JPH10171541A - Temperature controller - Google Patents
Temperature controllerInfo
- Publication number
- JPH10171541A JPH10171541A JP34271996A JP34271996A JPH10171541A JP H10171541 A JPH10171541 A JP H10171541A JP 34271996 A JP34271996 A JP 34271996A JP 34271996 A JP34271996 A JP 34271996A JP H10171541 A JPH10171541 A JP H10171541A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- voltage
- heater
- circuit
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Resistance Heating (AREA)
- Feedback Control In General (AREA)
- Control Of Temperature (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ヒータを加熱する加熱
回路と温度センサにより温度測定を行いながら所定温度
に温度を保持する温度制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating circuit for heating a heater and a temperature control device for maintaining a temperature at a predetermined temperature while measuring a temperature with a temperature sensor.
【0002】[0002]
【従来の技術】図1は、従来の温度制御装置のブロック
図を示す。この温度制御装置は、ヒータ12を加熱する
加熱回路14と、このヒータ12の温度を検出する温度
センサ16と、この温度センサ16に接続されて測温電
圧を加熱回路14に供給する測温回路18と、所定温度
に対応した設温電圧を加熱回路14に供給する設温回路
20とを備える。2. Description of the Related Art FIG. 1 shows a block diagram of a conventional temperature control device. The temperature control device includes a heating circuit 14 for heating the heater 12, a temperature sensor 16 for detecting the temperature of the heater 12, and a temperature measurement circuit connected to the temperature sensor 16 for supplying a temperature measurement voltage to the heating circuit 14. And a heating circuit 20 for supplying a heating voltage corresponding to a predetermined temperature to the heating circuit 14.
【0003】加熱回路14は、測温回路18及び設温回
路20の出力電圧を比較する比較器22と、比較器22
の出力を電流増幅してヒータ12を加熱するエミッタフ
ォロア24とを含む。設温回路20は希望する所定温度
を例えば10mV/℃の設温電圧Vsとして出力する。The heating circuit 14 comprises a comparator 22 for comparing output voltages of the temperature measuring circuit 18 and the temperature setting circuit 20, and a comparator 22.
And an emitter follower 24 for heating the heater 12 by current-amplifying the output of the heater 12. The heating circuit 20 outputs a desired predetermined temperature as a heating voltage Vs of, for example, 10 mV / ° C.
【0004】また測温回路18は温度センサ16により
検出された温度を設温回路20と同レベルの測温電圧V
tとして出力する。加熱回路14において、設温電圧V
sと測温電圧Vtが比較器22により比較され設温電圧
Vsの方が大きければヒータ12に給電し、測温電圧V
tの方が大きければヒータ12ヘの給電を遮断するいわ
ゆるオン/オフ制御が行われる。A temperature measuring circuit 18 measures the temperature detected by the temperature sensor 16 to a temperature measuring voltage V of the same level as the temperature setting circuit 20.
Output as t. In the heating circuit 14, the heating voltage V
s and the measured voltage Vt are compared by the comparator 22. If the set temperature voltage Vs is larger, power is supplied to the heater 12, and the measured temperature voltage Vt is supplied to the heater 12.
If t is larger, so-called on / off control for interrupting power supply to the heater 12 is performed.
【0005】また、図3に示す第2の温度制御装置は図
1のそれと同様に設温回路20及び測温回路18を含
む。しかし、加熱回路14は、所定温度に対応した設温
電圧と測温電圧の差を増幅する第1増幅器22と、第1
増幅器の出力電圧がヒータ12の端子電圧と等しくなる
ように働く第2増幅器23とを備えて、比例制御型の加
熱制御回路を構成する。Further, the second temperature control device shown in FIG. 3 includes a temperature setting circuit 20 and a temperature measuring circuit 18 as in the case of FIG. However, the heating circuit 14 includes a first amplifier 22 that amplifies a difference between a set temperature voltage corresponding to a predetermined temperature and a temperature measurement voltage,
A second amplifier 23 that operates so that the output voltage of the amplifier becomes equal to the terminal voltage of the heater 12 is provided, and a heating control circuit of a proportional control type is configured.
【0006】[0006]
【発明が解決しようとする課題】図2は、図1の温度制
御装置の制御電圧及び温度の関係を示す。この温度制御
装置は、オン/オフ制御であるため、電源投入時に所定
温度に到達するまで電源がオン状態を保持するため所定
温度への到達速度は比較的速い。FIG. 2 shows the relationship between the control voltage and the temperature of the temperature control device shown in FIG. Since this temperature control device is an on / off control, the speed of reaching the predetermined temperature is relatively fast since the power is kept on until the temperature reaches the predetermined temperature when the power is turned on.
【0007】しかしながら、測温電圧Vtが設温電圧V
sを越えた場合でも、ヒータ12による加熱と温度セン
サ16による測定との時間的なズレから温度がしばらく
の間上昇し続けて、実際の温度がオーバーシュートを起
こす問題がある。また、逆に温度が下がりつつある場合
には、ヒータ12に給電し始めてもしばらくは測定温度
が上昇せず、アンダーシュートも発生する。従って、実
際に温度が安定するまでの時間は長くなる。However, when the measured voltage Vt is equal to the set temperature V
Even when s exceeds s, there is a problem that the temperature continues to rise for a while due to a time lag between the heating by the heater 12 and the measurement by the temperature sensor 16, and the actual temperature causes an overshoot. On the other hand, when the temperature is decreasing, the measured temperature does not increase for a while even when the power supply to the heater 12 is started, and an undershoot occurs. Therefore, the time until the temperature actually stabilizes becomes long.
【0008】さらに、温度制御装置には熱容量があるた
め、ヒータ12の加熱を停止しても、温度センサ16の
測定温度が下がり始めるまでに伝熱応答時間tmを必要
とする。このため、一旦所定温度に達した後も装置の伝
熱応答時間に対応した間隔で必ずオン/オフを繰り返す
ため、伝熱応答時間tmが長いと温度変動が生じてしま
うという問題がある。Further, since the temperature control device has a heat capacity, even if the heating of the heater 12 is stopped, a heat transfer response time tm is required until the measured temperature of the temperature sensor 16 starts to decrease. For this reason, even after the temperature once reaches a predetermined temperature, on / off is always repeated at intervals corresponding to the heat transfer response time of the device, so that there is a problem that a long heat transfer response time tm causes temperature fluctuation.
【0009】この温度変動は、伝熱応答時間tmが大き
いほど増大する。また第2の従来例では、第1増幅器の
ゲインを大きくすることで所定温度での温度安定性はよ
いものの、逆に電源投入時に所定温度に達する時間が遅
くなるという問題がある。This temperature fluctuation increases as the heat transfer response time tm increases. Further, in the second conventional example, although the temperature stability at a predetermined temperature is good by increasing the gain of the first amplifier, there is a problem that the time to reach the predetermined temperature when the power is turned on is conversely delayed.
【0010】本発明は、このような問題点を解決するた
めになされたもので、電源投入時の応答が比較的早く、
所定温度での温度安定性がよい温度制御装置を提供する
ことことを目的とする。The present invention has been made to solve such a problem, and the response at the time of turning on the power is relatively quick.
An object of the present invention is to provide a temperature control device having good temperature stability at a predetermined temperature.
【0011】[0011]
【課題を解決するための手段】この様な目的を達成する
ために、本発明による温度制御装置は、測温電圧及び設
温電圧の比較結果に基づいてヒータを加熱する加熱回路
と、このヒータの温度を検出する温度センサと、この温
度センサに接続されて前記測温電圧を前記加熱回路に供
給する測温回路と、所定温度に対応した前記設温電圧を
前記加熱回路に供給する設温回路と、前記測温回路又は
前記設温回路の出力に周期性を有する連続波を加算し
て、前記ヒータを前記所定温度に制御する加算器とを備
える。In order to achieve the above object, a temperature control device according to the present invention comprises a heating circuit for heating a heater based on a comparison result of a measured voltage and a set temperature, and a heating circuit for heating the heater. A temperature sensor connected to the temperature sensor for detecting the temperature of the temperature, supplying the temperature measurement voltage to the heating circuit, and supplying a temperature corresponding to a predetermined temperature to the heating circuit. A circuit, and an adder for adding a periodic continuous wave to the output of the temperature measuring circuit or the temperature setting circuit to control the heater to the predetermined temperature.
【0012】前記連続波は、三角波特にデューティ比5
0%で、前記ヒータの伝熱応答時間の1/5以下で選択
される周期を持ち、電圧比較範囲の約1/2から1/2
0程度の間で選択される波高値を持つ三角波であり、又
はヒータの端子電圧を検出するローパスフィルタ又は積
分器によって周期又はレベルが変化させられてもよい。The continuous wave is a triangular wave, especially a duty ratio of 5
0%, having a cycle selected to be 1/5 or less of the heat transfer response time of the heater, and from about 1/2 to 1/2 of the voltage comparison range.
It may be a triangular wave having a peak value selected between about 0, or the period or level may be changed by a low-pass filter or an integrator that detects the terminal voltage of the heater.
【0013】従って、本発明によれば、測温回路又は設
温回路の出力電圧に、装置の伝熱応答時間よりも早い周
波数で温度制御電圧範囲よりも小さい波高値に設定され
る連続波を加算し、この連続波が加算された電圧波形と
もう一方の直流出力電圧とが比較されて、ヒータの加熱
を行うことを特徴とする。Therefore, according to the present invention, a continuous wave set at a frequency faster than the heat transfer response time of the apparatus and a peak value smaller than the temperature control voltage range is added to the output voltage of the temperature measuring circuit or the temperature setting circuit. The voltage waveform obtained by adding the continuous waves is compared with the other DC output voltage to heat the heater.
【0014】[0014]
【実施例】図4は、本発明による温度制御装置の電圧比
較及び加熱制御状態の制御概念図を示す。ここで測温回
路の測温電圧Vtには連続した三角波の電圧が加算さ
れ、加算器の出力電圧が測温電圧Vt’であると仮定す
る。FIG. 4 is a conceptual diagram of voltage comparison and heating control of a temperature control device according to the present invention. Here, it is assumed that the voltage of the continuous triangular wave is added to the temperature measurement voltage Vt of the temperature measurement circuit, and the output voltage of the adder is the temperature measurement voltage Vt ′.
【0015】電源投入直後は、図4(a)に示すように
ヒータ12が冷えているので、測温電圧Vt’が設温回
路20の設温電圧Vsに比べ低く、ヒータ12ヘの給電
が常にオンとなり、最大電力で加熱することになる。Immediately after the power is turned on, since the heater 12 is cold as shown in FIG. 4A, the temperature measurement voltage Vt 'is lower than the temperature setting voltage Vs of the temperature setting circuit 20, and power supply to the heater 12 is not performed. It is always on and will heat with maximum power.
【0016】ヒータ12の加熱で測温電圧Vt’が上昇
し所定温度近傍に達した時には、加算された三角波電圧
が図4(b)に示すように設温電圧Vsを横切る形で電
圧比較が行われヒータ12ヘの給電がオン/オフされ
る。この時、本来の測温回路の測温電圧Vtが設温電圧
Vsに比較してまだ小さい場合には、測温電圧Vt1の
三角波の頂点部のみが設温電圧Vsを横切る形になり、
ヒータ12の給電をオン/オフするタイミングはオン状
態の方がオフ状態よりも長くなる。When the temperature measurement voltage Vt 'rises due to the heating of the heater 12 and reaches near a predetermined temperature, the voltage comparison is performed in such a manner that the added triangular wave voltage crosses the temperature setting voltage Vs as shown in FIG. Then, the power supply to the heater 12 is turned on / off. At this time, if the temperature measurement voltage Vt of the original temperature measurement circuit is still smaller than the temperature setting voltage Vs, only the top of the triangular wave of the temperature measurement voltage Vt1 crosses the temperature setting voltage Vs,
The ON / OFF timing of the power supply to the heater 12 is longer in the ON state than in the OFF state.
【0017】即ち、測定温度が所定温度に近づいた場合
には、ヒータ12ヘの加熱を断続的にオン/オフさせる
ことで、オーバーシュートを防止することができる。温
度が所定温度に安定した後は図4(c)に示すように、
三角波の中心即ち測温電圧Vtの位置でオン/オフ動作
を行う。このオン/オフはデューティ比が50%で三角
波と同一の周期を持つため、三角波の周期taが装置の
伝熱応答よりも充分短い場合には、装置の伝熱応答によ
る制御遅れは生じることがなく、温度は所定温度に安定
保持される。That is, when the measured temperature approaches the predetermined temperature, overheating can be prevented by intermittently turning on / off the heating of the heater 12. After the temperature is stabilized at the predetermined temperature, as shown in FIG.
The on / off operation is performed at the center of the triangular wave, that is, at the position of the temperature measurement voltage Vt. Since this on / off has the same cycle as the triangular wave with a duty ratio of 50%, when the cycle ta of the triangular wave is sufficiently shorter than the heat transfer response of the device, a control delay due to the heat transfer response of the device may occur. Instead, the temperature is stably maintained at a predetermined temperature.
【0018】上述の説明は、測定温度が所定温度以下の
場合の例であるが、測定温度が所定温度以上の場合でも
同様の作用が働くため、アンダーシュートの防止及び温
度の安定性の向上を図ることができる。The above description is an example in the case where the measured temperature is equal to or lower than the predetermined temperature. However, even when the measured temperature is equal to or higher than the predetermined temperature, the same operation works, so that undershoot is prevented and the temperature stability is improved. Can be planned.
【0019】図5は、本発明による第1の実施例の温度
制御装置のブロック図を示す。本発明の温度制御装置
は、まず、ヒータ12を加熱する加熱回路14と、この
ヒータ12の温度を検出する温度センサ16とを備えて
いる。この温度センサ16はヒータ12の近傍に取付け
られ、測温回路18により温度制御装置の温度を実測
し、例えば10mV/℃の測温電圧Vtで出力する。ま
た、温度センサ16には、検出した温度を測温電圧に変
換する測温回路18が接続される。FIG. 5 is a block diagram of a temperature control device according to a first embodiment of the present invention. The temperature control device of the present invention includes a heating circuit 14 for heating the heater 12 and a temperature sensor 16 for detecting the temperature of the heater 12. The temperature sensor 16 is mounted near the heater 12, measures the temperature of the temperature control device by the temperature measurement circuit 18, and outputs the temperature at a temperature measurement voltage Vt of, for example, 10 mV / ° C. The temperature sensor 16 is connected to a temperature measurement circuit 18 that converts the detected temperature into a temperature measurement voltage.
【0020】一方、加熱回路14の非反転入力端には、
所定温度に対応した設温電圧を供給する設温回路20が
接続される。この設温回路20は、希望する所定温度を
出力電圧と同レベルの電圧値に変換して出力する。この
出力電圧即ち設温電圧Vsは加熱回路14内の比較器2
2の非反転入力端に入力される。On the other hand, the non-inverting input terminal of the heating circuit 14
A heating circuit 20 for supplying a heating voltage corresponding to a predetermined temperature is connected. This temperature setting circuit 20 converts a desired predetermined temperature into a voltage value having the same level as the output voltage and outputs the same. This output voltage, that is, the set voltage Vs, is output from the comparator 2
2 is input to the non-inverting input terminal.
【0021】本発明によれば、測温回路18の測温電圧
は加算器30の第1の入力端に印加される。この加算器
30は、第2の入力端に所定の周期及び波高値を有する
三角波を発生する三角波発生回路32の出力が印加さ
れ、出力端が加熱回路14の反転入力端に接続される。According to the present invention, the temperature measurement voltage of the temperature measurement circuit 18 is applied to the first input terminal of the adder 30. The output of the triangular wave generating circuit 32 that generates a triangular wave having a predetermined period and a peak value is applied to a second input terminal of the adder 30, and the output terminal is connected to the inverting input terminal of the heating circuit 14.
【0022】従って、三角波発生回路32から発生され
た三角波は、加算器30において測温回路18の出力電
圧と加算され、測温電圧Vt’として加熱回路14内の
比較器22の反転入力端に入力される。比較器22は、
設温電圧Vsと測温電圧Vt’を比較し、設温電圧Vs
の方が大きければ、エミッタフォロア24を経由してヒ
ータ12に給電する。Therefore, the triangular wave generated from the triangular wave generating circuit 32 is added to the output voltage of the temperature measuring circuit 18 in the adder 30 and is supplied to the inverting input terminal of the comparator 22 in the heating circuit 14 as the temperature measuring voltage Vt '. Is entered. The comparator 22
Compare the temperature setting voltage Vs with the temperature measurement voltage Vt ′, and determine the temperature setting voltage Vs
Is larger, the power is supplied to the heater 12 via the emitter follower 24.
【0023】この三角波は、デューティ比が50%で、
同一の周波数及びレベルで連続的に発生される。三角波
の周波数及びレベルは、装置の伝熱応答時間tmの1/
5以下で選択される周期を持ち、電圧比較範囲の約1/
2から1/20程度の間で選択される波高値を持ってい
る。例えぱ、装置の伝熱応答時間tmが1秒であり、電
圧比較範囲が10Vである場合には、周波数が100H
z、波高値が2Vp−pとなるように設定される。This triangular wave has a duty ratio of 50%,
Generated continuously at the same frequency and level. The frequency and level of the triangular wave are 1/1 of the heat transfer response time tm of the device.
5 or less, and about 1 /
It has a peak value selected between about 2 and 1/20. For example, when the heat transfer response time tm of the device is 1 second and the voltage comparison range is 10 V, the frequency is 100H.
z and the peak value are set to 2 Vp-p.
【0024】ここで、三角波の周波数とレベルを任意に
選択することにより、装置の温度制御特性を自由に決定
することができ、装置本来の伝熱応答特性による温度変
動や、応答特性を改善することができる。Here, by arbitrarily selecting the frequency and level of the triangular wave, the temperature control characteristics of the device can be freely determined, and the temperature fluctuation due to the original heat transfer response characteristics and the response characteristics can be improved. be able to.
【0025】図6は、第2の実施例のブロック図を示
す。上述の第1の実施例は、測温回路18の出力電圧に
加算する連続波は、一定の周波数とレベルを持つのに対
し、第2の実施例は、ヒータ12の加熱状況に応じて、
このパラメータを変化させることにより、より自由度の
高い温度制御を行うものである。FIG. 6 shows a block diagram of the second embodiment. In the above-described first embodiment, the continuous wave added to the output voltage of the temperature measuring circuit 18 has a constant frequency and level, whereas in the second embodiment, according to the heating state of the heater 12,
By changing this parameter, temperature control with a higher degree of freedom is performed.
【0026】この実施例は、第1の実施例と同様に、設
温回路20と、温度センサ16を用いた測温回路18に
加え、比較器22、エミッタフォロア24、ヒータ12
を含む加熱回路14と、三角波発生回路32と、加算器
30とを備え、更にローパスフィルタ又は積分器34を
付加したものである。In this embodiment, as in the first embodiment, a comparator 22, an emitter follower 24, and a heater 12 are provided in addition to a temperature setting circuit 20 and a temperature measuring circuit 18 using a temperature sensor 16.
, A triangular wave generating circuit 32, and an adder 30, and a low-pass filter or an integrator 34 is added.
【0027】ここで、三角波発生回路32は、外部から
の電圧又は電流入力により、出力波形の周波数またはレ
ベルもしくはその両者を変化させることができる電圧制
御発振器(VCO)などである。Here, the triangular wave generating circuit 32 is a voltage controlled oscillator (VCO) or the like that can change the frequency and / or level of the output waveform by inputting an external voltage or current.
【0028】ヒータ12の負荷側の端子には電圧波形を
積分する積分器34が接続される。この積分器34は、
端子電圧波形に含まれる高周波成分を除去して、緩やか
に変化する略直流電圧を出力する。この略直流電圧は、
三角波発生回路32の制御入力端に印加されて、対応し
た周期又はレベルを有する三角波を発生させる。The load-side terminal of the heater 12 is connected to an integrator 34 for integrating a voltage waveform. This integrator 34
A high-frequency component contained in the terminal voltage waveform is removed, and a substantially DC voltage that gradually changes is output. This approximately DC voltage is
The triangular wave is applied to the control input terminal of the triangular wave generating circuit 32 to generate a triangular wave having a corresponding cycle or level.
【0029】例えば、図4(a)のような、所定温度に
対し測定温度が小さい場合には、三角波のレベルを小さ
くし、測定温度が所定温度に近似するまでヒータ12に
給電し、一旦測定温度が所定温度に安定した時に三角波
のレベルを大きくするように三角波を変化させることに
より、電源投入時から所定温度に到達する時間を短縮し
て応答特性を改善できる。For example, when the measured temperature is lower than the predetermined temperature as shown in FIG. 4A, the level of the triangular wave is reduced, and the power is supplied to the heater 12 until the measured temperature approximates the predetermined temperature. By changing the triangular wave so as to increase the level of the triangular wave when the temperature is stabilized at the predetermined temperature, the response time can be improved by shortening the time required to reach the predetermined temperature from power-on.
【0030】また、上述の測温回路18の出力電圧に加
算される波形は、50%のデューティ比と同一の周波数
とレベルで連続的に発生される波形であれば必ずしも三
角波である必要がなく、正弦波や、他の波形でも代用で
きる。The waveform added to the output voltage of the temperature measuring circuit 18 is not necessarily a triangular wave as long as it is a waveform continuously generated at the same frequency and level with a duty ratio of 50%. , Sine waves and other waveforms can be substituted.
【0031】[0031]
【発明の効果】上述のように本発明によれば、伝熱応答
の遅い温度制御装置であっても、電源投入時のオーバー
シュートやアンダーシュートを改善し応答特性を高める
とともに、所定温度に達してからの温度の安定性を向上
することができる。As described above, according to the present invention, even if the temperature control device has a slow heat transfer response, the overshoot and the undershoot at the time of turning on the power are improved, the response characteristics are improved, and the temperature reaches a predetermined temperature. The stability of the temperature can be improved.
【図1】第1の従来例の温度制御装置のブロック図であ
る。FIG. 1 is a block diagram of a first conventional temperature control device.
【図2】図1の温度制御装置の制御概念図である。FIG. 2 is a control conceptual diagram of the temperature control device of FIG. 1;
【図3】第2の従来例の温度制御装置のブロック図であ
る。FIG. 3 is a block diagram of a temperature control device of a second conventional example.
【図4】本発明による温度制御装置の制御概念図であ
る。FIG. 4 is a control conceptual diagram of the temperature control device according to the present invention.
【図5】本発明の第1実施例の温度制御装置のブロック
図である。FIG. 5 is a block diagram of the temperature control device according to the first embodiment of the present invention.
【図6】本発明の第2実施例の温度制御装置のブロック
図である。FIG. 6 is a block diagram of a temperature control device according to a second embodiment of the present invention.
12 ヒータ 14 加熱回路 16 温度センサ 18 測温回路 20 設温回路 22 比較器 30 加算器 32 三角波発生回路 34 積分器 Reference Signs List 12 heater 14 heating circuit 16 temperature sensor 18 temperature measuring circuit 20 temperature setting circuit 22 comparator 30 adder 32 triangular wave generating circuit 34 integrator
Claims (4)
てヒータを加熱する加熱回路と、 このヒータの温度を検出する温度センサと、 この温度センサに接続されて前記測温電圧を前記加熱回
路に供給する測温回路と、 所定温度に対応した前記設温電圧を前記加熱回路に供給
する設温回路と、 前記測温回路又は前記設温回路の出力に周期性を有する
連続波を加算して、前記ヒータを前記所定温度に制御す
る加算器とを備えた温度制御装置。1. A heating circuit for heating a heater based on a result of comparison between a measured voltage and a set temperature, a temperature sensor for detecting a temperature of the heater, and a temperature sensor connected to the temperature sensor for detecting the measured voltage. A temperature measuring circuit for supplying the heating circuit, a heating circuit for supplying the heating voltage corresponding to a predetermined temperature to the heating circuit, and a continuous wave having a periodicity in an output of the temperature measuring circuit or the heating circuit. A temperature control device comprising: an adder for controlling the heater to the predetermined temperature by adding.
の装置。2. The apparatus according to claim 1, wherein said continuous wave is a triangular wave.
記ヒータの伝熱応答時間の1/5以下で選択される周期
を持ち、電圧比較範囲の約1/2から1/20程度の間
で選択される波高値を持つ三角波である請求項1記載の
装置。3. The continuous wave has a duty ratio of 50%, has a period selected to be 1/5 or less of the heat transfer response time of the heater, and has a period of about 1/2 to 1/20 of a voltage comparison range. 2. The device according to claim 1, wherein the triangular wave has a peak value selected between the two.
出するローパスフィルタ又は積分器によって周期又はレ
ベルが変化させられることを特徴とする請求項1または
3記載の装置。4. The apparatus according to claim 1, wherein the continuous wave is changed in period or level by a low-pass filter or an integrator for detecting a terminal voltage of the heater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34271996A JPH10171541A (en) | 1996-12-06 | 1996-12-06 | Temperature controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34271996A JPH10171541A (en) | 1996-12-06 | 1996-12-06 | Temperature controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10171541A true JPH10171541A (en) | 1998-06-26 |
Family
ID=18355967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34271996A Pending JPH10171541A (en) | 1996-12-06 | 1996-12-06 | Temperature controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10171541A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006068432A (en) * | 2004-09-06 | 2006-03-16 | Samii Kk | Game machine |
-
1996
- 1996-12-06 JP JP34271996A patent/JPH10171541A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006068432A (en) * | 2004-09-06 | 2006-03-16 | Samii Kk | Game machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3305501B2 (en) | Temperature control method | |
JP4490969B2 (en) | Method and apparatus for preventing instability in radio frequency plasma processing | |
JPH06343261A (en) | Switching power source circuit | |
JPH02166490A (en) | Control circuit for heat fixing apparatus | |
JP2002519869A (en) | Light source control device | |
JPH0715998A (en) | Controller for induction motor | |
JPH03190557A (en) | Maximum duty cycle controller of pulse width modulator | |
JP3738014B2 (en) | Switching power supply soft start method, output control circuit, and switching power supply | |
KR930019067A (en) | Output Compensation Circuit of High Frequency Induction Heating Cooker | |
JPH10171541A (en) | Temperature controller | |
JP2024012116A (en) | Heating control method of atomization device, device, circuit, medium, and program product | |
US5910743A (en) | High efficiency pulse width modulator | |
JP4871003B2 (en) | Oscillator circuit | |
JP4495274B2 (en) | Ultrasonic motor drive control device | |
JPH07203672A (en) | Power supply employing pwm control system | |
JPH0428190A (en) | Heater control circuit | |
JPH02125311A (en) | Temperature controller | |
JPH01103027A (en) | Voltage control oscillating circuit | |
JPS5930032B2 (en) | Constant voltage control method | |
CN112637974A (en) | Heating equipment and temperature control method thereof | |
JP2656546B2 (en) | Phase locked oscillator | |
JP2691807B2 (en) | High frequency induction heating device | |
JPH04104497A (en) | Magnetron drive power supplier | |
JPH06161569A (en) | Temperature control method for cooling/heating enable element | |
JPH07230324A (en) | Temperature controller |