JPH10170620A - Magnetism inspection method and its device - Google Patents

Magnetism inspection method and its device

Info

Publication number
JPH10170620A
JPH10170620A JP34041296A JP34041296A JPH10170620A JP H10170620 A JPH10170620 A JP H10170620A JP 34041296 A JP34041296 A JP 34041296A JP 34041296 A JP34041296 A JP 34041296A JP H10170620 A JPH10170620 A JP H10170620A
Authority
JP
Japan
Prior art keywords
magnetic
pole
magnetic flux
inspection object
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34041296A
Other languages
Japanese (ja)
Inventor
Kazuo Haruhara
一雄 春原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANETETSUKU KK
KANETSU KOGYO
Original Assignee
KANETETSUKU KK
KANETSU KOGYO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANETETSUKU KK, KANETSU KOGYO filed Critical KANETETSUKU KK
Priority to JP34041296A priority Critical patent/JPH10170620A/en
Publication of JPH10170620A publication Critical patent/JPH10170620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily inspect a changing degree to a magnetic condition from a nonmagnetic condition by arranging a magnet means at an interval from an inspection object, and detecting a part of a magnetic flux of not passing through the inspection object among a magnetic flux reaching an S pole from an N pole. SOLUTION: When an inspection device 10 is arranged so that a contact surface 32 of a spacer 14 comes into contact with an outside surface of an inspection object 30, in the case where the inspection object 30 is a nonmagnetic material, a magnetic flux of a permanent magnet 20 passes through passages 40 and 42. A part of a magnetic flux 40 reaching an S pole 28 from an N pole 26 to constitute the same magnetic circuit on the inspection object 30 side, passes through a Hall element 34 of a magnetic detector 16. A part of the magnetic flux 40 is detected by the magnetic detector 16, and density of the magnetic flux passing through the Hall element 34 is found on the basis of an output signal of the magnetic detector 16, and is visibly displayed. Since this magnetic flux density changes by depending on a change (a change to a magnetic condition from a nonmagnetic condition) in magnetic permeability of the inspection object 30, magnetic permeability of the inspection object 30 and a changing degree to a magnetic condition from a nonmagnetic condition, can be detected from the obtained magnetic flux density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料のような
被検査体の磁性を検査する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for inspecting the magnetism of a test object such as a metal material.

【0002】[0002]

【従来の技術】オーステナイト組織を有するステンレス
鋼のような金属材料は、いわゆる非磁性であり、その透
磁率が非常に小さいから、磁石に吸着されない。
2. Description of the Related Art Metal materials such as stainless steel having an austenitic structure are so-called non-magnetic and have a very low magnetic permeability, so that they are not attracted to magnets.

【0003】しかし、オーステナイト組織は、温度、応
力または歪みの影響を受けて、その一部がマルテンサイ
ト組織に変態する性質を有する。マルテンサイト組織は
強磁性を呈するから、そのような変態が金属材料に起こ
ると、その金属材料の透磁率は大きくなり、その金属材
料は磁石に吸着されるようになる。
[0003] However, the austenite structure has the property of being partially transformed into a martensite structure under the influence of temperature, stress or strain. Since the martensite structure exhibits ferromagnetism, when such a transformation occurs in a metal material, the permeability of the metal material increases, and the metal material becomes attracted to the magnet.

【0004】また、ニッケル、クロム、タングステン等
を主成分とする合金で、熱処理設備の配管等に使用され
る材料においても、当初は非磁性であるが、劣化ととも
に、磁性を帯びるものも知られている。
[0004] In addition, alloys containing nickel, chromium, tungsten, or the like as a main component and used for piping of heat treatment equipment and the like are initially non-magnetic, but are also known to become magnetic with deterioration. ing.

【0005】上記のように、非磁性から磁性へと変化す
る材料において、その変化が材料の疲労や劣化を意味す
る場合もあるので、この変化の程度を簡単に検査するこ
とが重要である。
As described above, in a material that changes from non-magnetic to magnetic, the change may mean fatigue or deterioration of the material. Therefore, it is important to easily inspect the degree of the change.

【0006】[0006]

【解決しようとする課題】本発明の目的は、非磁性から
磁性への変化の程度を容易に検査可能にすることにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to easily inspect the degree of change from non-magnetic to magnetic.

【0007】[0007]

【解決手段、作用、効果】本発明の磁性検査方法は、N
極およびS極を有する磁石手段を被検査体から間隔をお
いて配置し、前記N極から前記S極に至る磁束のうち、
被検査体を通過しない磁束の一部が通過する位置に磁気
検出素子を配置し、前記磁束の一部を前記磁気検出素子
で検出することを含む。
A magnetic inspection method according to the present invention comprises:
A magnet means having a pole and an S pole is arranged at a distance from the test object, and of the magnetic flux from the N pole to the S pole,
The method includes arranging a magnetic detection element at a position where a part of a magnetic flux that does not pass through the test object passes, and detecting a part of the magnetic flux with the magnetic detection element.

【0008】本発明の磁性検査装置は、N極およびS極
を有する磁石手段と、該磁石手段の前記N極およびS極
と被検査体との間の距離を規定する非磁性のスペーサ
と、前記N極から前記S極に至る磁束のうち、被検査体
を通過しない磁束の一部が通過する位置に配置された磁
気検出素子と、該磁気検出素子の出力信号を処理する処
理手段とを含む。
According to the magnetic inspection apparatus of the present invention, there are provided magnet means having an N pole and an S pole, a nonmagnetic spacer for defining a distance between the N pole and the S pole of the magnet means and an object to be inspected, A magnetic detecting element disposed at a position where a part of a magnetic flux that does not pass through the test object among the magnetic fluxes from the N pole to the S pole passes, and processing means for processing an output signal of the magnetic detecting element. Including.

【0009】磁石手段のN極からの磁束は、N極からス
ペーサを経て被検査体および磁気検出素子を通過し、さ
らにスペーサを経て磁石手段のS極に至る。被検査体の
透磁率が大きいほど、そのような経路を得る磁束の量は
多いが、被検査体を通過しない磁束の量は少なく、した
がって磁気検出素子を経る磁束の量も少ない。磁気検出
素子を経る磁束の量は、ステンレス鋼のような被検査体
の透磁率の変化と逆に変化する。
The magnetic flux from the N pole of the magnet means passes from the N pole via the spacer, the inspection object and the magnetic detection element, and further reaches the S pole of the magnet means via the spacer. The higher the magnetic permeability of the device under test, the greater the amount of magnetic flux that obtains such a path, but the smaller the amount of magnetic flux that does not pass through the device under test, and therefore the smaller the amount of magnetic flux that passes through the magnetic sensing element. The amount of magnetic flux passing through the magnetic sensing element changes inversely with the change in the magnetic permeability of the test object such as stainless steel.

【0010】磁気検出素子は、被検査体を通過しない磁
束の一部を磁束量または磁束密度として検出する。検出
される磁束の量または密度は、磁気検出素子を経る磁束
に比例し、被検査体の透磁率が大きくなるほど小さくな
る。したがって、検出される磁束量または磁束密度は、
被検査体の透磁率および非磁性から磁性への変化の程度
が大きいほど、小さい。それゆえに、被検査体の透磁率
および非磁性から磁性への変化の程度は、検出した磁束
量または磁束密度から知ることができる。
The magnetic detecting element detects a part of the magnetic flux that does not pass through the test object as a magnetic flux amount or a magnetic flux density. The amount or density of the detected magnetic flux is proportional to the magnetic flux passing through the magnetic detection element, and decreases as the magnetic permeability of the test object increases. Therefore, the detected magnetic flux amount or magnetic flux density is
The smaller the permeability of the test object and the degree of change from non-magnetic to magnetic, the smaller. Therefore, the magnetic permeability of the test object and the degree of change from non-magnetic to magnetic can be known from the detected magnetic flux amount or magnetic flux density.

【0011】本発明によれば、磁石手段を被検査体から
間隔をおいて配置し、磁石手段のN極からS極に至る磁
束のうち、被検査体を通過しない磁束の一部を磁気検出
素子により検出するようにしたから、磁気検出素子の出
力信号が被検査体の透磁率の変化に依存して変化し、そ
の結果ステンレス鋼のように非磁性から磁性に変化する
材料の磁性の程度を磁気検出素子の出力信号を基に容易
に検査することができる。
According to the present invention, the magnet means is arranged at a distance from the object to be inspected, and a part of the magnetic flux from the N pole to the S pole of the magnet means which does not pass through the object to be inspected is magnetically detected. Since the detection is performed by the element, the output signal of the magnetic detection element changes depending on the change in the magnetic permeability of the test object, and as a result, the degree of magnetism of a material such as stainless steel, which changes from non-magnetic to magnetic. Can be easily inspected based on the output signal of the magnetic detection element.

【0012】前記検出素子を前記スペーサ中に配置する
ことができる。このようにすれば、磁石手段のN極およ
びS極に対する検出素子の位置が一定になり、検査が正
確になる。
[0012] The detecting element may be arranged in the spacer. By doing so, the position of the detecting element with respect to the N pole and the S pole of the magnet means becomes constant, and the inspection becomes accurate.

【0013】前記スペーサは、被検査体に当接される当
接面を有ることができる。このようにすれば、磁石手段
のN極およびS極と非検査体との間の間隔が一定になる
から、正しい検査をすることができる。
[0013] The spacer may have an abutting surface that abuts on the test object. With this configuration, the intervals between the N and S poles of the magnet unit and the non-inspection body are constant, so that correct inspection can be performed.

【0014】好ましい実施例においては、永久磁石のN
極およびS極は被検査体に向けられており、スペーサの
当接面は被検査体の外側面の形状に適合する形状とされ
ている。
In a preferred embodiment, the permanent magnet N
The pole and the south pole are directed toward the test object, and the contact surface of the spacer is shaped to conform to the shape of the outer surface of the test object.

【0015】[0015]

【発明の実施の形態】図1および図2を参照するに、検
査装置10は、N極およびS極を有する磁石手段12
と、該磁石手段に組み付けられた非磁性のスペーサ14
と、磁石手段12からの磁束の一部を検出する磁気検出
器16と、該磁気検出器の出力信号を処理する信号処理
器18とを含む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1 and 2, an inspection apparatus 10 includes a magnet means 12 having an N pole and an S pole.
And a non-magnetic spacer 14 mounted on the magnet means.
And a magnetic detector 16 for detecting a part of the magnetic flux from the magnet means 12, and a signal processor 18 for processing an output signal of the magnetic detector.

【0016】磁石手段12は、厚さ方向に磁化された板
状の一対の永久磁石20を両永久磁石20が同一の磁気
回路を形成するように板状の支持部材22に間隔をおい
て組み付けている。両永久磁石20は、磁化方向が反対
となりかつ一方の異磁極面が支持部材22の一方の面に
接触した状態に接着剤等により支持部材22に組み付け
られている。両永久磁石20の他方の異磁極面26およ
び28は、それぞれ、磁石手段12のN極およびS極と
して作用する。支持部材22は、図示の例では非磁性材
料製であるが、磁性材料製であってもよい。また、支持
部材14を設けなくてもよい。
The magnet means 12 assembles a pair of plate-shaped permanent magnets 20 magnetized in the thickness direction on a plate-shaped support member 22 at intervals so that the two permanent magnets 20 form the same magnetic circuit. ing. The two permanent magnets 20 are assembled to the support member 22 with an adhesive or the like in a state where the magnetization directions are opposite and one different magnetic pole surface is in contact with one surface of the support member 22. The other different magnetic pole faces 26 and 28 of the two permanent magnets 20 act as the north and south poles of the magnet means 12, respectively. The support member 22 is made of a non-magnetic material in the illustrated example, but may be made of a magnetic material. Further, the support member 14 may not be provided.

【0017】スペーサ14は、非磁性材料で板状に製作
されており、また厚さ方向の一方の面を磁石手段12の
N極26およびS極28に当接した状態に磁石手段12
に接着剤等により組み付けられている。スペーサ14の
他方の面は、検体すなわち被検査体30に当接される当
接面32とされている。スペーサ14の厚さ寸法は、被
検査体30の透磁率の変化に対して検出する磁束密度の
変化が最大になるように決定されている。
The spacer 14 is made of a non-magnetic material in the shape of a plate. The spacer 14 is formed such that one surface in the thickness direction is in contact with the N-pole 26 and the S-pole 28 of the magnet 12.
Is assembled with an adhesive or the like. The other surface of the spacer 14 is a contact surface 32 that is in contact with the specimen, that is, the test object 30. The thickness dimension of the spacer 14 is determined such that the change in the magnetic flux density detected with respect to the change in the magnetic permeability of the test object 30 is maximized.

【0018】当接面32は、図示の例では、被検査体3
0の当接部が平坦であるから、平面であるが、被検査体
の当接部、特に外側面の形状に応じた形状、たとえば、
弧状、Z字状、V字状またはコ字状等の凹面または凸面
としてもよい。図3に示す例では、スペーサ14の当接
面32は、被検査体30の当接部の曲率半径とほぼ同じ
曲率半径を有する弧状の凹面である。
In the illustrated example, the contact surface 32 is
Since the abutment portion 0 is flat, the abutment portion is flat, but has a shape corresponding to the shape of the abutment portion of the test object, particularly the outer surface, for example,
A concave or convex surface such as an arc, a Z, a V, or a U may be used. In the example shown in FIG. 3, the contact surface 32 of the spacer 14 is an arc-shaped concave surface having a radius of curvature substantially equal to the radius of curvature of the contact portion of the device under test 30.

【0019】磁気検出器16は、磁束密度検出素子とし
てのホール素子34を細長い検査ヘッド36の先端部に
配置している。磁気検出器16は、磁石手段12のN極
26からS極28に至る磁束のうち、被検査体30を通
過しない磁束がホール素子34をほぼ直角に通過するよ
うに、磁石手段12およびスペーサ14に取り付けられ
ている。
In the magnetic detector 16, a Hall element 34 as a magnetic flux density detecting element is disposed at the tip of an elongated inspection head 36. The magnetic detector 16 controls the magnet unit 12 and the spacer 14 so that, of the magnetic fluxes from the north pole 26 to the south pole 28 of the magnet unit 12, the magnetic flux that does not pass through the test object 30 passes through the Hall element 34 at substantially right angles. Attached to.

【0020】磁気検出器16が磁石手段12およびスペ
ーサ14に取り付けられた状態において、ホール素子3
4は、磁石手段12のN極26およびS極28の近傍に
配置される。図示の例では、検査ヘッド36の先端部を
スペーサ14に上方から挿入するための穴が磁石手段1
2およびスペーサ14に形成されている。しかし、検査
ヘッド34の先端部をスペーサ14に側方から挿入する
ようにしてもよい。
When the magnetic detector 16 is attached to the magnet means 12 and the spacer 14, the Hall element 3
4 is arranged near the north pole 26 and the south pole 28 of the magnet means 12. In the illustrated example, a hole for inserting the tip of the inspection head 36 into the spacer 14 from above is formed by the magnet unit 1.
2 and the spacer 14. However, the tip of the inspection head 34 may be inserted into the spacer 14 from the side.

【0021】信号処理器18は、ホール素子34の検出
信号を基にホール素子34を通過した磁束の密度を求
め、求めた磁束密度を目視可能に表示する。このような
信号処理器18として、ホール素子を用いた磁束密度計
の信号処理部を用いることができる。
The signal processor 18 obtains the density of the magnetic flux passing through the Hall element 34 based on the detection signal of the Hall element 34, and displays the obtained magnetic flux density visually. As such a signal processor 18, a signal processing unit of a magnetic flux density meter using a Hall element can be used.

【0022】検査装置10は、スペーサ14の当接面3
2が被検査体30の外側面に当接するように、被検査体
30に対して配置される。その状態において、被検査体
30が非磁性材料であると、永久磁石20からの磁束は
図2に実線で示す経路40,42を経る。
The inspection device 10 is provided with the contact surface 3 of the spacer 14.
2 is arranged with respect to the inspected body 30 so as to contact the outer surface of the inspected body 30. In this state, if the test object 30 is a non-magnetic material, the magnetic flux from the permanent magnet 20 passes through paths 40 and 42 indicated by solid lines in FIG.

【0023】被検査体30の側の同じ磁気回路を構成す
るN極26からS極28に至る磁束40の一部は、磁気
検出器16のホール素子34を通過する。このため、磁
気検出器16は磁束40の一部を検出し、信号処理器1
8は、磁気検出器16の出力信号を基にホール素子34
を通過した磁束の密度を求め、求めた磁束密度を目視可
能に表示する。
A part of the magnetic flux 40 from the north pole 26 to the south pole 28 constituting the same magnetic circuit on the inspection object 30 side passes through the Hall element 34 of the magnetic detector 16. For this reason, the magnetic detector 16 detects a part of the magnetic flux 40 and outputs the signal to the signal processor 1.
8 is a Hall element 34 based on the output signal of the magnetic detector 16.
The density of the magnetic flux passing through is determined, and the determined magnetic flux density is visually displayed.

【0024】ステンレス鋼のような非磁性材料製の被検
査体30においては、疲労、劣化等により、磁気的性状
が非磁性から磁性へと漸次変化し、透磁率が漸次大きく
なる。被検査体30の透磁率が大きくなると、磁束40
のうち、被検査体30を経る磁束が多くなり、その分ホ
ール素子34を経る磁束が少なくなり、ホール素子34
の出力信号が低下する。その結果、信号処理器18に得
られる磁束密度が減少する。
In the test object 30 made of a nonmagnetic material such as stainless steel, the magnetic properties gradually change from nonmagnetic to magnetic due to fatigue, deterioration, and the like, and the magnetic permeability gradually increases. When the magnetic permeability of the test object 30 increases, the magnetic flux 40
Of these, the magnetic flux passing through the device under test 30 increases, and the magnetic flux passing through the Hall element 34 decreases accordingly.
Output signal decreases. As a result, the magnetic flux density obtained by the signal processor 18 decreases.

【0025】上記のように検査装置10によれば、信号
処理器18に得られる磁束密度が被検査体30の透磁率
の変化(非磁性から磁性への変化)に依存して変化する
から、信号処理器18に得られる磁束密度から被検査体
30の透磁率および非磁性から磁性への変化の程度を知
ることができ、その結果ステンレス鋼のように非磁性か
ら磁性に変化する被検査体30の疲労または劣化の度合
いを簡単な装置で容易に知ることができる。
According to the inspection apparatus 10 as described above, the magnetic flux density obtained by the signal processor 18 changes depending on the change in the magnetic permeability of the test object 30 (change from non-magnetic to magnetic). From the magnetic flux density obtained by the signal processor 18, the magnetic permeability of the test object 30 and the degree of change from non-magnetic to magnetic can be known, and as a result, the test object such as stainless steel changes from non-magnetic to magnetic. The degree of fatigue or deterioration of No. 30 can be easily known with a simple device.

【0026】被検査体30の疲労または劣化の度合い
は、磁気検出ホール素子34を経る磁束の量が被検査体
30の透磁率の変化と逆に変化することから、たとえ
ば、検出した磁束密度が大きいほど、小さい、というよ
うに判定することができる。なお、信号処理器18で求
めた磁束密度を記憶回路に記憶するようにしてもよい。
The degree of fatigue or deterioration of the test object 30 depends on the fact that the amount of magnetic flux passing through the magnetic detection Hall element 34 changes in reverse to the change in the magnetic permeability of the test object 30. It can be determined that a larger value is smaller. The magnetic flux density obtained by the signal processor 18 may be stored in a storage circuit.

【0027】図4に示す検査装置50は、磁気検出手段
52として馬蹄形の永久磁石54を用いていることを除
いて、図1に示す検査装置10と同様に構成されてい
る。したがって、この検査装置50も、検査装置10と
同様にして、被検査体の非磁性から磁性への変化の程度
を知ることができる。
The inspection apparatus 50 shown in FIG. 4 has the same configuration as the inspection apparatus 10 shown in FIG. 1 except that a horseshoe-shaped permanent magnet 54 is used as the magnetic detection means 52. Therefore, similarly to the inspection apparatus 10, the inspection apparatus 50 can also know the degree of change of the inspection object from non-magnetic to magnetic.

【0028】本発明は、上記実施例に限定されない。た
とえば、磁気検出素子として、磁束密度を検出するホー
ル素子の代わりに、コイルのような磁束量を検出する素
子を用いてもよい。
The present invention is not limited to the above embodiment. For example, an element for detecting the amount of magnetic flux, such as a coil, may be used as the magnetic detection element instead of the Hall element for detecting the magnetic flux density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の検査装置の一実施例を示す斜視図であ
る。
FIG. 1 is a perspective view showing one embodiment of an inspection apparatus of the present invention.

【図2】図1に示す検査装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the inspection device shown in FIG.

【図3】図1に示す検査装置の変形例を示す縦断面図で
ある。
FIG. 3 is a longitudinal sectional view showing a modification of the inspection apparatus shown in FIG.

【図4】本発明の検査装置の他の実施例を示す図であ
る。
FIG. 4 is a view showing another embodiment of the inspection apparatus of the present invention.

【符号の説明】[Explanation of symbols]

10,50 検査装置 12,52 磁石手段 14 スペーサ 16 磁気検出器 20,54 永久磁石 26 N極 28 S極 30 被検査体 32 当接面 34 ホール素子 35 検査ヘッド 10, 50 Inspection device 12, 52 Magnet means 14 Spacer 16 Magnetic detector 20, 54 Permanent magnet 26 N pole 28 S pole 30 Inspection object 32 Contact surface 34 Hall element 35 Inspection head

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 N極およびS極を有する磁石手段を被検
査体から間隔をおいて配置し、前記N極から前記S極に
至る磁束のうち、被検査体を通過しない磁束の一部が通
過する位置に磁気検出素子を配置し、前記磁束の一部を
前記磁気検出素子で検出することを含む、磁性検査方
法。
A magnet means having an N pole and an S pole is arranged at a distance from an object to be inspected, and a part of a magnetic flux from the N pole to the S pole that does not pass through the object to be inspected is A magnetic inspection method, comprising: arranging a magnetic detection element at a position passing therethrough, and detecting a part of the magnetic flux with the magnetic detection element.
【請求項2】 N極およびS極を有する磁石手段と、該
磁石手段の前記N極およびS極と被検査体との間の距離
を規定する非磁性のスペーサと、前記N極から前記S極
に至る磁束のうち、被検査体を通過しない磁束の一部が
通過する位置に配置された磁気検出素子と、該磁気検出
素子の出力信号を処理する処理手段とを含む、磁性検査
装置。
2. A magnet means having an N pole and an S pole, a non-magnetic spacer for defining a distance between the N pole and the S pole of the magnet means and an object to be inspected, and A magnetic inspection device, comprising: a magnetic detection element disposed at a position where a part of a magnetic flux that does not pass through a device to be inspected among magnetic fluxes reaching a pole passes; and processing means for processing an output signal of the magnetic detection element.
【請求項3】 前記検出素子は前記スペーサ中に配置さ
れている、請求項2に記載の磁性検査装置。
3. The magnetic inspection apparatus according to claim 2, wherein the detection element is disposed in the spacer.
【請求項4】 前記スペーサは被検査体に当接される当
接面を有する、請求項2または3に記載の磁性検査装
置。
4. The magnetic inspection apparatus according to claim 2, wherein the spacer has an abutting surface that abuts on an object to be inspected.
【請求項5】 前記N極およびS極は、被検査体に向け
られている、請求項2,3または4に記載の磁気検査装
置。
5. The magnetic inspection apparatus according to claim 2, wherein the north pole and the south pole are directed to an object to be inspected.
JP34041296A 1996-12-06 1996-12-06 Magnetism inspection method and its device Pending JPH10170620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34041296A JPH10170620A (en) 1996-12-06 1996-12-06 Magnetism inspection method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34041296A JPH10170620A (en) 1996-12-06 1996-12-06 Magnetism inspection method and its device

Publications (1)

Publication Number Publication Date
JPH10170620A true JPH10170620A (en) 1998-06-26

Family

ID=18336706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34041296A Pending JPH10170620A (en) 1996-12-06 1996-12-06 Magnetism inspection method and its device

Country Status (1)

Country Link
JP (1) JPH10170620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043740A1 (en) * 2005-10-11 2007-04-19 Posco On-line determination device of transformation ratio for metallic materials
JP2009122074A (en) * 2007-11-19 2009-06-04 Hitachi Ltd Flaw detector of wire rope
CN110146833A (en) * 2019-05-30 2019-08-20 核工业理化工程研究院 Magnetic steel component measurement method based on LABVIEW

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043740A1 (en) * 2005-10-11 2007-04-19 Posco On-line determination device of transformation ratio for metallic materials
KR100711471B1 (en) 2005-10-11 2007-04-24 주식회사 포스코 On-line transformation ratio determination device of hot rolled steel sheet
JP2009122074A (en) * 2007-11-19 2009-06-04 Hitachi Ltd Flaw detector of wire rope
CN110146833A (en) * 2019-05-30 2019-08-20 核工业理化工程研究院 Magnetic steel component measurement method based on LABVIEW

Similar Documents

Publication Publication Date Title
JP3811039B2 (en) Magnetic leak detection sensor for magnetic flaw detector
KR102501065B1 (en) Flaw measurement method, defect measurement device and inspection probe
US7437942B2 (en) Non-destructive evaluation via measurement of magnetic drag force
JPS61258161A (en) Noncontacting magnetic stress and temperature detector
EP2128581A1 (en) Magnetostrictive stress sensor
EP1360467B1 (en) Measurement of stress in a ferromagnetic material
JP6483069B2 (en) Sensor device including carrier
JPH10170620A (en) Magnetism inspection method and its device
JPH04269653A (en) Leakage magnetic flux detector
US9726639B1 (en) Apparatus for detecting magnetic flux leakage and methods of making and using same
WO2007053519A2 (en) Non-destructive evaluation via measurement of magnetic drag force
US7365533B2 (en) Magneto-optic remote sensor for angular rotation, linear displacements, and evaluation of surface deformations
JPH0335624B2 (en)
EP3081932A1 (en) Apparatus and method of inspecting defect of steel plate
US5122743A (en) Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation
JP2000105273A (en) Magnetism inspecting method and device
US5475305A (en) Magnetic inspection probe for measurement of magnetic anisotropy
JP6978913B2 (en) Defect measuring device, defect measuring method and inspection probe
JP5119880B2 (en) Magnetostrictive stress sensor
Allcock et al. Magnetic Measuring Techniques for Both Magnets and Assemblies
JP4769628B2 (en) Leakage magnetic flux measurement device, leakage magnetic flux measurement method using this leakage magnetic flux measurement device, and sputtering target inspection method using this leakage magnetic flux measurement method
JP2514550B2 (en) Magnetic force type stress measurement method for non-ferrous metal materials
Amiri et al. Point Probes: a new generation of magnetic sensors for the measurement of local magnetic fields
JPH0414735B2 (en)
JPH05172786A (en) Leakage flux detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050325

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108