JPH10168503A - Composite powder with high electric conductivity - Google Patents

Composite powder with high electric conductivity

Info

Publication number
JPH10168503A
JPH10168503A JP8329293A JP32929396A JPH10168503A JP H10168503 A JPH10168503 A JP H10168503A JP 8329293 A JP8329293 A JP 8329293A JP 32929396 A JP32929396 A JP 32929396A JP H10168503 A JPH10168503 A JP H10168503A
Authority
JP
Japan
Prior art keywords
powder
alloy
metal
coating
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8329293A
Other languages
Japanese (ja)
Inventor
Eiki Takeshima
鋭機 竹島
Junji Saida
淳治 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP8329293A priority Critical patent/JPH10168503A/en
Publication of JPH10168503A publication Critical patent/JPH10168503A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ash-colored powder excellent in electric conductivity, used for antistatic and EMI shielding paints, plastic moldings, plastic films, synthetic products, etc. SOLUTION: This composite powder with a high electric conductivity is prepared by coating a fine metal powder of 0.1-10μm average grain size with a 1-10wt.% of whitish-colored alloy by a sputtering method. One or >=2 elements among Si, Ti, Zn, and Al are used for the fine metal powder. As the whitish- colored alloy, an In-Sn alloy, an Sn-Sb alloy, a Zn-Al alloy, or a zinc-Cu alloy is used. Because a coating of the whitish-colored alloy is formed on the surface of the powder grains by a sputtering method, the whole surface of the powder grains can be coated by minimal coating weight and an ash-colored powder having excellent electric conductivity can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、帯電防止用,EMIシ
ールド用等の塗料,プラスチック成形品,プラスチック
フィルム,合成繊維等に配合される高導電性粉末に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly conductive powder to be incorporated in paints for antistatic purposes, EMI shielding and the like, plastic molded articles, plastic films, synthetic fibers and the like.

【0002】[0002]

【従来の技術】帯電防止用として使用される導電性粉末
には、カーボンブラック,黒鉛,炭素繊維等のカーボン
系粉末,SnドープIn23 ,SbドープSnO2
AlドープZnO等の無機半導体粉末,SnドープSn
2 被覆TiO2 ,SnドープSnO2 被覆マイカ,S
bドープSnO2 被覆BaSO4 等の無機半導体被覆複
合粉末がある。なかでも、安価で導電性がよいことから
カーボンブラックが最も使用されている。しかし、カー
ボンブラックを使用した導電性粉末では、黒色以外の色
をつけることが困難であった。特に、カーペット,カー
テン等の合成繊維や、壁紙,間仕切り等のプラスチック
スを帯電防止処理する際には、カーボンブラックと同等
の優れた導電性を示し、且つ着色が容易な白色系の微粉
末が要求されていた。そこで、前掲したような各種の無
機半導体粉末や無機半導体被覆複合粉末が開発されてき
た。
2. Description of the Related Art Conductive powders used for antistatic purposes include carbon-based powders such as carbon black, graphite and carbon fiber, Sn-doped In 2 O 3 , Sb-doped SnO 2 , and the like.
Inorganic semiconductor powder such as Al-doped ZnO, Sn-doped Sn
O 2 coated TiO 2 , Sn doped SnO 2 coated mica, S
There is an inorganic semiconductor-coated composite powder such as b-doped SnO 2 -coated BaSO 4 . Among them, carbon black is most used because of its low cost and good conductivity. However, it has been difficult to give a color other than black with a conductive powder using carbon black. In particular, when performing antistatic treatment on synthetic fibers such as carpets and curtains, and plastics such as wallpaper and partition walls, white fine powder that exhibits excellent conductivity equivalent to carbon black and is easy to color is used. Had been requested. Therefore, various inorganic semiconductor powders and inorganic semiconductor-coated composite powders as described above have been developed.

【0003】従来の無機半導体粉末や無機半導体被覆複
合粉末は、何れも白色系で、種々の着色が容易であるも
のの、無機半導体であることからカーボンブラックや金
属に比較すると導電性がかなり劣っている。他方、コン
ピュータやOA機器の急速な普及に伴って、電磁波の悪
影響が大きな問題となってきている。この点では、単な
る帯電防止用としてではなく、EMIシールドも可能な
カーペット,カーテン,壁紙,間仕切り等の内装建材の
開発が検討され始めており、そのためにより優れた導電
性を示す白色系微粉末の開発が強く望まれている。EM
Iシールド用には、Ag,Cu,Ni,Al,Zn等の
金属粉末やAg被覆シリコーン樹脂,Cu被覆マイカ,
Ni被覆チタン酸カリウムウイスカ等の金属被覆複合粉
末が優れた導電性を示す粉末として一般に使用されてい
る。
[0003] Conventional inorganic semiconductor powders and inorganic semiconductor-coated composite powders are all white and can be easily colored in various ways. However, since they are inorganic semiconductors, their conductivity is considerably inferior to carbon black and metals. I have. On the other hand, with the rapid spread of computers and OA equipment, the adverse effects of electromagnetic waves have become a major problem. In this regard, the development of interior building materials such as carpets, curtains, wallpapers, partitions, etc. that are not merely antistatic but also capable of EMI shielding has begun to be studied. Is strongly desired. EM
For I shielding, metal powder such as Ag, Cu, Ni, Al, Zn, etc., Ag-coated silicone resin, Cu-coated mica,
Metal-coated composite powders such as Ni-coated potassium titanate whiskers are generally used as powders having excellent conductivity.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの金属
被覆複合粉末は、優れた導電性を示すものの、粒径が1
0μmを超える大きさであり、繊維径が30μm以下で
あるカーペット,カーテン等の合成繊維の中にうまく練
り込むことができない。また、金属粉末は、使用中に表
面が酸化又は腐食すると導電性が低下する。他方、金属
被覆複合粉末として、シリコーン樹脂やマイカに金属を
コーティングして導電性を発現させる場合、従来の無電
解めっき等では粒子表面に均一で且つ薄くコーティング
することが困難なために、膜厚を厚くすることにより導
電性を確保している。しかし、比表面積が大きく且つ比
重の小さいこれらの粉末に比重の大きい金属をコーティ
ングすると、50〜80重量%もの大きな被覆量が必要
となり、製造コストの大幅な上昇を招く。本発明は、こ
のような問題を解消すべく案出されたものであり、金属
微粉末の表面にスパッタリング法で白色系合金を被覆す
ることにより、金属被覆量を可能な限り少なくして製造
コストを節減し、カーボンブラック,金属等と同レベル
の導電性を示し、粒径が小さく耐食性にも優れた高導電
性粉末を提供することを目的とする。
However, these metal-coated composite powders exhibit excellent conductivity, but have a particle size of 1%.
It cannot be kneaded well into synthetic fibers such as carpets and curtains having a size exceeding 0 μm and a fiber diameter of 30 μm or less. In addition, the conductivity of the metal powder decreases when the surface is oxidized or corroded during use. On the other hand, when a metal is coated on a silicone resin or mica as a metal-coated composite powder to exhibit conductivity, it is difficult to coat the particle surface uniformly and thinly by conventional electroless plating or the like. The conductivity is ensured by increasing the thickness. However, if these powders having a large specific surface area and a small specific gravity are coated with a metal having a large specific gravity, a coating amount as large as 50 to 80% by weight is required, and the production cost is greatly increased. The present invention has been devised to solve such a problem. By coating the surface of a fine metal powder with a white alloy by a sputtering method, the amount of metal coating can be reduced as much as possible to reduce the manufacturing cost. It is an object of the present invention to provide a highly conductive powder exhibiting the same level of conductivity as carbon black, metal and the like, and having a small particle size and excellent corrosion resistance.

【0005】[0005]

【課題を解決するための手段】本発明の高導電性複合粉
末は、その目的を達成するため、平均粒径0.1〜10
μmの金属微粉末をスパッタリング法により1〜10重
量%の白色系合金で被覆していることを特徴とする。金
属微粉末には、Si,Ti,Zn又はAlの1種又は2
種以上が使用される。白色系合金には、In−Sn合
金,Sn−Sb合金、Zn−Al合金又はZn−Cu合
金が使用される。
Means for Solving the Problems The highly conductive composite powder of the present invention has an average particle diameter of 0.1 to 10 in order to achieve the object.
It is characterized in that fine metal powder of μm is coated with 1 to 10% by weight of a white alloy by a sputtering method. The metal fine powder includes one or more of Si, Ti, Zn or Al.
More than seeds are used. As the white alloy, an In-Sn alloy, a Sn-Sb alloy, a Zn-Al alloy, or a Zn-Cu alloy is used.

【0006】[0006]

【実施の形態】Si,Ti等の金属粉末の表面は、通常
SiO2 ,TiO2 等の酸化皮膜で覆われている。この
金属粉末の表面に、スパッタリング法でSn−Sb合金
を被覆すると、粉末表面にSbドープSiO2 層,Sb
ドープTiO2 層等の無機半導体層が形成される。同様
に、Zn粉末の表面は、ZnOの酸化皮膜で覆われてい
るので、この表面にスパッタリング法でIn−Sn合
金,Zn−Al合金又はZn−Cu合金を被覆すると、
粉末表面にInドープZnO層,AlドープZnO層,
CuドープZnO層等の無機半導体層が形成される。ま
た、Al23 の酸化皮膜で覆われているAl粉末の表
面にスパッタリング法でIn−Sn合金又はSn−Sb
合金を被覆すると、粉末表面にSnドープAl23
のような無機半導体層が形成される。金属粉末は、球
状,粒状,フレーク状,ウイスカ状の何れの形状でも良
いが、塗料,プラスチックス等に対する分散性からは球
状が最適である。粉末の平均粒径は、0.1〜10μ
m,より好ましくは1〜3μmの範囲が適している。粒
径が0.1μmに満たないと、粉末の表面積が大きくな
り、導電性を発現させるために必要な合金の被覆量が極
めて多くなり、結果としてコストを上昇させる。逆に1
0μmを超える大粒径では、塗料やプラスチックスに混
合する際に分散状態が不均一になり易く、安定した導電
性が得られ難い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The surface of a metal powder such as Si or Ti is usually covered with an oxide film such as SiO 2 or TiO 2 . When the surface of this metal powder is coated with a Sn—Sb alloy by a sputtering method, an Sb-doped SiO 2 layer, Sb
An inorganic semiconductor layer such as a doped TiO 2 layer is formed. Similarly, since the surface of the Zn powder is covered with a ZnO oxide film, if this surface is coated with an In—Sn alloy, a Zn—Al alloy, or a Zn—Cu alloy by a sputtering method,
In-doped ZnO layer, Al-doped ZnO layer,
An inorganic semiconductor layer such as a Cu-doped ZnO layer is formed. In addition, an In-Sn alloy or Sn-Sb is formed on the surface of the Al powder covered with the oxide film of Al 2 O 3 by a sputtering method.
When the alloy is coated, an inorganic semiconductor layer such as a Sn-doped Al 2 O 3 layer is formed on the powder surface. The metal powder may be in any of spherical, granular, flake, and whisker-like shapes, but the spherical shape is optimal from the viewpoint of dispersibility in paints, plastics, and the like. The average particle size of the powder is 0.1-10μ
m, more preferably in the range of 1 to 3 μm. If the particle size is less than 0.1 μm, the surface area of the powder becomes large, and the amount of the alloy coating required for exhibiting conductivity becomes extremely large, resulting in an increase in cost. Conversely 1
If the particle diameter is larger than 0 μm, the dispersion state tends to be non-uniform when mixed with paints or plastics, and it is difficult to obtain stable conductivity.

【0007】コーティングに使用される白色系合金とし
ては、次の条件を満足する合金組成が好ましい。 (1)合金自体の導電性が良好なこと。 (2)合金皮膜の最表面に生成する酸化物膜も、導電性
が良好な無機半導体組成になっていること。 (3)スパッタリング法による被覆時に、金属微粉末表
面の酸化皮膜層にも導電性の良い無機半導体ドープ層が
形成されること。 これら条件を満足させるためには、金属微粉末を構成し
ている金属元素よりも価数が一つ多い金属元素を含む合
金を選択する必要がある。これにより、酸化皮膜及びド
ープ層を構成している結晶格子が酸素欠損状態になり、
余剰電子が発生して電気が流れ易くなる。このような合
金として、In−Sn合金,Sn−Sb合金,Zn−A
l合金,Zn−Cu合金等がある。
[0007] As a white alloy used for coating, an alloy composition satisfying the following conditions is preferable. (1) The conductivity of the alloy itself is good. (2) The oxide film formed on the outermost surface of the alloy film has an inorganic semiconductor composition having good conductivity. (3) An inorganic semiconductor doped layer having good conductivity is formed on the oxide film layer on the surface of the metal fine powder during coating by the sputtering method. In order to satisfy these conditions, it is necessary to select an alloy containing a metal element having one more valence than the metal element constituting the metal fine powder. As a result, the crystal lattice constituting the oxide film and the doped layer becomes oxygen-deficient,
Excess electrons are generated, and electricity flows easily. Such alloys include In-Sn alloy, Sn-Sb alloy, Zn-A
1 alloy, Zn-Cu alloy and the like.

【0008】白色系合金の被覆量は、1〜10重量%,
好ましくは4〜7重量%の範囲が適している。被覆量が
1重量%に満たないと、粉末表面を連続した被覆で覆う
ことが困難になり、十分な導電性が得られない。逆に1
0重量%を超える被覆量では、導電性が良好であるもの
の、製造コストが高くなる。コーティング法としては、
スパッタリング法以外にイオンプレーティング法,真空
蒸着法等が考えられるが、本発明者等が開発した粉末ス
パッタリング法が最適である。粉末スパッタリング法で
白色系合金の被覆層を形成する場合、次のようなターゲ
ットが使用される。何れのターゲットを使用した場合で
も、各合金成分が均一に固溶した所定組成をもつ合金皮
膜が形成される。 (a)形成しようとする合金と平均組成は等しいが、単
相でない複数の結晶層からなるターゲットを焼結法又は
溶融法で作製したもの。 (b)形成しようとする合金被覆の主成分からなる金属
板に合金化しようとする金属を埋め込んだ組合せターゲ
ット (c)形成しようとする合金被覆の組成に応じて複数の
単一金属のターゲットを組み合わせたもの。
The coating amount of the white alloy is 1 to 10% by weight,
Preferably, the range of 4 to 7% by weight is suitable. If the coating amount is less than 1% by weight, it becomes difficult to cover the powder surface with a continuous coating, and sufficient conductivity cannot be obtained. Conversely 1
When the coating amount exceeds 0% by weight, the conductivity is good, but the production cost is high. As a coating method,
In addition to the sputtering method, an ion plating method, a vacuum evaporation method and the like can be considered, but the powder sputtering method developed by the present inventors is the most suitable. When forming a coating layer of a white alloy by the powder sputtering method, the following targets are used. Whichever target is used, an alloy film having a predetermined composition in which each alloy component is uniformly dissolved is formed. (A) A target having the same average composition as the alloy to be formed but having a plurality of non-single-phase crystal layers produced by a sintering method or a melting method. (B) a combination target in which a metal to be alloyed is embedded in a metal plate composed mainly of an alloy coating to be formed; and (c) a plurality of single metal targets according to the composition of the alloy coating to be formed. The combination.

【0009】金属微粉末表面への各種合金の被覆は、本
発明者等が開発した粉末スパッタリング装置が使用可能
である。たとえば、微粉末を入れた回転容器を回転させ
て流動層を形成し、金属をスパッタリングする装置(特
開平2−153068号公報),繰り返し行われる微粉
末の落下流に金属をスパッタリングする装置(特開昭6
2−250172号公報)等がある。図1に示す粉末ス
パッタリング装置においては、回転ドラム1を2本のロ
ール2で支持し、一方のロール2をモータ3で回転させ
る。回転ドラム1の内部には、2個のスパッタリング源
4が配置されており、投入した粉末原料5がスパッタリ
ングされる。
For coating the surface of the metal fine powder with various alloys, a powder sputtering apparatus developed by the present inventors can be used. For example, a rotating vessel containing fine powder is rotated to form a fluidized bed, and metal is sputtered (Japanese Patent Application Laid-Open No. 2-153068). Kaisho 6
2-250172). In the powder sputtering apparatus shown in FIG. 1, a rotating drum 1 is supported by two rolls 2, and one of the rolls 2 is rotated by a motor 3. Inside the rotating drum 1, two sputtering sources 4 are arranged, and the charged powder material 5 is sputtered.

【0010】回転ドラム1の上方には、外周に加熱コイ
ル6を備えた減圧処理室7が配置されており、減圧処理
室7の底部がバルブ8を備えた供給管9を介して回転ド
ラム1に接続されている。供給管9は、バルブ8より下
側の部分でArガス導入管10が内部に挿入された二重
管構造になっており、側面から回転ドラム1の内部に挿
入され、先端が回転ドラム1の底部に延びている。ま
た、バルブ8より下側で供給管9に分岐管11が取り付
けられており、分岐管11の先端が流体ジェットミル1
2に接続されている。流体ジェットミル12の出側は、
循環管13を経て減圧処理室7の上部に接続されてい
る。分岐管11,循環管13にバルブ14,15が挿入
されており、循環管13には固気分離装置16が接続さ
れている。
Above the rotary drum 1, a decompression processing chamber 7 provided with a heating coil 6 on the outer periphery is arranged, and the bottom of the decompression processing chamber 7 is connected to the rotation drum 1 It is connected to the. The supply pipe 9 has a double pipe structure in which an Ar gas introduction pipe 10 is inserted inside a portion below the valve 8, and is inserted into the inside of the rotary drum 1 from a side surface, and a tip of the rotary drum 1 is provided. Extends to the bottom. A branch pipe 11 is attached to the supply pipe 9 below the valve 8, and the tip of the branch pipe 11 is connected to the fluid jet mill 1.
2 are connected. The outlet side of the fluid jet mill 12 is
It is connected to the upper part of the decompression processing chamber 7 via the circulation pipe 13. Valves 14 and 15 are inserted into the branch pipe 11 and the circulation pipe 13, and a solid-gas separation device 16 is connected to the circulation pipe 13.

【0011】回転ドラム1内でスパッタリングにより金
属被覆された微粉末5は、分岐管11,循環管13から
減圧処理室7に送られ、所定厚みの皮膜が形成されるま
でスパッタリング処理に繰り返し供される。所定の厚み
をもつ皮膜が形成された微粉末5は、固気分離装置16
で回収される。白色系合金皮膜が形成された微粉末は、
不活性雰囲気中での加熱・拡散処理により無機半導体ド
ープ層を成長させても良い。たとえば、アルゴン,窒
素,水素等のガス雰囲気中で300〜500℃で約1時
間加熱・拡散処理すると、無機半導体ドープ層が厚く成
長し、導電性が一層よくなる。また、色調や導電性を調
整するため、塗料,プラスチック中への混合量を50重
量%以下と少なくしたり、従来のカーボン系粉末,無機
半導体系粉末,無機半導体被覆複合粉末,金属粉末,金
属被覆複合粉末等の従来品と本発明品を任意の割合で使
用することもできる。
The fine powder 5 metal-coated by sputtering in the rotary drum 1 is sent from the branch pipe 11 and the circulation pipe 13 to the decompression processing chamber 7 and repeatedly subjected to the sputtering process until a film having a predetermined thickness is formed. You. The fine powder 5 on which a film having a predetermined thickness is formed is supplied to a solid-gas separation device 16.
Collected at. The fine powder on which the white alloy film is formed
The inorganic semiconductor doped layer may be grown by a heating / diffusion treatment in an inert atmosphere. For example, when heating and diffusion treatment is performed at 300 to 500 ° C. for about 1 hour in a gas atmosphere of argon, nitrogen, hydrogen, or the like, the inorganic semiconductor doped layer grows thickly, and the conductivity is further improved. Further, in order to adjust the color tone and conductivity, the mixing amount in paints and plastics is reduced to 50% by weight or less, and conventional carbon-based powders, inorganic semiconductor-based powders, inorganic semiconductor-coated composite powders, metal powders, and metal powders are used. A conventional product such as a coated composite powder and the product of the present invention can be used in any ratio.

【0012】[0012]

【作用】金属微粉末の表面に白色系合金を粉末スパッタ
リングすると、たとえば1〜10重量%というごく少量
の被覆量でも粉末粒子の全表面をほぼ均一に覆うことが
でき、導電性の良好な粉末が得られる。これは、スパッ
タリング時にプラズマ状態まで励起された金属原子が粉
末粒子の表面に高速で衝突する現象を繰り返し、金属皮
膜形成用の核発生点bが極めて高い密度で形成されるこ
とに原因がある。他方、無電解めっき法で粉末表面に合
金層を形成しようとすると、図2に示すように粉末粒子
aの表面を予めPd等で活性化処理する必要がある。P
dの付着部分は、無電解めっき時に金属皮膜形成用核の
発生点bになる。付着密度は、Pdの付着が物理現象で
あることから、スパッタリング法におけるプラズマ状態
に励起された金属原子の衝突密度に比較すると格段に低
い。そのため、導電性の発現には粉末粒子の表面全体を
連続した皮膜cで覆うことが必要であるため、50重量
%以上という多量の金属で粉末粒子を被覆することが要
求される。
When a white alloy is powder-sputtered on the surface of a fine metal powder, the entire surface of the powder particles can be almost uniformly covered even with a very small amount of, for example, 1 to 10% by weight. Is obtained. This is due to the fact that metal atoms excited to a plasma state at the time of sputtering repeatedly collide with the surface of the powder particles at a high speed, and nucleation points b for forming a metal film are formed at an extremely high density. On the other hand, when an alloy layer is to be formed on the powder surface by the electroless plating method, it is necessary to previously activate the surface of the powder particles a with Pd or the like as shown in FIG. P
The adhering portion of d becomes a generation point b of a nucleus for forming a metal film during electroless plating. Since the adhesion density of Pd is a physical phenomenon, the adhesion density is much lower than the collision density of metal atoms excited to a plasma state in the sputtering method. For this reason, it is necessary to cover the entire surface of the powder particles with a continuous film c in order to exhibit conductivity, and it is required to cover the powder particles with a large amount of metal of 50% by weight or more.

【0013】無電解めっき法とスパッタリング法とで皮
膜形成時の結晶成長が異なることも、粉末粒子の全表面
を被覆するのに必要な被覆量に差がある原因である。す
なわち、無電解めっき法等で単一金属を被覆する場合、
核の発生と成長時に結晶が粗大化し易い傾向にある。他
方、スパッタリング法により合金皮膜を形成する場合に
は、逆に核の発生と成長時に結晶が微細化し易い傾向に
ある。そのため、スパッタリング法によるとき、より少
量の金属で粉末粒子の全表面を覆うことができる。ま
た、無電解めっき法等でAg,Cu,Ni等の単一金属
をコーティングする場合、経時変化によって皮膜表面に
酸化膜dが生成し、導電性が低下する。他方、スパッタ
リング法で形成した皮膜の最表面に生成する無機半導体
膜eは、自然にITO,ATO等の無機半導体組成にな
っているので導電性の低下がほとんどなく、しかも耐食
性の向上にも効果がある。更に、スパッタリング法によ
る皮膜形成時に、プラズマ状態まで励起された金属原子
が金属微粉末の表面にある酸化皮膜に高速で衝突する現
象を繰り返す。そのため、微粉末粒子の表面にも無機半
導体ドープ層fが形成される。このように無機半導体ド
ープ層fの形成があるため、単に無機半導体を微粉末表
面に被覆するよりも、本発明のように特定の白色系合金
を被覆する方が導電性の向上により効果的である。
The difference in crystal growth during film formation between the electroless plating method and the sputtering method is also a cause of the difference in the amount of coating required to cover the entire surface of the powder particles. In other words, when coating a single metal by electroless plating, etc.,
Crystals tend to coarsen during nucleation and growth. On the other hand, when an alloy film is formed by a sputtering method, conversely, there is a tendency that nuclei are generated and crystals are easily refined during growth. Therefore, when the sputtering method is used, the entire surface of the powder particles can be covered with a smaller amount of metal. Further, when a single metal such as Ag, Cu, Ni or the like is coated by an electroless plating method or the like, an oxide film d is generated on the surface of the film due to a change with time, and the conductivity is reduced. On the other hand, since the inorganic semiconductor film e formed on the outermost surface of the film formed by the sputtering method naturally has an inorganic semiconductor composition such as ITO and ATO, there is almost no decrease in conductivity, and it is also effective in improving corrosion resistance. There is. Further, a phenomenon in which the metal atoms excited to the plasma state collide with the oxide film on the surface of the metal fine powder at a high speed during the film formation by the sputtering method is repeated. Therefore, the inorganic semiconductor doped layer f is also formed on the surface of the fine powder particles. Since the inorganic semiconductor doped layer f is formed in this manner, it is more effective to coat a specific white alloy as in the present invention than to simply coat the inorganic semiconductor on the surface of the fine powder, because the conductivity is improved. is there.

【0014】[0014]

【実施例】【Example】

実施例1:図1の粉末スパッタリング装置を使用して、
Si微粉末(高純度化学研究所株式会社製,平均粒径:
0.1μm)の表面に、次のように1重量%の95%S
n−5%Sb合金を被覆した。内径200mm,軸方向
長さ200mmの回転ドラム1に、2個の95%Sn−
5%Sb合金スパッタリング源4を配置した。スパッタ
リング源4としては、Snターゲット及びSbターゲッ
トを組み合わせて出力1.5KW,周波数13.56M
Hzのマグネトロン型を使用した。回転ドラム1にSi
微粉末5を100g投入し、減圧処理室7を3.0×1
-3Paに減圧した後、Arガス導入管10からArガ
スを15cm3 /分の流量で導入し、Si微粉末5を分
岐管11,流体ジェットミル12及び循環管13を経て
減圧処理室7に吸引移送した。そして、減圧処理室7で
加熱コイル6により200℃に30分間加熱して乾燥脱
ガスした。
 Example 1: Using the powder sputtering apparatus of FIG.
Si fine powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., average particle size:
0.1 μm) on 1% by weight of 95% S
An n-5% Sb alloy was coated. 200mm inside diameter, axial direction
Two 95% Sn- on a rotating drum 1 having a length of 200 mm
A 5% Sb alloy sputtering source 4 was provided. Spatter
The ring source 4 includes a Sn target and an Sb target.
Output 1.5KW, frequency 13.56M
Hz magnetron type was used. Rotating drum 1 with Si
100 g of the fine powder 5 was charged, and the reduced-pressure processing chamber 7 was 3.0 × 1
0 -3After the pressure has been reduced to Pa, Ar gas
15cmThree / Minute, and introduce Si fine powder 5
Via manifold 11, fluid jet mill 12, and circulation pipe 13
The liquid was sucked and transferred to the decompression processing chamber 7. And in the decompression processing chamber 7
Heat to 200 ° C for 30 minutes with heating coil 6 to dry and remove
Gas.

【0015】次いで、回転ドラム1の雰囲気をArガス
で完全に置換した後、減圧処理室7のSi微粉末5を供
給管9から回転ドラム1に落下させ、回転ドラム1を5
rpmの速度で回転させながら3.0×10-3Paの減
圧雰囲気下でスパッタリング源4からスパッタリングし
た。スパッタリングを10分間継続した後、減圧処理室
7を減圧にすると共にArガス導入管10からArガス
を導入し、Si微粉末5を流体ジェットミル12経由で
減圧処理室7に吸引返送し、スパッタリング中に塊状化
されたSi微粉末5をできるだけ個々の粒子にほぐし
た。減圧処理室7に返送されたSi微粉末5には、0.
1重量%の95%Sn−5%Sb合金が被覆されてい
た。このスパッタリングを10回繰り返すことにより、
1重量%のSn−5%Sb合金被覆を形成した後、固気
分離装置16から回収した。
Next, after completely replacing the atmosphere of the rotary drum 1 with Ar gas, the Si fine powder 5 in the decompression processing chamber 7 is dropped from the supply pipe 9 onto the rotary drum 1, and the rotary drum 1
Sputtering was performed from the sputtering source 4 under a reduced pressure atmosphere of 3.0 × 10 −3 Pa while rotating at a speed of rpm. After the sputtering is continued for 10 minutes, the pressure in the decompression processing chamber 7 is reduced, and Ar gas is introduced from the Ar gas introduction pipe 10. The Si fine powder 5 is sucked and returned to the decompression processing chamber 7 via the fluid jet mill 12, and sputtering is performed. The Si fine powder 5 agglomerated therein was loosened as much as possible into individual particles. The Si fine powder 5 returned to the decompression processing chamber 7 contains 0.1.
1% by weight of a 95% Sn-5% Sb alloy was coated. By repeating this sputtering 10 times,
After forming a 1 wt% Sn-5% Sb alloy coating, it was recovered from the solid-gas separator 16.

【0016】実施例2,3:実施例1と同様の手順で、
Si粉末(高純度化学研究所株式会社製,平均粒径:
0.1μm)の表面に5重量%及び10重量%の95%
Sn−5%Sb合金被覆を形成した。 実施例4〜6:実施例1と同様の手順で、Ti粉末(高
純度化学研究所株式会社製,平均粒径:10.0μm)
の表面に1重量%,5重量%及び10重量%の90%S
n−10%Sb合金被覆を形成した。 実施例7〜9:実施例1と同様の手順で、Zn粉末(東
邦亜鉛株式会社製,平均粒径:4.0μm)の表面に1
重量%,5重量%及び10重量%の90%In−10%
Sn合金被覆を形成した。
Embodiments 2 and 3: By the same procedure as in Embodiment 1,
Si powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., average particle size:
95% of 5% and 10% by weight on the surface of 0.1 μm)
An Sn-5% Sb alloy coating was formed. Examples 4 to 6: In the same procedure as in Example 1, Ti powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., average particle size: 10.0 μm)
1%, 5% and 10% by weight of 90% S
An n-10% Sb alloy coating was formed. Examples 7 to 9: In the same procedure as in Example 1, 1 was added to the surface of Zn powder (manufactured by Toho Zinc Co., Ltd., average particle size: 4.0 μm).
90% In-10% by weight, 5% and 10% by weight
A Sn alloy coating was formed.

【0017】実施例10〜12:実施例1と同様の手順
で、Zn粉末(東邦亜鉛株式会社製,平均粒径:4.0
μm)の表面に1重量%,5重量%及び10重量%の9
0%Zn−10%Al合金被覆を形成した。 実施例13〜15:実施例1と同様の手順で、Zn粉末
(東邦亜鉛株式会社製,平均粒径:4.0μm)の表面
に1重量%,5重量%及び10重量%の80%Zn−2
0%Cu合金被覆を形成した。 実施例16〜18:実施例1と同様の手順で、Al粉末
(東洋アルミニウム株式会社製,平均粒径:10.0μ
m)の表面に1重量%,5重量%及び10重量%の80
%Sn−20%Sb合金被覆を形成した。 比較例1〜5:市販品である10%SbドープSnO2
を25重量%被覆したTiO2 粉末(三菱マテリアル株
式会社製,平均粒径:0.2μm)及び10%Sbドー
プSnO2 を30重量%被覆したBaSO4 粉末(三井
金属株式会社製,平均粒径:0.4μm)等の無機半導
体被覆複合粉末、10%SnドープSnO2 粉末(三菱
マテリアル株式会社製,平均粒径:0.02μm),5
%SnドープIn23粉末(三菱マテリアル株式会社
製,平均粒径:0.01μm)及び5%AlドープZn
O粉末(白水化学株式会社製,平均粒径:1.5μm)
等の無機半導体粉末を使用した。
Examples 10 to 12: In the same procedure as in Example 1, Zn powder (manufactured by Toho Zinc Co., Ltd., average particle size: 4.0)
1%, 5% and 10% by weight of 9
A 0% Zn-10% Al alloy coating was formed. Examples 13 to 15: 1%, 5% and 10% by weight of 80% Zn were added to the surface of Zn powder (manufactured by Toho Zinc Co., Ltd., average particle size: 4.0 μm) in the same procedure as in Example 1. -2
A 0% Cu alloy coating was formed. Examples 16 to 18: In the same procedure as in Example 1, Al powder (manufactured by Toyo Aluminum Co., Ltd., average particle size: 10.0 μm)
m) of 1%, 5% and 10% by weight of 80
% Sn-20% Sb alloy coating was formed. Comparative Examples 1 to 5: Commercially available 10% Sb-doped SnO 2
25 wt% coated TiO 2 powder (Mitsubishi Materials Corporation, average particle diameter: 0.2 [mu] m) and 10% Sb doped BaSO 4 powder SnO 2 were coated 30 wt% (manufactured by Mitsui Mining & Smelting Co., Ltd., average particle size : 0.4 μm), 10% Sn-doped SnO 2 powder (Mitsubishi Materials Corporation, average particle size: 0.02 μm), 5
% Sn-doped In 2 O 3 powder (Mitsubishi Materials Corporation, average particle size: 0.01 μm) and 5% Al-doped Zn
O powder (manufactured by Hakusui Chemical Co., Ltd., average particle size: 1.5 μm)
And the like.

【0018】実施例1〜18で得られた試料及び比較例
1〜5の試料の合計23サンプルについて、以下に示す
条件で導電性を測定した。粉末の比抵抗の測定に際して
は、試料粉末を200kg/cm2 の圧力で成形し、直
径25mm,厚み10mmの円柱形状の圧粉体を作製し
た。そして、圧粉体の両端に抵抗計を接続し、直流比抵
抗を測定した。塗装板の表面電気抵抗の測定に際して
は、各試料粉末100gをアクリル塗料ベース(関西ペ
イント株式会社製 No.2026,樹脂含有量:40重
量%)250gの中に投入し、800mlのステンレス
鋼製容器中で撹拌翼を2,000rpmで1時間回転さ
せることにより分散した。得られたアクリル塗料を、ド
クターブレードを用いて乾燥塗膜厚みで約30μmとな
るように1mm厚の透明アクリル板上に塗布し、常温で
乾燥することにより塗装板を作製した。この塗装板につ
いて、表面電気抵抗を測定した。表1の測定結果にみら
れるように、本発明に従った実施例1〜18では、少な
い被覆量でも良好な導電性を呈する白色粉末が得られて
いる。これに対し、比較例1,2の粉末では、必要な導
電性を得るために被覆量を多くすることが必要であっ
た。また、比較例3〜5の粉末では、導電性そのものが
低い値を示した。
Conductivity was measured on the samples obtained in Examples 1 to 18 and the samples of Comparative Examples 1 to 5 in total under a condition shown below. In measuring the specific resistance of the powder, the sample powder was molded at a pressure of 200 kg / cm 2 to produce a cylindrical green compact having a diameter of 25 mm and a thickness of 10 mm. Then, a resistance meter was connected to both ends of the green compact, and the DC specific resistance was measured. When measuring the surface electric resistance of the coated plate, 100 g of each sample powder was put into 250 g of an acrylic paint base (Kansai Paint Co., Ltd., No. 2026, resin content: 40% by weight), and an 800 ml stainless steel container The dispersion was performed by rotating the stirring blade at 2,000 rpm for 1 hour in the inside. The obtained acrylic paint was applied on a transparent acrylic plate having a thickness of 1 mm so as to have a dry coating thickness of about 30 μm using a doctor blade, and dried at normal temperature to prepare a coated plate. The surface electric resistance of this coated plate was measured. As can be seen from the measurement results in Table 1, in Examples 1 to 18 according to the present invention, a white powder exhibiting good conductivity was obtained even with a small coating amount. On the other hand, in the powders of Comparative Examples 1 and 2, it was necessary to increase the coating amount in order to obtain the required conductivity. In the powders of Comparative Examples 3 to 5, the conductivity itself showed a low value.

【0019】 [0019]

【0020】[0020]

【発明の効果】以上に説明したように、本発明の高導電
性複合粉末は、金属微粉末にスパッタリング法で白色系
合金をコーティングしているため、SnドープSnO2
被覆TiO2 粉末,SbドープSnO2 被覆BaSO4
粉末等の無機半導体被覆複合粉末に比較すると導電性が
はるかに優れており、カーボンブラックや金属粉末に匹
敵する導電性を呈する。しかも、灰白色であることか
ら、種々の着色が容易に行われる。そのため、高性能の
帯電防止用導電性粉末として、外装建材,内装建材,家
電製品,自動車,船舶,繊維等の広範囲の分野で使用さ
れる。また、EMIシールドが可能なカーペット,カー
テン,間仕切り等の内装建材,液晶ディスプレイ用塗装
タイプの透明導電膜,自動車の後部窓ガラスの霜取りヒ
ータ用等の高導電膜等としても使用可能である。
As described above, according to the present invention, highly conductive composite powder of the present invention, since the coated white alloy by sputtering metal micropowder, Sn-doped SnO 2
Coated TiO 2 powder, Sb-doped SnO 2 coated BaSO 4
Compared with inorganic semiconductor-coated composite powders such as powders, the conductivity is far superior and exhibits conductivity comparable to carbon black or metal powder. Moreover, since it is grayish white, various colorings are easily performed. Therefore, it is used as a high-performance antistatic conductive powder in a wide range of fields such as exterior building materials, interior building materials, home appliances, automobiles, ships, and fibers. It can also be used as interior building materials such as carpets, curtains, partitions, etc., capable of EMI shielding, as a transparent conductive film of a paint type for liquid crystal displays, and as a high conductive film for a defrost heater on a rear window glass of an automobile.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明で使用する粉末スパッタリング装置FIG. 1 is a powder sputtering apparatus used in the present invention.

【図2】 スパッタリング法で合金皮膜を設けた導電性
粉末と従来の無電解めっきで金属皮膜を設けた導電性粉
末の相違を説明するための図
FIG. 2 is a diagram for explaining a difference between a conductive powder provided with an alloy film by a sputtering method and a conductive powder provided with a metal film by conventional electroless plating.

【符号の説明】[Explanation of symbols]

a:微粉末粒子 b:皮膜形成用核の発生点 c:
連続皮膜 d:酸化皮膜膜 e:無機半導体膜
f:無機半導体ドープ層 1:回転ドラム 2:ロール 3:モータ 4:
スパッタリング源 5:粉末原料(金属微粉末) 6:加熱コイル
7:減圧処理室 8:バルブ 9:供給管 10:Arガス導入管
11:分岐管 12:流体ジェットミル 13:循環管 14,1
5:バルブ 16:固気分離装置
a: fine powder particles b: generation point of nuclei for film formation c:
Continuous film d: Oxide film e: Inorganic semiconductor film
f: inorganic semiconductor doped layer 1: rotating drum 2: roll 3: motor 4:
Sputtering source 5: Powder raw material (metal fine powder) 6: Heating coil
7: Decompression processing chamber 8: Valve 9: Supply pipe 10: Ar gas introduction pipe
11: Branch pipe 12: Fluid jet mill 13: Circulation pipe 14, 1
5: Valve 16: Solid-gas separation device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径0.1〜10μmの金属微粉末
をスパッタリング法により1〜10重量%の白色系合金
で被覆している高導電性複合粉末。
1. A highly conductive composite powder obtained by coating a fine metal powder having an average particle size of 0.1 to 10 μm with a white alloy of 1 to 10% by weight by a sputtering method.
【請求項2】 金属微粉末がSi,Ti,Zn又はAl
の1種又は2種以上である請求項1記載の高導電性複合
粉末。
2. The method according to claim 1, wherein the metal fine powder is Si, Ti, Zn or Al.
The highly conductive composite powder according to claim 1, which is one or more of the following.
【請求項3】 白色系合金がIn−Sn合金,Sn−S
b合金,Zn−Al合金又はZn−Cu合金である請求
項1記載の高導電性複合粉末。
3. The white alloy is an In—Sn alloy, Sn—S
The highly conductive composite powder according to claim 1, which is a b alloy, a Zn-Al alloy, or a Zn-Cu alloy.
JP8329293A 1996-12-10 1996-12-10 Composite powder with high electric conductivity Withdrawn JPH10168503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8329293A JPH10168503A (en) 1996-12-10 1996-12-10 Composite powder with high electric conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8329293A JPH10168503A (en) 1996-12-10 1996-12-10 Composite powder with high electric conductivity

Publications (1)

Publication Number Publication Date
JPH10168503A true JPH10168503A (en) 1998-06-23

Family

ID=18219850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8329293A Withdrawn JPH10168503A (en) 1996-12-10 1996-12-10 Composite powder with high electric conductivity

Country Status (1)

Country Link
JP (1) JPH10168503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256063A (en) * 2004-03-10 2005-09-22 Ulvac Japan Ltd Water collapsible al composite material, al film and al powder composed of the material, method for manufacturing the same, and constitution member for deposition chamber, and method for recovering deposition material
JP2008137077A (en) * 2006-11-13 2008-06-19 Sulzer Metco Us Inc Material and method of manufacture of solder joint with high thermal conductivity and high electrical conductivity
JP6376266B1 (en) * 2017-10-24 2018-08-22 千住金属工業株式会社 Nuclear material, solder joint and bump electrode forming method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256063A (en) * 2004-03-10 2005-09-22 Ulvac Japan Ltd Water collapsible al composite material, al film and al powder composed of the material, method for manufacturing the same, and constitution member for deposition chamber, and method for recovering deposition material
JP4653406B2 (en) * 2004-03-10 2011-03-16 株式会社アルバック Water-disintegrating Al composite material, water-disintegrating Al sprayed film, method for producing water-disintegrating Al powder, film forming chamber component, and method for recovering film forming material
US7951463B2 (en) 2004-03-10 2011-05-31 Ulvac, Inc. Water collapsible aluminum film
KR101235999B1 (en) * 2004-03-10 2013-02-21 가부시키가이샤 알박 Al COMPOSITE MATERIAL BEING CRUMBLED WITH WATER, Al FILM AND Al POWDER COMPRISING THE MATERIAL AND METHODS FOR PREPARATION THEREOF, CONSTITUTIONAL MEMBER FOR FILM-FORMING CHAMBER METHOD FOR RECOVERING FILM-FORMING MATERIAL
JP2008137077A (en) * 2006-11-13 2008-06-19 Sulzer Metco Us Inc Material and method of manufacture of solder joint with high thermal conductivity and high electrical conductivity
JP2013144314A (en) * 2006-11-13 2013-07-25 Sulzer Metco Us Inc Material and method for producing solder joint with high thermal conductivity and high electrical conductivity
JP6376266B1 (en) * 2017-10-24 2018-08-22 千住金属工業株式会社 Nuclear material, solder joint and bump electrode forming method
KR20190045846A (en) * 2017-10-24 2019-05-03 센주긴조쿠고교 가부시키가이샤 Nuclear material and solder joint and bump electrode forming method
TWI664298B (en) * 2017-10-24 2019-07-01 日商千住金屬工業股份有限公司 Core material, welding joint and formation method of bump electrode
CN109693054B (en) * 2017-10-24 2020-02-28 千住金属工业株式会社 Core material, solder joint and bump electrode forming method

Similar Documents

Publication Publication Date Title
JP5413540B2 (en) MgO target for sputtering
KR20140000688A (en) Zinc oxide sintered compact, sputtering target, and zinc oxide thin film
RU2714151C1 (en) Method of applying graphene coating on metal powders
CN102276250A (en) Aluminum doped zinc oxide sputtering targets
Byeon et al. Aerosol based fabrication of a Cu/polymer and its application for electromagnetic interference shielding
JP3473146B2 (en) Composition for forming conductive film and method for producing transparent conductive film-coated glass plate
JPH10168503A (en) Composite powder with high electric conductivity
JP2009197221A (en) Powder coated with cuprous oxide and manufacturing method thereof
US3440181A (en) Metal coated vermicular expanded graphite and polymer composition containing same
JP3230395B2 (en) Composition for forming conductive film and method for forming conductive film
JPH10121102A (en) White conductive composite powder
JPH10212501A (en) Coated powder, silver-coated copper powder and its production, conductive paste and conductive film
JPH11181327A (en) Antibacterial antimold black pigment and resin particle
JP2006331703A (en) Conductive powder and its manufacturing method
JPS6060168A (en) Electrically conductive paint
Taguchi et al. Study of the surface morphology of platinum thin films on powdery substrates prepared by the barrel sputtering system
JPH10158540A (en) Silver color metallic pigment excellent in weather resistance and brilliance
JP2018155520A (en) Evaluation method of particle shape
Zhou et al. Conductive ZnO: Zn composites for high-rate sputtering deposition of ZnO thin films
JPS5986637A (en) Electrically conductive inorganic powder
CN1539744A (en) Composite powder of stannic oxide Nano crystal with silver being covered
JP2002008438A (en) Fibrous electrical conductive filler
JPS5941489A (en) Method for electroplating particulate material
Xu et al. Coating metals on micropowders by magnetron sputtering
JPH11229115A (en) Preparation of powder having surface covered with fine powder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302