JPH05172786A - Leakage flux detector - Google Patents

Leakage flux detector

Info

Publication number
JPH05172786A
JPH05172786A JP34097291A JP34097291A JPH05172786A JP H05172786 A JPH05172786 A JP H05172786A JP 34097291 A JP34097291 A JP 34097291A JP 34097291 A JP34097291 A JP 34097291A JP H05172786 A JPH05172786 A JP H05172786A
Authority
JP
Japan
Prior art keywords
defect
detection signal
signal
magnetic flux
relative position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34097291A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishimura
力 西村
Shigeki Ogawa
茂樹 小川
Hiroki Kuwano
博喜 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34097291A priority Critical patent/JPH05172786A/en
Publication of JPH05172786A publication Critical patent/JPH05172786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grasp defect characteristic exactly and quantitatively by extracting feature quantity set in advance from a defect detection signal of a magnet sensor array and detecting defect position. CONSTITUTION:A detected body 30 is magnetized by a direct current electric magnet 10 and magnetic flux leaks from a defect part, which is detected by a magnetic sensor array 21 and the defect detection signal is amplified with an n channel type amplifier 50. A length meter 60 generates a relative position signals of the detected body 30, the electric magnet 10 and the array 21. The defect detection signal and the relative position signal are digitized respectively by an A/D converter 70 and input in a central processing unit 80. The unit 80 detects the defect position from the relative position signal, From the defect detection signal, maximum and minimum values and their signal wave shaped as the feature quantity are extracted and from the maximum and the minimum values, defect depth is presumed from the zero cross point of the signal wave shape, defect size is presumed. In this way, the defect characteristic of the detected body 30 is grasped exactly and quantitatively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、漏洩磁束法による磁気
探傷技術に係り、詳しくは薄鋼板、棒状鋼材、鋼管材等
における探傷装置や、鋼管を使用した管路設備の腐食に
よる減肉状況を調べる管路検査装置に適用される漏洩磁
束検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic flaw detection technique using a magnetic flux leakage method, and more specifically, a flaw detection device for thin steel plates, rod-shaped steel materials, steel pipe materials, etc. The present invention relates to a leakage magnetic flux detection device applied to a pipe inspection device.

【0002】[0002]

【従来の技術】探傷技術としては、超音波探傷や渦電流
探傷の他に、被検体表面に錆や汚れがあっても比較的検
出性能が優れ、各種鋼材の探傷のみならず最近では管路
設備の検査にも応用されつつある漏洩磁束探傷法があ
る。
2. Description of the Related Art As a flaw detection technique, in addition to ultrasonic flaw detection and eddy current flaw detection, detection performance is comparatively excellent even if there is rust or dirt on the surface of the object to be inspected. There is a magnetic flux leakage flaw detection method that is being applied to equipment inspection.

【0003】この漏洩磁束法は、被検体である磁性体を
飽和領域まで磁化したとき欠陥部分から漏洩する磁束を
磁気センサにて検出し欠陥箇所を知る磁気探傷法であ
り、図4に示す構成となっている。
The leakage magnetic flux method is a magnetic flaw detection method for detecting a magnetic flux leaking from a defective portion with a magnetic sensor when a magnetic substance as an object is magnetized to a saturation region to detect a defective portion, and has a structure shown in FIG. Has become.

【0004】図4において、30は被検体であり、この
被検体30を磁化する電磁石10とこの電磁石10の極
間に固定された磁気センサ20とで漏洩磁束検出装置を
構成する。この場合、磁気センサ20としては、空芯コ
イル、強磁性体磁芯コイル、ホール効果形磁気センサ、
磁気抵抗効果型磁気センサなどが用いられている。
In FIG. 4, reference numeral 30 denotes a subject, and the electromagnet 10 magnetizing the subject 30 and the magnetic sensor 20 fixed between the poles of the electromagnet 10 constitute a leakage magnetic flux detecting device. In this case, as the magnetic sensor 20, an air core coil, a ferromagnetic core coil, a Hall effect type magnetic sensor,
A magnetoresistive effect type magnetic sensor or the like is used.

【0005】[0005]

【発明が解決しようとする課題】図4に示すような従来
の漏洩磁束検出装置では、前述の如き磁気センサ20が
1個もしくは複数個用いられるが、いずれにしてもかか
る装置では欠陥部付近の磁場強度を測定するとか漏洩磁
束の垂直成分を測定するだけである。
In the conventional leakage magnetic flux detecting device as shown in FIG. 4, one or a plurality of the magnetic sensors 20 as described above are used. It only measures the magnetic field strength or the vertical component of the leakage flux.

【0006】したがって、かかる装置にあっては欠陥箇
所の位置検出はある程度正確にできるものの、欠陥性状
つまり欠陥の大きさ、深さ、形状などを定量的に把握す
ることは困難であった。
Therefore, in such an apparatus, although the position of the defective portion can be detected with a certain degree of accuracy, it is difficult to quantitatively grasp the defect property, that is, the size, depth and shape of the defect.

【0007】本発明は、上述の従来技術に鑑み欠陥性状
の定量的測定を可能とした漏洩磁束検出装置の提供を目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned prior art, and an object thereof is to provide a leakage magnetic flux detection device capable of quantitatively measuring a defect property.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成する本
発明は、(1)被検体を磁化するための磁石とこの磁石
の極間にあって上記被検体の面と平行な面内で磁化方向
と直角をなすよう配置され上記被検体の欠陥部からの漏
洩磁束を検知するn個の個別素子からなる磁気センサア
レイとを具備する漏洩磁束検出器と、上記磁気センサア
レイの欠陥検出信号を増幅するnチャンネル形増幅器
と、上記被検体と漏洩磁束検出器との相対位置信号を発
生する測長器と、上記nチャンネル増幅器の欠陥検出信
号と測長器の相対位置信号とをディジタル化するA/D
変換器と、このディジタル化された上記欠陥検出信号か
ら予め設定された特徴量を抽出すると共に、上記ディジ
タル化された上記相対位置信号から欠陥位置を検出して
欠陥性状の定量的推定を行なう中央演算処理装置と、を
有し、(2)上記特徴量として上記欠陥検出信号の最大
値、最小値、及び交流成分信号のゼロクロス点を抽出す
ることを特徴とする。
Means for Solving the Problems The present invention that achieves the above-mentioned object is as follows: (1) A magnet for magnetizing a subject and a magnetization direction in a plane between the magnet and a pole parallel to the plane of the subject. A leakage magnetic flux detector having a magnetic sensor array composed of n individual elements which are arranged so as to form a right angle with the magnetic flux sensor and detects a leakage magnetic flux from the defective portion of the subject, and a defect detection signal of the magnetic sensor array is amplified. A n-channel amplifier, a length measuring device for generating a relative position signal between the subject and the leakage flux detector, and a digitizing defect detection signal of the n-channel amplifier and the relative position signal of the length measuring device A / D
A converter and a central part for extracting a preset characteristic amount from the digitized defect detection signal and detecting a defect position from the digitized relative position signal to quantitatively estimate the defect property. (2) The maximum value, the minimum value of the defect detection signal, and the zero-cross point of the AC component signal are extracted as the characteristic amount.

【0009】[0009]

【作用】磁気センサアレイによる欠陥検出信号と、測長
器による相対位置信号とにより、欠陥検出信号の特徴量
例えば最大値と最小値とから欠陥深さに関する情報を得
ると共に交流成分信号の特徴量例えばゼロクロス点から
欠陥の大きさに関する情報を得ており、また相対位置信
号から欠陥位置を検出したものであり、欠陥性状の定量
的推定を行なうことができる。
According to the defect detection signal from the magnetic sensor array and the relative position signal from the length measuring device, information about the defect depth is obtained from the feature amount of the defect detection signal, for example, the maximum value and the minimum value, and the feature amount of the AC component signal is obtained. For example, the information on the size of the defect is obtained from the zero-cross point, and the defect position is detected from the relative position signal, so that the defect property can be quantitatively estimated.

【0010】[0010]

【実施例】ここで、図1〜図3を参照して本発明の実施
例を説明する。図1は概略構成図である。
EXAMPLES Examples of the present invention will now be described with reference to FIGS. FIG. 1 is a schematic configuration diagram.

【0011】図1において、10は被検体30を磁化す
るための直流電磁石であり、電磁石極間間が磁化され
る。
In FIG. 1, reference numeral 10 is a DC electromagnet for magnetizing the subject 30, and the space between the electromagnet poles is magnetized.

【0012】21は電磁石極間間に配置された磁気セン
サアレイである。この磁気センサアレイ21は、被検体
30の面(漏洩検出面)と平行な面内にあって磁化方向
と直角をなすよう配置されたn個の個別素子からなり、
各素子は漏洩磁束の垂直成分Hzを測定する。一例とし
ては、一軸方向にのみ感度指向性をもつMR磁気センサ
(磁気抵抗効果素子)がある。
Reference numeral 21 is a magnetic sensor array arranged between the electromagnet poles. The magnetic sensor array 21 is composed of n individual elements arranged in a plane parallel to the plane of the subject 30 (leakage detection plane) and perpendicular to the magnetization direction.
Each element measures the vertical component Hz of the leakage flux. As an example, there is an MR magnetic sensor (magnetoresistive element) having sensitivity directivity only in one axis direction.

【0013】被検体30として本実施例では、厚さ5mm
の鋼板(SS41)の片面中央部に溝状欠陥を設けたも
の、あるいは円形複合欠陥を図3(c)の如く人工的に
形成したものを使用した。
In this embodiment, the subject 30 has a thickness of 5 mm.
The steel plate (SS41) of No. 1 having a groove-shaped defect in the central portion on one side thereof, or the circular composite defect artificially formed as shown in FIG. 3 (c) was used.

【0014】40は被検体30の磁化により欠陥部から
漏れる磁束を示している。
Reference numeral 40 denotes a magnetic flux leaking from the defective portion due to the magnetization of the subject 30.

【0015】50は、漏れ磁束を検出した磁気センサア
レイ21による図2(a)に示す欠陥検出信号を増幅す
るためのnチャンネル形増幅器である。
Reference numeral 50 is an n-channel type amplifier for amplifying the defect detection signal shown in FIG. 2A by the magnetic sensor array 21 which has detected the leakage magnetic flux.

【0016】60は被検体30と電磁石10及び磁気セ
ンサアレイ21からなる漏洩磁束検出器との相対位置信
号を発生する測長器であり、欠陥位置を検出するもので
ある。
Reference numeral 60 denotes a length measuring device for generating a relative position signal between the object 30 and the leakage magnetic flux detector composed of the electromagnet 10 and the magnetic sensor array 21, and detects a defect position.

【0017】70は、nチャンネル増幅器50の欠陥検
出信号と測長器60による相対位置信号とをそれぞれデ
ィジタル化するA/D変換器である。
Reference numeral 70 is an A / D converter for digitizing the defect detection signal of the n-channel amplifier 50 and the relative position signal from the length measuring device 60.

【0018】80はディジタル化された欠陥検出信号か
ら予め設定された特徴量を抽出すると共に、ディジタル
化された相対位置信号から欠陥位置を検出して欠陥性状
の定量的推定を行なう中央演算処理装置である。
Reference numeral 80 denotes a central processing unit for extracting a preset feature amount from the digitized defect detection signal and detecting the defect position from the digitized relative position signal to quantitatively estimate the defect property. Is.

【0019】ここにおいて、磁気センサアレイ21にて
検出され、nチャンネル増幅器50にて増幅され、中央
演算処理装置80にて特徴量が抽出される欠陥検出信号
からは、図2(a)(b)に示す特徴量が抽出されるの
であるが、この特徴量は欠陥性状の定量化に必要なパラ
メータであり、図2(a)に示す最大値、最小値によっ
て欠陥の深さに関する情報が得られ、また、欠陥検出信
号の交流成分の信号波形(図2(b)参照)からは、そ
のゼロクロス点によって欠陥の大きさに関する情報が得
られる。
2A and 2B from the defect detection signal detected by the magnetic sensor array 21, amplified by the n-channel amplifier 50 and extracted by the central processing unit 80. ) Is extracted. This feature is a parameter necessary for quantifying the defect property, and the maximum and minimum values shown in FIG. 2A provide information on the depth of the defect. Further, from the signal waveform of the AC component of the defect detection signal (see FIG. 2B), the zero cross point provides information on the size of the defect.

【0020】このため、n個の個別素子からなる磁気セ
ンサアレイ21の欠陥検出信号を処理・解析することに
より欠陥の三次元的な性状を得ることができる。
Therefore, a three-dimensional property of the defect can be obtained by processing and analyzing the defect detection signal of the magnetic sensor array 21 composed of n individual elements.

【0021】図3は、例えば2つの円形欠陥(直径15
mmと10mmの円形で深さ4mmのもの)が複合した人工欠
陥を計測した場合を示す。この図3において、(a)は
磁気センサアレイ21からの欠陥検出信号であり、
(b)はこの欠陥検出信号の交流成分の信号波形であ
る。かかる信号波形により欠陥性状に関する所定の特徴
量を中央演算処理装置80にて抽出すると共に、測長器
60による相対位置信号からは欠陥位置を検出する。こ
の結果、図3(c)に示す欠陥性状の定量化の結果が得
られて表示され、計測した人工欠陥の大きさ、深さ形状
とも十分推定可能であることが判明した。
FIG. 3 shows, for example, two circular defects (diameter 15
mm and 10 mm circular and 4 mm deep) composite artificial defects are measured. In FIG. 3, (a) is a defect detection signal from the magnetic sensor array 21,
(B) is a signal waveform of the AC component of this defect detection signal. The central processing unit 80 extracts a predetermined feature amount related to the defect property from the signal waveform and detects the defect position from the relative position signal from the length measuring device 60. As a result, the result of quantification of the defect properties shown in FIG. 3C was obtained and displayed, and it was found that both the size and the depth shape of the measured artificial defect can be sufficiently estimated.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、磁
気センサアレイからの欠陥検出信号と測長器による相対
位置信号とをディジタル化し、このディジタル信号によ
って欠陥性状に関する所定の特徴量を抽出すると共に、
欠陥位置を検出することにより、被検体の欠陥性状を正
確かつ定量的に把握できる。
As described above, according to the present invention, the defect detection signal from the magnetic sensor array and the relative position signal from the length-measuring device are digitized, and the predetermined feature quantity relating to the defect property is extracted by this digital signal. As well as
By detecting the defect position, the defect property of the object can be grasped accurately and quantitatively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のブロック構成図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】欠陥検出信号と交流成分信号との波形図であ
る。
FIG. 2 is a waveform diagram of a defect detection signal and an AC component signal.

【図3】具体例についての欠陥検出信号(a)と交流信
号波形(b)と推定した欠陥性状(c)とを表わす説明
図である。
FIG. 3 is an explanatory diagram showing a defect detection signal (a), an AC signal waveform (b), and an estimated defect property (c) for a specific example.

【図4】従来の漏洩磁束検出装置の構成図である。FIG. 4 is a configuration diagram of a conventional leakage magnetic flux detection device.

【符号の説明】[Explanation of symbols]

10 電磁石 21 磁気センサアレイ 50 nチャンネル形増幅器 60 測長器 70 A/D変換器 80 中央処理装置 10 electromagnet 21 magnetic sensor array 50 n-channel type amplifier 60 length measuring instrument 70 A / D converter 80 central processing unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検体を磁化するための磁石とこの磁石
の極間にあって上記被検体の面と平行な面内で磁化方向
と直角をなすよう配置され上記被検体の欠陥部からの漏
洩磁束を検知するn個の個別素子からなる磁気センサア
レイとを具備する漏洩磁束検出器と、 上記磁気センサアレイの欠陥検出信号を増幅するnチャ
ンネル形増幅器と、 上記被検体と漏洩磁束検出器との相対位置信号を発生す
る測長器と、 上記nチャンネル増幅器の欠陥検出信号の測長器の相対
位置信号とをディジタル化するA/D変換器と、 このディジタル化された上記欠陥検出信号から予め設定
された特徴量を抽出すると共に、上記ディジタル化され
た上記相対位置信号から欠陥位置を検出して欠陥性状の
定量的推定を行なう中央演算処理装置と、 を有する漏洩磁束検出装置。
1. A magnetic flux for magnetizing a subject and a magnetic flux leaking from a defective portion of the subject which is disposed between the magnet and a pole between the magnets so as to be perpendicular to the magnetization direction in a plane parallel to the plane of the subject. A leakage magnetic flux detector including a magnetic sensor array composed of n individual elements for detecting a magnetic field; an n-channel amplifier amplifying a defect detection signal of the magnetic sensor array; and the subject and the leakage magnetic flux detector. A length measuring device for generating a relative position signal, an A / D converter for digitizing the relative position signal of the length measuring device of the defect detection signal of the n-channel amplifier, and the digitalized defect detection signal in advance. A central processing unit that extracts a set feature amount and detects a defect position from the digitized relative position signal to quantitatively estimate the defect property. Apparatus.
【請求項2】 特徴量として上記欠陥検出信号の最大
値、最小値、及び交流成分のゼロクロス点を抽出する請
求項1の漏洩磁束検出装置。
2. The leakage magnetic flux detection device according to claim 1, wherein a maximum value, a minimum value, and an AC component zero-cross point of the defect detection signal are extracted as feature amounts.
JP34097291A 1991-12-24 1991-12-24 Leakage flux detector Pending JPH05172786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34097291A JPH05172786A (en) 1991-12-24 1991-12-24 Leakage flux detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34097291A JPH05172786A (en) 1991-12-24 1991-12-24 Leakage flux detector

Publications (1)

Publication Number Publication Date
JPH05172786A true JPH05172786A (en) 1993-07-09

Family

ID=18342015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34097291A Pending JPH05172786A (en) 1991-12-24 1991-12-24 Leakage flux detector

Country Status (1)

Country Link
JP (1) JPH05172786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064628A (en) * 2005-08-29 2007-03-15 Jfe Engineering Kk Defect detection method and device therefor
WO2007072774A1 (en) * 2005-12-19 2007-06-28 Ihi Corporation Corrosion evaluation device, and corrosion evaluation method
JP2007205826A (en) * 2006-02-01 2007-08-16 Hitachi Building Systems Co Ltd Wire rope flaw detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064628A (en) * 2005-08-29 2007-03-15 Jfe Engineering Kk Defect detection method and device therefor
WO2007072774A1 (en) * 2005-12-19 2007-06-28 Ihi Corporation Corrosion evaluation device, and corrosion evaluation method
JP2007192803A (en) * 2005-12-19 2007-08-02 Ishikawajima Harima Heavy Ind Co Ltd Device and method for evaluating corrosion
EP1965206A1 (en) * 2005-12-19 2008-09-03 IHI Corporation Corrosion evaluation device, and corrosion evaluation method
US7944203B2 (en) 2005-12-19 2011-05-17 Ihi Corporation Corrosion evaluation device and corrosion evaluation method
EP1965206A4 (en) * 2005-12-19 2013-03-27 Ihi Corp Corrosion evaluation device, and corrosion evaluation method
JP2007205826A (en) * 2006-02-01 2007-08-16 Hitachi Building Systems Co Ltd Wire rope flaw detector

Similar Documents

Publication Publication Date Title
KR102501069B1 (en) Flaw measurement method, defect measurement device and inspection probe
KR100671630B1 (en) On-line flaw detection method of magnetic leak detector and strip of magnetic flaw detector
US20120253696A1 (en) Methods and apparatus for the inspection of plates and pipe walls
CN106814131B (en) Ferromagnetic planar member shallow layer damage magnetic emission detection method and magnetic emission detection system
CN107850570B (en) Defect measuring method, defect measuring device, and inspection probe
US6854336B2 (en) Measurement of stress in a ferromagnetic material
GB2492745A (en) Magnetic flux leakage inspection
Aguila-Muñoz et al. A magnetic perturbation GMR-based probe for the nondestructive evaluation of surface cracks in ferromagnetic steels
Tsukada et al. Integrated magnetic sensor probe and excitation wire for nondestructive detection of submillimeter defects
EP3344982B1 (en) A method and system for detecting a material discontinuity in a magnetisable article
JP2841153B2 (en) Weak magnetism measurement method and device, and nondestructive inspection method using the same
JPH04269653A (en) Leakage magnetic flux detector
Li et al. Numerical simulation and experiments of magnetic flux leakage inspection in pipeline steel
JPH05172786A (en) Leakage flux detector
JPH0335624B2 (en)
RU108626U1 (en) DEVICE FOR LOCAL MEASUREMENT OF FERROMAGNETIC PHASE OF MATERIALS
Lijian et al. Sensor development and application on the oil-gas pipeline magnetic flux leakage detection
CN107576720B (en) Ferromagnetic slender component shallow layer damage magnetic emission detection method and magnetic emission detection system
JPH04296648A (en) Method and device for magnetic crack detection
JP2016197085A (en) Magnetic flaw detection method
JP2019020272A (en) Front surface scratch inspection device
RU2645830C1 (en) Measuring device of a magnetic defector of expanded articles of complex shape
CANOVA Experimental evaluation of metallic ropes magnetisation under magneto-inductive testing
JPH03118465A (en) Detecting apparatus for defect inside tube
Dogaru et al. Detection of cracks near sharp edges by using giant magneto-resistance-based eddy current probe