JPH10170884A - Lcd drive source circuit, and lcd-driving integrated circuit device - Google Patents

Lcd drive source circuit, and lcd-driving integrated circuit device

Info

Publication number
JPH10170884A
JPH10170884A JP32936696A JP32936696A JPH10170884A JP H10170884 A JPH10170884 A JP H10170884A JP 32936696 A JP32936696 A JP 32936696A JP 32936696 A JP32936696 A JP 32936696A JP H10170884 A JPH10170884 A JP H10170884A
Authority
JP
Japan
Prior art keywords
power supply
circuit
lcd
liquid crystal
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32936696A
Other languages
Japanese (ja)
Other versions
JP3299678B2 (en
Inventor
Tadashi Sanpei
忠 三瓶
Hiroyuki Kida
博之 木田
Masaru Sugai
賢 菅井
Katsunori Koike
勝則 小池
Masahiko Numata
正彦 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP32936696A priority Critical patent/JP3299678B2/en
Publication of JPH10170884A publication Critical patent/JPH10170884A/en
Application granted granted Critical
Publication of JP3299678B2 publication Critical patent/JP3299678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Display Device Control (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to have optimum current consumption for various liquid crystal panels, by providing a switching element between a source division circuit and a power source and providing a capacitor to the output of the source division circuit. SOLUTION: The switch elements SW2, SW3 are connected to between the source division circuit dividing a source voltage, generating plural potential and outputting them and the power source. By turning these switching elements SW2, SW3 on/off, and opening/closing a path of the current flowing through the source division circuit by the source voltage, the current consumption in the source division circuit is suppressed. Further, in an LCD drive source circuit 1, the capacitors C2, C3 are connected to the output of the source division circuit. These capacitors C2, C3 are charged by the output voltage of the source division circuit when the switching elements SW2, SW3 are turned on, and drive an LCD when turned off. By changing charge/discharge periods of these capacitors C2, C3, various liquid crystal panels are driven by the same circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はLCD駆動電源回路
に関し、液晶パネルを時分割駆動方式で駆動するための
複数の液晶駆動電位を生成するLCD駆動電源回路に適
用して有効な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LCD driving power supply circuit, and more particularly to a technique effective when applied to an LCD driving power supply circuit for generating a plurality of liquid crystal driving potentials for driving a liquid crystal panel by a time division driving method.

【0002】[0002]

【従来の技術】LCD表示装置において、セグメント表
示の多桁表示や、多くの画素を駆動するドットマトリク
ス表示の場合等、多数の表示画素を駆動する時や駆動回
路数の減少,回路と表示セルの接続点の減少の為には、
時分割駆動方式が有効である。時分割駆動方式では液晶
の駆動波形を形成する為に、駆動バイアス数に等しい液
晶駆動電位が必要であり、LCD駆動電源回路により供
給する。液晶駆動電位の生成は、電源電圧を回路素子の
持つインピーダンスにより分割する方法が回路規模の面
で妥当であり、各種素子で実現出来る。抵抗による方法
が抵抗分割方式と呼ばれ一般的であるため以下に説明す
るが、非線形素子の場合でも電圧−電流特性を考慮する
ことで同様に考えることが出来る。
2. Description of the Related Art In an LCD display device, when driving a large number of display pixels or reducing the number of drive circuits, such as in the case of multi-digit display of segment display or dot matrix display for driving many pixels, circuits and display cells In order to reduce the number of connection points,
The time division driving method is effective. In the time-division driving method, a liquid crystal driving potential equal to the number of driving biases is required to form a driving waveform of the liquid crystal, and is supplied by an LCD driving power supply circuit. The method of generating the liquid crystal driving potential is such that a method of dividing the power supply voltage by the impedance of the circuit element is appropriate in terms of the circuit scale, and can be realized by various elements. The method using a resistor is generally referred to as a resistance division method and will be described below. However, a non-linear element can be similarly considered by considering the voltage-current characteristics.

【0003】抵抗分割方式では電源電圧の正極側と負極
側の間に駆動バイアス数に相当する個数の抵抗を直列に
配し、各抵抗の端子電圧を引き出して液晶を駆動する。
前記直列抵抗回路において各抵抗の抵抗値を等しくすれ
ば、電源電圧を等分割した電位を液晶駆動電位として取
り出すことが出来、時分割駆動方式に好適であるため広
く用いられる。
In the resistance division method, a number of resistors corresponding to the number of drive biases are arranged in series between a positive electrode side and a negative electrode side of a power supply voltage, and a terminal voltage of each resistor is extracted to drive a liquid crystal.
If the resistance values of the respective resistors in the series resistance circuit are made equal, a potential obtained by equally dividing the power supply voltage can be taken out as a liquid crystal drive potential, which is suitable for a time-division driving method and is widely used.

【0004】液晶パネルの負荷は表示データにより複雑
に変動する為、時分割駆動方式において液晶パネルの表
示品質を良好に保つには、液晶パネルの負荷の変動に関
わらず液晶駆動電位を安定に供給すること(以下動作マ
ージンと称する)が必要である。そのため電源電圧の分
割抵抗値は動作マージンと消費電力の兼ね合いで決定す
る。前述の様に抵抗分割方式では、電源電圧の正極側か
ら負極側へ分割抵抗で消費される定常電流が流れて消費
電流を増加させる為、分割抵抗値は極力高いことが望ま
しい。一方、液晶は容量性負荷である為、多数の液晶を
駆動する場合には負荷容量が大きくなり、LCD駆動電
源回路の電源容量が小さいと液晶の駆動波形に歪みが生
じ、またLCD駆動電源回路のインピーダンスが高いと
液晶の充放電電流により液晶の駆動波形にノイズが生じ
る為、表示品質が悪化する。よって動作マージン確保の
為には分割抵抗の抵抗値を低くすることが必要である
が、これは消費電流の増大につながる。従って分割抵抗
の抵抗値は動作マージンと消費電力の妥協点で決定する
必要がある。また、各液晶駆動電位についてオペアンプ
を用いたボルテージフォロワ回路を使用すれば、分割抵
抗を大きく設定したまま安定した電位を液晶パネルに供
給することが出来る。しかしボルテージフォロワ回路の
消費電流があるため装置全体の消費電流は増大し、さら
に回路追加により実装面積が増大する。以上の内容は
「日立LCDコントローラ/ドライバLSIデータブック
第8版」の「液晶駆動方式の説明」に詳細な記載があ
る。
Since the load on the liquid crystal panel fluctuates in a complicated manner depending on display data, in order to maintain good display quality of the liquid crystal panel in the time-division driving method, the liquid crystal driving potential is supplied stably regardless of the fluctuation of the load on the liquid crystal panel. (Hereinafter, referred to as an operation margin) is required. Therefore, the division resistance value of the power supply voltage is determined based on a balance between the operation margin and the power consumption. As described above, in the resistance division method, it is desirable that the division resistance value be as high as possible because a steady current consumed by the division resistance flows from the positive electrode side to the negative electrode side of the power supply voltage to increase current consumption. On the other hand, since liquid crystal is a capacitive load, when driving a large number of liquid crystals, the load capacitance becomes large, and when the power supply capacity of the LCD drive power supply circuit is small, the drive waveform of the liquid crystal is distorted, and the LCD drive power supply circuit is distorted. If the impedance of the liquid crystal is high, noise is generated in the driving waveform of the liquid crystal due to the charge / discharge current of the liquid crystal, so that the display quality deteriorates. Therefore, in order to secure an operation margin, it is necessary to lower the resistance value of the split resistor, but this leads to an increase in current consumption. Therefore, it is necessary to determine the resistance value of the split resistor in a compromise between the operation margin and the power consumption. Further, if a voltage follower circuit using an operational amplifier is used for each liquid crystal drive potential, a stable potential can be supplied to the liquid crystal panel while the division resistance is set large. However, since the voltage follower circuit consumes current, the current consumption of the entire device increases, and the mounting area increases due to the additional circuit. The above contents are described in detail in "Explanation of LCD driving method" of "Hitachi LCD Controller / Driver LSI Data Book 8th Edition".

【0005】また、抵抗以外の回路素子により電源電圧
の分割回路を構成した場合でも上記と同様のことが言え
る。
The same can be said for the case where a power supply voltage dividing circuit is constituted by circuit elements other than resistors.

【0006】LCD表示装置において、LCD駆動電源
回路を大規模集積回路装置(LSI)が内蔵する場合に
は、電源電圧を分割する回路素子の実装が省かれるため
実装面・コスト面で有利である。反面、前記回路素子が
固定である故にLCD駆動電源回路の電源容量も固定で
ある為、回路設計において考慮すべき点がある。LCD
駆動電源回路の電源容量が液晶パネルに対して小さい場
合には、何らかの外付け回路が必要になり、例えばオペ
アンプを用いたボルテージフォロワ回路を使用する方法
があるが、消費電流,実装面積の増加につながる。或い
は抵抗分割方式の場合、液晶駆動電位を出力する端子間
に外付け抵抗を追加しLSI内部の分割抵抗との合成イ
ンピーダンスを小さくして、LCD駆動電源回路の電源
容量を強化する。いずれの場合も追加回路が必要であ
り、電源分割素子をLSIに内蔵する利点が生かせな
い。また、LCD駆動電源回路の電源容量が液晶パネル
に対して大きい場合は、液晶の駆動電流に比較して過大
な電流が内部の電源分割素子で消費される。従って、電
源分割素子を内蔵するLSIをLCD表示装置に使用す
る場合、液晶パネルとの組み合わせにより消費電流、実
装面でのデメリットが生じる。
In an LCD display device, when an LCD drive power supply circuit is incorporated in a large-scale integrated circuit (LSI), mounting of circuit elements for dividing the power supply voltage is omitted, which is advantageous in terms of mounting and cost. . On the other hand, since the power supply capacity of the LCD drive power supply circuit is fixed because the circuit element is fixed, there is a point to be considered in circuit design. LCD
If the power supply capacity of the driving power supply circuit is smaller than that of the liquid crystal panel, some external circuit is required. For example, there is a method of using a voltage follower circuit using an operational amplifier. Connect. Alternatively, in the case of the resistance division method, an external resistance is added between the terminals for outputting the liquid crystal driving potential to reduce the combined impedance with the division resistance inside the LSI, thereby enhancing the power supply capacity of the LCD driving power supply circuit. In either case, an additional circuit is required, and the advantage of incorporating the power supply dividing element in the LSI cannot be used. When the power supply capacity of the LCD drive power supply circuit is larger than that of the liquid crystal panel, an excessive current is consumed by the internal power supply dividing element compared to the drive current of the liquid crystal. Therefore, when an LSI incorporating a power supply dividing element is used for an LCD display device, there are disadvantages in terms of current consumption and mounting in combination with a liquid crystal panel.

【0007】[0007]

【発明が解決しようとする課題】前記の様に従来技術で
は、LCD駆動電源回路における電源分割素子の等価イ
ンピーダンスに起因して、低インピーダンスによる動作
マージンの確保、高インピーダンスによる消費電流の抑
制という相反する2つの課題があった。さらに実装面・
コスト面での有効性からLSIに電源分割素子を内蔵す
る場合、多種の液晶パネルについて消費電流を最適に設
計することが困難であるという課題があった。
As described above, in the prior art, the opposing effects of ensuring an operation margin by low impedance and suppressing current consumption by high impedance are caused by the equivalent impedance of the power supply dividing element in the LCD drive power supply circuit. There were two tasks to do. Further mounting surface
When a power supply dividing element is built in an LSI from the viewpoint of cost effectiveness, there is a problem that it is difficult to optimally design current consumption for various types of liquid crystal panels.

【0008】そこで本発明では、動作マージンの確保と
消費電流の抑制を実現し、かつ電源分割素子を内蔵する
LSIが多種の液晶パネルについて最適な消費電流を供
給出来得るLCD駆動電源回路及びLCD駆動用集積回
路装置を実現する。
Therefore, in the present invention, an LCD driving power supply circuit and an LCD driving circuit capable of securing an operation margin and suppressing current consumption, and enabling an LSI having a built-in power dividing element to supply optimum current consumption for various liquid crystal panels. To realize an integrated circuit device.

【0009】[0009]

【課題を解決するための手段】本発明によるLCD駆動
電源回路においては、電源電圧を分割して複数の電位を
生成して出力する電源分割回路と電源との間にスイッチ
ング素子が接続される。このスイッチング素子をオン・
オフして、電源電圧によって電源分割回路へ流れる電流
の経路を開閉することにより、電源分割回路で消費され
る電流を抑制できる。さらに、本発明によるLCD駆動
電源回路においては、電源分割回路の出力にコンデンサ
が接続される。このコンデンサは、スイッチング素子が
オンしているときに電源分割回路の出力電圧によって充
電される。そして、スイッチング素子がオフしていると
きには、充電されたコンデンサを電源としてLCDが駆
動される。また、スイッチング素子のオン・オフを制御
して、コンデンサの充放電期間を変えることにより、同
一回路で多種の液晶パネルの駆動が可能になる。
In an LCD drive power supply circuit according to the present invention, a switching element is connected between a power supply and a power supply division circuit that divides a power supply voltage to generate and output a plurality of potentials. Turn on this switching element
By turning off the power supply voltage to open and close the path of the current flowing to the power supply division circuit, the current consumed by the power supply division circuit can be suppressed. Further, in the LCD drive power supply circuit according to the present invention, a capacitor is connected to the output of the power supply division circuit. This capacitor is charged by the output voltage of the power supply division circuit when the switching element is on. When the switching element is off, the LCD is driven using the charged capacitor as a power supply. Further, by controlling the ON / OFF of the switching element and changing the charge / discharge period of the capacitor, it becomes possible to drive various types of liquid crystal panels with the same circuit.

【0010】本発明によるLCD駆動電源回路の全部ま
たは一部を内蔵することにより、消費電力が少なくかつ
多品種の液晶パネルを駆動できるLCD駆動用集積回路
装置(例えばLCDコントローラ,ドライバまたはマイ
コンなど)が実現される。
An LCD driving integrated circuit device (for example, an LCD controller, a driver or a microcomputer) capable of driving various kinds of liquid crystal panels with low power consumption by incorporating all or a part of the LCD driving power supply circuit according to the present invention. Is realized.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)本発明の1実施例として、3本のコモン端
子と30本のセグメント端子を備え、液晶駆動用電源電
圧を分割する抵抗をLSIに内蔵するLCD表示装置の
ブロック図を図1に示す。同図において、1はLCD駆
動電源回路、2はコモンドライバ、3はセグメントドラ
イバ、4は充放電クロック発生回路、5は充放電時間レ
ジスタ、6はCPU(Central Processing Unit)、7は
ROM(Read Only Memory)、8はLCD制御回路、9
は液晶パネルである。1〜8がLSIの内蔵回路であ
り、外付けの液晶パネル9の表示を行う。Vcc端子に液
晶駆動用電源を接続し、LCD駆動電源回路においてV
ccを分割して液晶駆動電位を生成し、各電位をV1,V
2,V3ラインに出力する。V1,V2,V3の電位は
コモンドライバ,セグメントドライバを経由してコモン
端子COM1〜COM3,セグメント端子SEG1〜S
EG30に出力され、液晶パネルを駆動する。この時に
各端子から出力される液晶の駆動波形は、LCD制御回
路よりコモンドライバ,セグメントドライバに出力され
る制御信号に従う。LCD駆動電源回路における液晶駆
動電位の供給・非供給の制御は、充放電クロック発生回
路から出力する充放電クロック信号CKcにより行う。
CKc は2値論理レベル“High”レベル或いは“L
ow”レベルの電位を持ち、“High”レベルなら液
晶駆動電位の供給、“Low”レベルなら非供給を意味
する。
(Embodiment 1) As an embodiment of the present invention, a block diagram of an LCD display device having three common terminals and 30 segment terminals and incorporating a resistor for dividing a power supply voltage for driving a liquid crystal in an LSI is shown in FIG. Shown in In the figure, 1 is an LCD drive power supply circuit, 2 is a common driver, 3 is a segment driver, 4 is a charge / discharge clock generation circuit, 5 is a charge / discharge time register, 6 is a CPU (Central Processing Unit), and 7 is a ROM (Read). Only Memory), 8 is an LCD control circuit, 9
Denotes a liquid crystal panel. Reference numerals 1 to 8 denote a built-in circuit of the LSI, which performs display on an external liquid crystal panel 9. A power supply for driving the liquid crystal is connected to the Vcc terminal.
The liquid crystal driving potential is generated by dividing cc, and each potential is set to V1, V
2. Output to V3 line. The potentials of V1, V2, and V3 pass through common terminals COM1 to COM3 and segment terminals SEG1 to SEG via a common driver and a segment driver.
Output to the EG 30 to drive the liquid crystal panel. At this time, the driving waveform of the liquid crystal output from each terminal follows the control signals output from the LCD control circuit to the common driver and the segment driver. The supply / non-supply of the liquid crystal drive potential in the LCD drive power supply circuit is controlled by a charge / discharge clock signal CKc output from a charge / discharge clock generation circuit.
CKc is a binary logic level “High” level or “L”.
It has a potential of “low” level, and the “High” level means supply of the liquid crystal driving potential, and the “Low” level means no supply.

【0012】液晶駆動電位の供給・非供給の制御はCK
c 信号の制御に相当し、次の様に行う。CKc の“Hi
gh”レベル期間,“Low”レベル期間の長さに相当
するカウンタ値を充放電レジスタに設定するプログラム
をROMに書き込んでおく。CPUが動作時に前記プロ
グラムを読み込んで実行すると、充放電時間レジスタに
前記カウンタ値が設定される。充放電クロック発生回路
は充放電時間レジスタに設定されているカウンタ値を読
み込んで、CKc 信号を発生する。この時、充放電時間
レジスタはCKc の各レベル期間のカウンタ値を持って
おりCKc 信号と次の関係がある。
The control of supply / non-supply of the liquid crystal drive potential is performed by CK
c This corresponds to signal control, and is performed as follows. "Hi" of CKc
A program for setting the counter values corresponding to the lengths of the "gh" level period and the "Low" level period in the charge / discharge register is written in the ROM. The charge / discharge clock generation circuit reads the counter value set in the charge / discharge time register and generates a CKc signal, and the charge / discharge time register is a counter for each level period of CKc. It has the following relationship with the CKc signal.

【0013】Tc=Cc×Tck Tdc=Cdc×Tck 但し、TcはCKc の“High”レベル期間、Tdcは
CKc の“Low”レベル期間、CcはCKc の“Hi
gh”レベル期間のカウンタ値、Cdcは同じく“Lo
w”レベル期間カウンタ値であり、CcとCdcは充放電
時間レジスタに設定される。また、Tckは基本クロック
の1周期の時間である。充放電クロック発生回路は、C
Kc に“High”レベルを出力してから基本クロック
をCc回計数してCKc を“Low”レベルにし、この
時点から基本クロックをCdc回計数した後、再びCKc
を“High”レベルにする、という以上の動作を繰り
返す。従って液晶駆動電位の供給・非供給の制御は、R
OMに書き込まれるプログラムによりソフトウェア的に
行うことが出来る。
Tc = Cc × Tck Tdc = Cdc × Tck Here, Tc is the “High” level period of CKc, Tdc is the “Low” level period of CKc, and Cc is “Hi” of CKc.
gh ”level period, Cdc is also“ Lo ”
The w "level period counter value, Cc and Cdc are set in the charge / discharge time register. Tck is the time of one cycle of the basic clock.
After outputting the "High" level to Kc, the basic clock is counted Cc times and CKc is set to "Low" level. From this point, the basic clock is counted Cdc times and then CKc again.
Are set to the “High” level. Therefore, the supply / non-supply of the liquid crystal drive potential is controlled by R
This can be performed by software using a program written in the OM.

【0014】図2にLCD駆動電源回路の回路構成を示
す。同図においてR1,R2,R3は分割抵抗であり、
抵抗値をR1=R2=R3として、Vccと回路内部で結
線されているV1と併せてVccを3等分する液晶駆動電
位V1,V2,V3を生成する。MOSトランジスタP
1,CMOSスイッチSW2,SW3は液晶駆動電位の
供給・非供給の制御と同時にVccから回路内部に流入す
る電流ILCD の流入と遮断を制御する。P1,SW2,
SW3はCKc とこれの反転信号に従い動作する。V
2,V3ラインに接続しているコンデンサC2,C3は
液晶駆動電位の非供給時に液晶の駆動を担う作用を持
つ。本回路によればCKc の電位を操作することで、I
LCD の制御とV2,V3ラインへの液晶駆動電位の供給
・非供給を制御することが出来る。
FIG. 2 shows a circuit configuration of the LCD drive power supply circuit. In the figure, R1, R2 and R3 are division resistors,
Assuming that the resistance value is R1 = R2 = R3, the liquid crystal driving potentials V1, V2, and V3 that divide the Vcc into three equals are generated together with the Vcc connected to the inside of the circuit. MOS transistor P
1. The CMOS switches SW2 and SW3 control the supply and non-supply of the liquid crystal drive potential and simultaneously control the inflow and cutoff of the current ILCD flowing from Vcc into the circuit. P1, SW2
SW3 operates according to CKc and its inverted signal. V
Capacitors C2 and C3 connected to lines V2 and V3 have a function of driving the liquid crystal when the liquid crystal driving potential is not supplied. According to this circuit, by controlling the potential of CKc, I
It is possible to control the supply and non-supply of the liquid crystal driving potential to the LCD control and V2, V3 line.

【0015】本例の具体的な動作について図3のタイミ
ングチャートを用い次に述べる。同図は1/3バイア
ス,1/3デューティ,Aタイプ波形の場合であり、C
OM1,COM2,COM3及び任意のセグメント端子
波形SEGnは従来の技術による波形と同一である。前
述の通り、LCD駆動電源回路からの液晶駆動電位の供
給はCKcにより制御することが出来る。ここではCKc
の波形として、1フレームの1/3を充電期間Tc、2
/3を放電期間Tdcとする。期間TcではCKcが“H
igh”レベルにより、図2におけるP1,SW2,S
W3がオン動作する。よってLCD駆動電源回路から液
晶駆動電位V2,V3が供給され、V1と併せてコモン
ドライバ,セグメントドライバを通じて液晶を駆動する
と同時に、コンデンサC2,C3の電位がそれぞれVcc
×2/3,Vcc×1/3になるように電荷の充放電が行
われる。期間TdcではCKc が“Low”レベルにな
り、図2におけるP1,SW2,SW3はオフ動作にな
る。この期間中、V1を除いた液晶駆動電位はVccから
供給されず、随れら液晶駆動電位の供給源はコンデンサ
C2,C3になる。即ち充電期間Tcにおいて各コンデ
ンサに充電された電荷を用い、放電期間Tdc中の液晶を
駆動する。液晶の駆動波形は表示するデータにより複雑
に変化するが、電荷の供給源としてのコンデンサと、液
晶の容量性負荷間での電荷のやり取りである為、V2,
V3の電位は時間の経過につれて平均化へ向かう変動が
生じる。図3においてこれらの変動量の最大値をそれぞ
れVd2,Vd3としている。液晶の表示品質を良好に保つ
為にはVd2,Vd3を極力小さく抑えることが必要であ
り、液晶パネルに対してTc,Tdcを適切に設定するこ
とで実現出来る。期間Tdcの次は再び期間Tcになり、
これら2つの期間を周期的に繰り返して液晶の表示を行
う。
The specific operation of this embodiment will be described below with reference to the timing chart of FIG. The figure shows the case of 1/3 bias, 1/3 duty, and A type waveform.
OM1, COM2, COM3 and any segment terminal waveform SEGn are the same as those of the prior art. As described above, the supply of the liquid crystal drive potential from the LCD drive power supply circuit can be controlled by CKc. Here CKc
波形 of one frame during the charging period Tc, 2
/ 3 is defined as a discharge period Tdc. In the period Tc, CKc becomes “H”.
P1, SW2, S in FIG.
W3 is turned on. Therefore, liquid crystal drive potentials V2 and V3 are supplied from the LCD drive power supply circuit, and the liquid crystal is driven through a common driver and a segment driver together with V1.
The charge / discharge of electric charge is performed so as to be × 2/3, Vcc × 1 /. During the period Tdc, CKc is at the “Low” level, and P1, SW2, and SW3 in FIG. 2 are turned off. During this period, the liquid crystal driving potential except V1 is not supplied from Vcc, and the supply source of the liquid crystal driving potential is the capacitors C2 and C3. That is, the liquid crystal during the discharging period Tdc is driven by using the charge charged in each capacitor during the charging period Tc. The driving waveform of the liquid crystal changes in a complicated manner depending on the data to be displayed. However, since the charge is transferred between a capacitor as a charge supply source and a capacitive load of the liquid crystal, V2,
The potential of V3 fluctuates toward averaging over time. In FIG. 3, the maximum values of these fluctuation amounts are Vd2 and Vd3, respectively. In order to maintain good display quality of the liquid crystal, Vd2 and Vd3 must be kept as small as possible, and this can be achieved by appropriately setting Tc and Tdc for the liquid crystal panel. The period Tdc is followed by the period Tc again,
Liquid crystal display is performed by repeating these two periods periodically.

【0016】次に消費電流について述べる。液晶を駆動
する全ての電流は液晶駆動用電源Vccから供給され、こ
の電流を図2においてILCD として示す。ILCD は液晶
駆動に費やされる電流と、分割抵抗を経由し接地電位に
流入する電流から構成される。ILCD の変化を図3のタ
イミングチャートで追う。期間Tcの初期にはコンデン
サC2,C3の充放電と液晶の駆動が重なるためピーク
電流Ipが流れる。やがて電流値は下がり定常値Isに
近づく。Isの値は定常的に分割抵抗に流れる電流値に
等しく、Is=Vcc/(R1+R2+R3)である。期
間TdcではMOSトランジスタP1がオフ動作になる
為、V1ラインを経由して液晶の駆動に費やされる電流
のみとなる。以上から明らかなように、本例ではLCD
駆動電源回路内で定常的に消費される電流を削減してお
り、LCD表示装置における消費電流低減に有効であ
る。
Next, the current consumption will be described. All the currents for driving the liquid crystal are supplied from a liquid crystal driving power supply Vcc, and this current is shown as I LCD in FIG. The I LCD is composed of a current consumed for driving the liquid crystal and a current flowing to the ground potential via the dividing resistor. The change of I LCD is followed by the timing chart of FIG. At the beginning of the period Tc, the charging and discharging of the capacitors C2 and C3 and the driving of the liquid crystal overlap, so that the peak current Ip flows. Eventually, the current value decreases and approaches the steady value Is. The value of Is is constantly equal to the value of the current flowing through the divided resistor, and Is = Vcc / (R1 + R2 + R3). In the period Tdc, since the MOS transistor P1 is turned off, only the current consumed for driving the liquid crystal via the V1 line is obtained. As is apparent from the above, in this example, the LCD
The current that is constantly consumed in the drive power supply circuit is reduced, which is effective for reducing the current consumption in the LCD display device.

【0017】分割抵抗をLSIに内蔵している場合、従
来の技術では多種の液晶パネルについて最適な電流を供
給することが困難であったが、本例によればこの課題を
解決することが出来る。前述のように充放電期間Tc,
TdcによりLCD駆動電源回路の電源容量を調整出来る
ので、内蔵する分割抵抗の抵抗値を低く設定出来る。こ
のままであればLCD駆動電源回路の電源容量は大きい
ため大きな液晶パネルを駆動出来、小さな液晶パネルを
駆動する時には充電期間Tcを短く設定し、放電期間T
dcを長く設定することでLCD駆動電源回路の電源容量
を小さくする。このようにして、多種の液晶パネルを最
適な電流値で駆動することが可能である。
In the case where a dividing resistor is built in an LSI, it is difficult to supply an optimum current to various types of liquid crystal panels by the conventional technique. However, according to the present embodiment, this problem can be solved. . As described above, the charge / discharge period Tc,
Since the power supply capacity of the LCD drive power supply circuit can be adjusted by Tdc, the resistance value of the built-in divided resistor can be set low. In this case, the power supply capacity of the LCD drive power supply circuit is large, so that a large liquid crystal panel can be driven. When driving a small liquid crystal panel, the charging period Tc is set short, and the discharging period Tc is set.
By setting dc to be long, the power supply capacity of the LCD drive power supply circuit is reduced. In this way, it is possible to drive various types of liquid crystal panels with optimal current values.

【0018】以上述べたように、本例によればLCD駆
動電源回路において動作マージンの確保と消費電流の抑
制を可能とし、かつ電源分割素子を内蔵するLSIが多
種の液晶パネルを最適な電流値で駆動することが可能で
ある。
As described above, according to this embodiment, it is possible to secure the operation margin and suppress the current consumption in the LCD drive power supply circuit, and the LSI incorporating the power supply dividing element can optimize various types of liquid crystal panels with optimum current values. Can be driven.

【0019】(実施例2)実施例1のLCD表示装置に
おいて、大形或いは多数の液晶を駆動する場合、LCD
駆動電源回路に内蔵しているコンデンサの容量値を大き
くする必要がある。つまり、液晶の容量性負荷の増大に
より、液晶駆動電源からの液晶駆動電位非供給時に、コ
ンデンサが担う電荷量が増大するからである。しかしコ
ンデンサの容量値を大きくすることはLSIの回路面積
を増大させ好ましくない。解決策としてコンデンサを外
付けにする方法があり、外付け部品となるため液晶パネ
ルに合わせて適切な容量値を選択することが出来る。
(Embodiment 2) In the LCD display device of Embodiment 1, when driving a large or a large number of liquid crystals,
It is necessary to increase the capacitance value of the capacitor built in the drive power supply circuit. That is, the increase in the capacitive load of the liquid crystal increases the amount of charge carried by the capacitor when the liquid crystal driving power is not supplied from the liquid crystal driving power supply. However, increasing the capacitance value of the capacitor increases the circuit area of the LSI, which is not preferable. As a solution, there is a method of externally attaching a capacitor, and since it is an external component, an appropriate capacitance value can be selected according to the liquid crystal panel.

【0020】本発明は実施例1で示したLCD表示装置
において、コンデンサの外付けを可能とするもので、実
施例を図4に示す。同図の10は実施例1のブロック図
(図1)におけるLCD駆動電源回路1に相当し、その
他の構成は実施例1と同一である。図4に示す様に、コ
ンデンサC2,C3は液晶駆動電位を出力する端子V
2,V3に外付けされる。回路の動作は実施例1と同一
であるので、充放電期間の設定と併せ、外付けコンデン
サの容量値を適切に設定することで消費電流を最適に設
定出来る。
The present invention enables the external connection of a capacitor in the LCD display device shown in the first embodiment. An embodiment is shown in FIG. 10 in the figure corresponds to the LCD drive power supply circuit 1 in the block diagram of the first embodiment (FIG. 1), and the other configuration is the same as that of the first embodiment. As shown in FIG. 4, capacitors C2 and C3 are terminals V for outputting a liquid crystal driving potential.
2, externally connected to V3. Since the operation of the circuit is the same as that of the first embodiment, the current consumption can be optimally set by appropriately setting the capacitance value of the external capacitor in addition to the setting of the charge / discharge period.

【0021】また、図2の様にコンデンサを内蔵してい
るLCD駆動電源回路においても、本例の如く外付けコ
ンデンサ用の端子を設けてコンデンサを付加すること
で、内蔵コンデンサとの合成容量により、本例と同様の
効果を得ることが出来る。
Also, in the LCD drive power supply circuit having a built-in capacitor as shown in FIG. 2, by providing a terminal for an external capacitor and adding a capacitor as in this example, the combined capacitance with the built-in capacitor can be obtained. Thus, the same effect as in the present embodiment can be obtained.

【0022】以上述べたように、本例によればLCD駆
動電源回路のコンデンサの容量値を任意に設定出来、多
種の液晶パネルを最適な電流値で駆動することが可能で
ある。
As described above, according to the present embodiment, the capacitance value of the capacitor of the LCD drive power supply circuit can be set arbitrarily, and it is possible to drive various types of liquid crystal panels with optimal current values.

【0023】(実施例3)実施例2で述べた様に、大形
或いは多数の液晶を駆動する為にはコンデンサの容量値
を大きくする必要があるが、それに伴いコンデンサの占
める部品面積が大きくなる為、実装面から好ましくな
い。また、充電期間Tcを長く設定する必要が生じ、T
c期間中に定常的に消費される電流が増え、消費電流の
面でも問題がある。従ってコンデンサの容量値にはある
限度が存在し、無制限には大きく出来ない。この条件の
下で多数の液晶を駆動するには、頻繁にコンデンサの充
電期間Tcを設けて液晶駆動電位を維持しなければいけ
ない。しかも消費電流の面から充電期間Tcを短いこと
が要求されるので、短時間で大きな容量のコンデンサを
充放電する必要が生じる。即ち、LCD駆動電源回路の
電源容量の強化が必要である。本発明は実施例2に示す
LCD駆動電源回路において、外付け回路を用い電源容
量を強化するものである。
Embodiment 3 As described in Embodiment 2, in order to drive a large or a large number of liquid crystals, it is necessary to increase the capacitance value of the capacitor. Therefore, it is not preferable from the viewpoint of mounting. In addition, it is necessary to set the charging period Tc to be long.
The current consumed constantly during the period c increases, and there is a problem in the current consumption. Therefore, the capacitance value of the capacitor has a certain limit and cannot be increased without limit. In order to drive a large number of liquid crystals under this condition, the liquid crystal driving potential must be maintained by frequently providing a capacitor charging period Tc. Moreover, since the charging period Tc is required to be short in terms of current consumption, it is necessary to charge and discharge a large-capacity capacitor in a short time. That is, it is necessary to increase the power supply capacity of the LCD drive power supply circuit. In the LCD driving power supply circuit according to the second embodiment, the power supply capacity is enhanced by using an external circuit.

【0024】実施例を図5に示す。同図の11は実施例
1のブロック図(図1)におけるLCD駆動電源回路1
に相当し、その他の構成は実施例1と同一である。図5
においてコンデンサC2,C3は外付けとしているが、
実施例2で述べた様に内蔵のみ、或いは内蔵と外付けの
合成容量でも構成することが出来る。同図の如く端子V
R1,VR2,VR3を設け、外付けの分割抵抗R11,
R12,R13を接続する。この時R11,R12,R13はその
抵抗値を各々内蔵分割抵抗のR1,R2,R3よりも低
くすることで合成インピーダンスを下げる作用を持ち、
LCD駆動電源回路の電源容量を大きく出来る。回路の
動作は実施例1及び実施例2と同一であるので、充放電
期間の設定とコンデンサ容量値の設定と併せ、LCD駆
動電源回路の電源容量を強化する外付け回路を設けたこ
とで、多数の液晶を駆動する場合においても消費電流を
最適に設定出来る。
An embodiment is shown in FIG. 11, reference numeral 11 denotes an LCD drive power supply circuit 1 in the block diagram of the first embodiment (FIG. 1).
The other configuration is the same as that of the first embodiment. FIG.
, The capacitors C2 and C3 are externally attached,
As described in the second embodiment, it is also possible to configure with a built-in only or a combined built-in and external capacitor. As shown in FIG.
R1, VR2, and VR3 are provided, and an external dividing resistor R11,
R12 and R13 are connected. At this time, R11, R12, and R13 have the action of lowering the combined impedance by making their resistance values lower than the built-in split resistors R1, R2, and R3, respectively.
The power supply capacity of the LCD drive power supply circuit can be increased. Since the operation of the circuit is the same as that of the first and second embodiments, an external circuit for strengthening the power supply capacity of the LCD drive power supply circuit is provided in addition to the setting of the charging / discharging period and the setting of the capacitor value. Even when driving a large number of liquid crystals, the current consumption can be set optimally.

【0025】また、本例のLCD駆動電源回路において
内蔵の分割抵抗を削除した回路構成とすれば、外付け抵
抗により分割抵抗値を任意に設定することが可能になる
と共に、LSIの回路面積を縮小出来る。
In addition, if the LCD drive power supply circuit of the present embodiment has a circuit configuration in which the built-in divided resistance is eliminated, the divided resistance value can be set arbitrarily by an external resistor, and the circuit area of the LSI can be reduced. Can be reduced.

【0026】以上述べたように、本例によればLCD駆
動電源回路の電源容量を外付け回路により調整出来、多
種の液晶パネルを最適な電流値で駆動することが可能で
ある。(実施例4)実施例1〜3において、液晶駆動用
電源電圧を分割する素子として抵抗を用いたが、他の回
路素子でも実現することが出来、特にスイッチング特性
を持つ素子の場合は回路構成が簡略化出来る。電源分割
素子としてMOSトランジスタを用いた回路を図6に示
す。同図の12は実施例1のブロック図(図1)におけ
るLCD駆動電源回路1に相当し、その他の構成は実施
例1と同一である。図6においてP11,P12とN12,N
13はそれぞれ、CKc が“High”レベル時にオン動
作になり、各MOSトランジスタがオン動作時に持つ抵
抗値によってVcc電圧を分割し液晶駆動電位を生成し
て、コンデンサC2,C3の充放電と液晶の駆動を行
う。また、CKc が“Low”レベルになるとオフ動作
になり、VccからのV1を除く電位供給を停止する。以
上の動作は実施例1〜3のLCD駆動電源回路と同一で
あり、LCD表示装置全体としても全く同様に動作す
る。一方、MOSトランジスタが電源電圧を分割する役
割とVccからの電位の供給・非供給の制御を兼ねている
ので、回路を構成する素子数が低減されている。
As described above, according to this embodiment, the power supply capacity of the LCD drive power supply circuit can be adjusted by an external circuit, and it is possible to drive various types of liquid crystal panels with optimal current values. (Embodiment 4) In the first to third embodiments, a resistor is used as an element for dividing a power supply voltage for driving a liquid crystal. However, other circuit elements can be used. Can be simplified. FIG. 6 shows a circuit using a MOS transistor as a power supply dividing element. 12 corresponds to the LCD drive power supply circuit 1 in the block diagram of the first embodiment (FIG. 1), and the other configuration is the same as that of the first embodiment. In FIG. 6, P11, P12 and N12, N
13 turn on when CKc is at "High" level, divide the Vcc voltage by the resistance value of each MOS transistor at the time of on operation, generate a liquid crystal driving potential, charge and discharge capacitors C2 and C3, and charge and discharge the liquid crystal. Drive. When CKc goes to a "Low" level, the operation is turned off, and the supply of potential except V1 from Vcc is stopped. The above operation is the same as that of the LCD drive power supply circuits of the first to third embodiments, and the entire LCD display device operates in exactly the same manner. On the other hand, since the MOS transistor has a role of dividing the power supply voltage and also controls the supply / non-supply of the potential from Vcc, the number of elements constituting the circuit is reduced.

【0027】以上述べたように、本例によれば液晶駆動
用電源電圧を分割する素子としてスイッチング特性を持
つ素子を用い、LCD駆動電源回路の回路構成を簡略化
し、LSIの回路面付を縮小出来る。
As described above, according to this embodiment, an element having a switching characteristic is used as an element for dividing the power supply voltage for driving the liquid crystal, thereby simplifying the circuit configuration of the LCD drive power supply circuit and reducing the circuit area of the LSI. I can do it.

【0028】[0028]

【発明の効果】本願によって開示される発明によって得
られる効果を簡単に説明すれば下記の通りである。LC
D表示装置において、液晶駆動電位の生成をソフトウェ
アで制御することにより、動作マージン確保と消費電流
の抑制を可能とし、多種の液晶パネルにわたり最適な電
流値で駆動することを可能とする。
The effects obtained by the invention disclosed by the present application will be briefly described as follows. LC
In the D display device, by controlling the generation of the liquid crystal drive potential by software, it is possible to secure an operation margin and suppress current consumption, and to drive the liquid crystal panel with an optimal current value over various types of liquid crystal panels.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例の構成を示し、LCD表示装
置のブロック図を示す。
FIG. 1 shows a configuration of an embodiment of the present invention, and is a block diagram of an LCD display device.

【図2】本発明の1実施例を示し、LCD駆動電源回路
の構成例を示す。
FIG. 2 shows an embodiment of the present invention and shows a configuration example of an LCD drive power supply circuit.

【図3】本発明の1実施例のLCD駆動電源回路の動作
を説明する、各端子の電位の変化を示す。
FIG. 3 shows changes in the potential of each terminal for explaining the operation of the LCD drive power supply circuit according to one embodiment of the present invention.

【図4】本発明の第2の実施例を示し、LCD駆動電源
回路の構成例を示す。
FIG. 4 shows a second embodiment of the present invention and shows a configuration example of an LCD drive power supply circuit.

【図5】本発明の第3の実施例を示し、LCD駆動電源
回路の構成例を示す。
FIG. 5 shows a third embodiment of the present invention and shows a configuration example of an LCD drive power supply circuit.

【図6】本発明の第4の実施例を示し、LCD駆動電源
回路の構成例を示す。
FIG. 6 shows a fourth embodiment of the present invention, and shows a configuration example of an LCD drive power supply circuit.

【符号の説明】[Explanation of symbols]

1,10〜12…LCD駆動電源回路、2…コモンドラ
イバ、3…セグメントドライバ、4…充放電クロック発
生回路、5…充放電時間レジスタ、6…CPU(Centra
l Processing Unit)、7…ROM(Read Only Memor
y)、8…LCD制御回路、9…液晶パネル。
1, 10 to 12 LCD drive power supply circuit, 2 common driver, 3 segment driver, 4 charge / discharge clock generation circuit, 5 charge / discharge time register, 6 CPU (Centra)
l Processing Unit, 7… ROM (Read Only Memor)
y), 8: LCD control circuit, 9: Liquid crystal panel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木田 博之 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 菅井 賢 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 小池 勝則 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 沼田 正彦 茨城県日立市弁天町三丁目10番2号 日立 原町電子工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Kida 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (72) Inventor Ken Sugai 3-1-1, Sachimachi, Hitachi-shi, Ibaraki No. 1 Inside Hitachi, Ltd. Hitachi Plant (72) Inventor Katsunori Koike 3-2-1 Komachi, Hitachi City, Ibaraki Prefecture Inside Hitachi Engineering Co., Ltd. (72) Inventor Masahiko Numata Bentencho, Hitachi City, Ibaraki Prefecture 3-10-2 Hitachi Haramachi Electronics Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】電源電圧を分割して複数の電位を生成して
出力する電源分割回路と、 前記電源分割回路と電源との間に接続されるスイッチン
グ素子と、 前記電源分割回路の出力に接続されるコンデンサと、を
有することを特徴とするLCD駆動電源回路。
A power supply dividing circuit for dividing a power supply voltage to generate and output a plurality of potentials; a switching element connected between the power supply dividing circuit and a power supply; And a capacitor to be driven.
【請求項2】請求項1において、前記電源分割回路が抵
抗によって電源電圧を分割することを特徴とするLCD
駆動電源回路。
2. The LCD according to claim 1, wherein said power supply dividing circuit divides a power supply voltage by a resistor.
Drive power supply circuit.
【請求項3】請求項2において、前記電源分割回路によ
り生成される複数の電位がスイッチ手段を介して出力さ
れることを特徴とするLCD駆動電源回路。
3. The LCD drive power supply circuit according to claim 2, wherein a plurality of potentials generated by said power supply division circuit are output via switch means.
【請求項4】請求項1において、前記電源分割回路がM
OSトランジスタによって電源電圧を分割することを特
徴とするLCD駆動電源回路。
4. The power supply dividing circuit according to claim 1,
An LCD drive power supply circuit, wherein a power supply voltage is divided by an OS transistor.
【請求項5】少なくとも、電源電圧を分割して複数の電
位を生成して出力する電源分割回路と、前記電源分割回
路と電源との間に接続されるスイッチング素子と、を内
蔵し、 前記電源分割回路の出力にはコンデンサが接続されるこ
とを特徴とするLCD駆動用集積回路装置。
5. A power supply dividing circuit for generating a plurality of potentials by dividing a power supply voltage and outputting the plurality of potentials, and a switching element connected between the power supply dividing circuit and a power supply. An integrated circuit device for driving an LCD, wherein a capacitor is connected to an output of the dividing circuit.
【請求項6】請求項5において、前記コンデンサが外付
けで接続されることを特徴とするLCD駆動用集積回路
装置。
6. The LCD driving integrated circuit device according to claim 5, wherein said capacitor is externally connected.
【請求項7】請求項5において、前記電源分割回路が抵
抗によって電源電圧を分割し、該抵抗に他の抵抗が外付
けで接続されることを特徴とするLCD駆動用集積回路
装置。
7. The LCD driving integrated circuit device according to claim 5, wherein said power supply dividing circuit divides a power supply voltage by a resistor, and another resistor is externally connected to said resistor.
JP32936696A 1996-12-10 1996-12-10 LCD drive power supply circuit and LCD display device Expired - Lifetime JP3299678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32936696A JP3299678B2 (en) 1996-12-10 1996-12-10 LCD drive power supply circuit and LCD display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32936696A JP3299678B2 (en) 1996-12-10 1996-12-10 LCD drive power supply circuit and LCD display device

Publications (2)

Publication Number Publication Date
JPH10170884A true JPH10170884A (en) 1998-06-26
JP3299678B2 JP3299678B2 (en) 2002-07-08

Family

ID=18220660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32936696A Expired - Lifetime JP3299678B2 (en) 1996-12-10 1996-12-10 LCD drive power supply circuit and LCD display device

Country Status (1)

Country Link
JP (1) JP3299678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102191A (en) * 2008-10-24 2010-05-06 Sanyo Electric Co Ltd Liquid crystal drive circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102191A (en) * 2008-10-24 2010-05-06 Sanyo Electric Co Ltd Liquid crystal drive circuit

Also Published As

Publication number Publication date
JP3299678B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
US5929847A (en) Voltage generating circuit, and common electrode drive circuit, signal line drive circuit and gray-scale voltage generating circuit for display devices
EP0723695B1 (en) Power-saving circuit and method for driving liquid crystal display
US6300928B1 (en) Scanning circuit for driving liquid crystal display
JP3234043B2 (en) Power supply circuit for driving LCD
JP2002366115A (en) Liquid crystal driving device
US6005541A (en) Liquid crystal display discharge circuit
JPH10511480A (en) Microcontroller with internal clock for liquid crystal display
US6084580A (en) Voltage generating circuit and liquid crystal display device incorporating the voltage generating circuit
US6281890B1 (en) Liquid crystal drive circuit and liquid crystal display system
JPH1031200A (en) Divided voltage generator for liquid crystal driving
JP3299678B2 (en) LCD drive power supply circuit and LCD display device
US6897716B2 (en) Voltage generating apparatus including rapid amplifier and slow amplifier
US6697060B1 (en) Liquid-crystal display, electronic device, and power supply circuit for driving liquid-crystal display
JP3108293B2 (en) LCD drive circuit
JPH06235902A (en) Gradation voltage generating device and signal line driving circuit for display device
JPH07325556A (en) Gradation voltage generation circuit for liquid crystal display device
JPH0943566A (en) Driving circuit for liquid crystal display
JP3272931B2 (en) LCD drive circuit
JP3431014B2 (en) Power supply device, liquid crystal display device, and power supply method
JP2909357B2 (en) Power circuit
JPH09325318A (en) Liquid crystal display device
JP3547677B2 (en) Voltage supply circuit and liquid crystal drive power supply circuit
JPH1152916A (en) Driving power source circuit for liquid crystal display device
JPH07134573A (en) Display driving device
JPH05232447A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term