-phase current heating can be performed at a low current. By heating the single-phase current in this way, the inside of the motor becomes warm, and it is possible to prevent dew condensation occurring due to the difference between inside air and outside air inside the motor while the motor is stopped. Has the effect of reducing the space heater action with a small current.

【0018】更に第4実施例を説明する。第1実施例の
補助巻線15を形成する補助マグネット・ワイヤーの材
質を主巻線13のマグネット・ワイヤー材質より低抵抗
のものを使用する。即ち、補助巻線15を形成する補助
マグネット・ワイヤーにアルミニウム(導電率γ=36
m/Ωmm2 )を使用し、主巻線13のマグネット・ワ
イヤーに銅(導電率γ=58m/Ωmm2 )を使用す
る。そして、第1実施例と同一条件(R1=1Ω)でR
2を計算すると、 R2=1×[(1000/154)/1]2 ×(36/
58)=26.2Ω となり、図2の1相分の抵抗値Rcを求めると、 Rc=2×[(1×26.2)/(1+26.2)]=
1.92Ω となる。これは、従来の2Ωに対して1次銅損を約
(1.93/2)×100=96.3%に低減できる。
その他の作用効果は第1実施例と同様である。
Next, a fourth embodiment will be described. The material of the auxiliary magnet wire forming the auxiliary winding 15 of the first embodiment is lower than the material of the magnet wire of the main winding 13. That is, aluminum (conductivity γ = 36) is used for the auxiliary magnet wire forming the auxiliary winding 15.
m / Ωmm 2 ), and copper (conductivity γ = 58 m / Ωmm 2 ) is used for the magnet wire of the main winding 13. Then, under the same conditions (R1 = 1Ω) as in the first embodiment, R
When R2 = 1, R2 = 1 × [(1000/154) / 1] 2 × (36 /
58) = 26.2Ω, and the resistance value Rc for one phase in FIG. 2 is obtained. Rc = 2 × [(1 × 26.2) / (1 + 26.2)] =
1.92Ω. This can reduce the primary copper loss to about (1.93 / 2) × 100 = 96.3% with respect to the conventional 2Ω.
Other functions and effects are the same as those of the first embodiment.

【0019】以上の実施例に対し、主巻線のマグネット
・ワイヤー本数に対する補助巻線の補助マグネット・ワ
イヤー本数を、2倍,3倍と複数本とする場合も可能
で、この場合は更に効果が良くなる。
In contrast to the above embodiment, the number of auxiliary magnet wires in the auxiliary winding may be doubled or tripled with respect to the number of magnet wires in the main winding. Will be better.

【0020】[0020]

【発明の効果】以上のように本発明によれば、固定子ス
ロット内にマグネット・ワイヤーを乱巻きに巻回し収納
した三相電機子巻線を有する電動機で、1次銅損が小さ
くて高効率の温度上昇が低い良好な特性の電動機が提供
できると共に、低電流単相加熱が可能で且つ2種類の特
性が得られる三相電動機を提供できる。
As described above, according to the present invention, an electric motor having a three-phase armature winding in which a magnet wire is wound and housed in a stator slot in a random manner has a small primary copper loss and a high primary copper loss. It is possible to provide a motor having good characteristics with low efficiency temperature rise, and a three-phase motor capable of low-current single-phase heating and obtaining two types of characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す固定子スロット内に巻
線を収納した断面図、
FIG. 1 is a sectional view showing a stator slot according to an embodiment of the present invention, in which a winding is accommodated in a stator slot;

【図2】本発明の一実施例を示す主巻線と補助巻線の接
続図、
FIG. 2 is a connection diagram of a main winding and an auxiliary winding showing one embodiment of the present invention;

【図3】本発明の他の実施例を示す図2相当図、FIG. 3 is a diagram corresponding to FIG. 2, showing another embodiment of the present invention;

【図4】従来の図1相当図、FIG. 4 is a diagram corresponding to FIG.

【図5】従来の図2相当図。FIG. 5 is a diagram corresponding to FIG. 2 of the related art.

【符号の説明】[Explanation of symbols]

1…固定子スロット、 13,23…主巻線、 15,25…補助巻線。 1: stator slot, 13, 23: main winding, 15, 25: auxiliary winding.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固定子スロット内にマグネット・ワイヤ
ーを乱巻きに巻回し収納した三相電機子巻線において、
前記マグネット・ワイヤーを主巻線とし、この主巻線に
対し直径が1/10〜154/1000の補助マグネッ
ト・ワイヤーから成る補助巻線を主巻線と並列に接続し
ながら主巻線間の隙間に配設することを特徴とする三相
電機子巻線。
1. A three-phase armature winding in which a magnet wire is wound around a stator and housed in a stator slot.
The above-mentioned magnet wire is used as a main winding, and an auxiliary winding made of an auxiliary magnet wire having a diameter of 1/10 to 154/1000 is connected to the main winding in parallel with the main winding. A three-phase armature winding, which is disposed in a gap.
【請求項2】 前記主巻線と補助巻線の夫々の回路の接
続端子をモータ外部に出す請求項1記載の三相電機子巻
線。
2. The three-phase armature winding according to claim 1, wherein connection terminals of respective circuits of the main winding and the auxiliary winding are brought out of the motor.
【請求項3】 前記補助巻線を電動機停止時にスペース
・ヒーターとして単相電流加熱で使用する請求項1記載
の三相電機子巻線。
3. The three-phase armature winding according to claim 1, wherein the auxiliary winding is used as a space heater for single-phase current heating when the motor is stopped.
【請求項4】 前記補助巻線を主巻線とは異なる抵抗の
材質とする請求項1乃至3記載の三相電機子巻線。
4. The three-phase armature winding according to claim 1, wherein the auxiliary winding is made of a material having a resistance different from that of the main winding.
【請求項5】 前記補助巻線の抵抗は主巻線より低抵抗
である請求項1乃至4記載の三相電機子巻線。
5. The three-phase armature winding according to claim 1, wherein the resistance of the auxiliary winding is lower than that of the main winding.
JP33652296A 1996-12-17 1996-12-17 Three-phase armature winding Pending JPH10174330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33652296A JPH10174330A (en) 1996-12-17 1996-12-17 Three-phase armature winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33652296A JPH10174330A (en) 1996-12-17 1996-12-17 Three-phase armature winding

Publications (1)

Publication Number Publication Date
JPH10174330A true JPH10174330A (en) 1998-06-26

Family

ID=18300007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33652296A Pending JPH10174330A (en) 1996-12-17 1996-12-17 Three-phase armature winding

Country Status (1)

Country Link
JP (1) JPH10174330A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100342573B1 (en) * 2000-05-20 2002-07-02 에릭 발리베 A folding structure of anti-electric sheet for the amature assembly of a start motor
KR20040031886A (en) * 2002-10-07 2004-04-14 미쓰비시덴키 가부시키가이샤 Automotive alternator
WO2014188466A1 (en) * 2013-05-20 2014-11-27 三菱電機株式会社 Stator and electric motor using same
WO2018087889A1 (en) * 2016-11-11 2018-05-17 三菱電機株式会社 Rotor of dynamo-electric machine
WO2019163021A1 (en) * 2018-02-21 2019-08-29 三菱電機株式会社 Stator, electric motor, compressor, and air conditioning device
US10411540B2 (en) 2014-04-22 2019-09-10 Secop Austria Gmbh Stator of an electric motor
JPWO2019220610A1 (en) * 2018-05-18 2020-12-10 三菱電機株式会社 Stator, electric motor, compressor, and air conditioner

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100342573B1 (en) * 2000-05-20 2002-07-02 에릭 발리베 A folding structure of anti-electric sheet for the amature assembly of a start motor
KR20040031886A (en) * 2002-10-07 2004-04-14 미쓰비시덴키 가부시키가이샤 Automotive alternator
WO2014188466A1 (en) * 2013-05-20 2014-11-27 三菱電機株式会社 Stator and electric motor using same
JP5708880B1 (en) * 2013-05-20 2015-04-30 三菱電機株式会社 Stator and electric motor using this stator
KR20150136139A (en) 2013-05-20 2015-12-04 미쓰비시덴키 가부시키가이샤 Stator and electric motor using same
CN105229899A (en) * 2013-05-20 2016-01-06 三菱电机株式会社 Fixture and use the motor of this fixture
US9413200B2 (en) 2013-05-20 2016-08-09 Mitsubishi Electric Corporation Stator and electric motor using same
DE112013007001B4 (en) * 2013-05-20 2017-06-01 Mitsubishi Electric Corporation Stator with windings made of materials with different resistivities
US10411540B2 (en) 2014-04-22 2019-09-10 Secop Austria Gmbh Stator of an electric motor
WO2018087889A1 (en) * 2016-11-11 2018-05-17 三菱電機株式会社 Rotor of dynamo-electric machine
JPWO2018087889A1 (en) * 2016-11-11 2019-02-28 三菱電機株式会社 Rotating electrical machine rotor
WO2019163021A1 (en) * 2018-02-21 2019-08-29 三菱電機株式会社 Stator, electric motor, compressor, and air conditioning device
CN111771317A (en) * 2018-02-21 2020-10-13 三菱电机株式会社 Stator, motor, compressor, and air conditioner
JPWO2019163021A1 (en) * 2018-02-21 2020-12-10 三菱電機株式会社 Stator, electric motor, compressor and air conditioner
CN111771317B (en) * 2018-02-21 2022-08-05 三菱电机株式会社 Stator, motor, compressor, and air conditioner
US11750053B2 (en) 2018-02-21 2023-09-05 Mitsubishi Electric Corporation Stator, motor, compressor, and air conditioner
JPWO2019220610A1 (en) * 2018-05-18 2020-12-10 三菱電機株式会社 Stator, electric motor, compressor, and air conditioner

Similar Documents

Publication Publication Date Title
JP3474660B2 (en) 3 phase motor
WO2002021665A3 (en) Dc- or ac- commutator motors with concentrated windings
JPS5826556A (en) Half pitch twist type condenser motor
MX2011008739A (en) Two conductor winding for an induction motor circuit.
US4387330A (en) Balanced single phase alternating current induction motor
JPH10174330A (en) Three-phase armature winding
US4352051A (en) Single phase motor with reversible auxiliary windings
US5722153A (en) Method for fabricating a split-loop armature coil for a motor
US4417192A (en) Sectional motor starting winding circuit for three-phase motors
FI89317B (en) FOERFARANDE FOER FOERMINSKNING AV STARTSTROEM AV EN KORTSLUTEN ASYNKRONMOTOR SAMT EN FOER TILLAEMPNING AV FOERFARANDET AVSEDD KORTSLUTEN ASYNKRONMOTORENHET
US20050017592A1 (en) Rotary electric machine having armature winding connected in delta-star connection
US20020163262A1 (en) High performance stator device
JPH09215240A (en) Salient pole rotary field type synchronous motor
CN110855044A (en) 3-pair-pole 6-layer flat copper wire winding structure and motor applying same
EP1255345A1 (en) High performance stator device
CN212660023U (en) NEMA motor divides winding start-up wiring structure
JPH06311712A (en) Two-phase motor
JPH1080085A (en) Electronic rotary machine
RU2176124C1 (en) Ten-to-six pole changing (double-pitch) winding
SU1561155A1 (en) Single-phase induction motor
RU2159982C1 (en) Six/four pole-changing winding
JP2007181313A (en) Motor stator and motor using the same
JPH11285187A (en) Method for fixing magnet in permanent magnet synchronous motor
JPS6152624B2 (en)
CN110971039A (en) 72-slot 8-pole flat copper wire winding structure and motor applying same