JPH10121102A - White conductive composite powder - Google Patents

White conductive composite powder

Info

Publication number
JPH10121102A
JPH10121102A JP8271992A JP27199296A JPH10121102A JP H10121102 A JPH10121102 A JP H10121102A JP 8271992 A JP8271992 A JP 8271992A JP 27199296 A JP27199296 A JP 27199296A JP H10121102 A JPH10121102 A JP H10121102A
Authority
JP
Japan
Prior art keywords
powder
white
alloy
coated
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8271992A
Other languages
Japanese (ja)
Inventor
Eiki Takeshima
鋭機 竹島
Junji Saida
淳治 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP8271992A priority Critical patent/JPH10121102A/en
Publication of JPH10121102A publication Critical patent/JPH10121102A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide white powder good in electric conductivity and used for coating material for EMI shields for preventing electrification, plastic molded parts, plastic films, synthetic resins or the like. SOLUTION: This white conductive composite powder is the one in which white base oxide fine powder having 0.1 to 10μm particle diameter is coated with 1 to 10wt.% white base alloy by a sputtering method. As the white base oxide fine powder, one or >=two kinds among SiO2 , TiO2 , ZnO and Al2 O3 are used. As the white base alloy, In-Sn alloys, Sn-Sb alloys or Zn-Al alloys are used. Since the white base alloy coating is formed on the surfaces of the powder particles by a sputtering method, the whole surfaces of the powder particles can be coated by small coating weight, by which white powder having excellent electric conductivity can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、帯電防止用,EMIシ
ールド用等の塗料,プラスチック成形品,プラスチック
フィルム,合成繊維等に配合される白色粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a white powder to be incorporated in paints for antistatic purposes, EMI shielding and the like, plastic molded articles, plastic films, synthetic fibers and the like.

【0002】[0002]

【従来の技術】帯電防止用として使用される導電性粉末
には、カーボンブラック,黒鉛,炭素繊維等のカーボン
系粉末,SnドープIn23 ,SbドープSnO2
AlドープZnO等の無機半導体粉末,SnドープSn
2 被覆TiO2 ,SnドープSnO2 被覆マイカ,S
bドープSnO2 被覆BaSO4 等の無機半導体被覆複
合粉末がある。なかでも、安価で導電性がよいことから
カーボンブラックが最も使用されている。しかし、カー
ボンブラックを使用した導電性粉末では、黒色以外の色
をつけることが困難であった。特に、カーペット,カー
テン等の合成繊維や、壁紙,間仕切り等のプラスチック
スを帯電防止処理する際には、カーボンブラックと同等
の優れた導電性を示し、且つ着色が容易な白色系の微粉
末が要求されていた。そこで、前掲したような各種の無
機半導体粉末や無機半導体被覆複合粉末が開発されてき
た。
2. Description of the Related Art Conductive powders used for antistatic purposes include carbon-based powders such as carbon black, graphite and carbon fiber, Sn-doped In 2 O 3 , Sb-doped SnO 2 , and the like.
Inorganic semiconductor powder such as Al-doped ZnO, Sn-doped Sn
O 2 coated TiO 2 , Sn doped SnO 2 coated mica, S
There is an inorganic semiconductor-coated composite powder such as b-doped SnO 2 -coated BaSO 4 . Among them, carbon black is most used because of its low cost and good conductivity. However, it has been difficult to give a color other than black with a conductive powder using carbon black. In particular, when performing antistatic treatment on synthetic fibers such as carpets and curtains, and plastics such as wallpaper and partition walls, white fine powder that exhibits excellent conductivity equivalent to carbon black and is easy to color is used. Had been requested. Therefore, various inorganic semiconductor powders and inorganic semiconductor-coated composite powders as described above have been developed.

【0003】従来の無機半導体粉末や無機半導体被覆複
合粉末は、何れも白色系で、種々の着色が容易であるも
のの、無機半導体であることからカーボンブラックや金
属に比較すると導電性がかなり劣っている。他方、コン
ピュータやOA機器の急速な普及に伴って、電磁波の悪
影響が大きな問題となってきている。この点では、単な
る帯電防止用としてではなく、EMIシールドも可能な
カーペット,カーテン,壁紙,間仕切り等の内装建材の
開発が検討され始めており、そのためにより優れた導電
性を示す白色系微粉末の開発が強く望まれている。EM
Iシールド用には、Ag,Cu,Ni,Al,Zn等の
金属粉末やAg被覆シリコーン樹脂,Cu被覆マイカ,
Ni被覆チタン酸カリウムウイスカ等の金属被覆複合粉
末が優れた導電性を示す粉末として一般に使用されてい
る。
[0003] Conventional inorganic semiconductor powders and inorganic semiconductor-coated composite powders are all white and can be easily colored in various ways. However, since they are inorganic semiconductors, their conductivity is considerably inferior to carbon black and metals. I have. On the other hand, with the rapid spread of computers and OA equipment, the adverse effects of electromagnetic waves have become a major problem. In this regard, the development of interior building materials such as carpets, curtains, wallpapers, partitions, etc. that are not merely antistatic but also capable of EMI shielding has begun to be studied. Is strongly desired. EM
For I shielding, metal powder such as Ag, Cu, Ni, Al, Zn, etc., Ag-coated silicone resin, Cu-coated mica,
Metal-coated composite powders such as Ni-coated potassium titanate whiskers are generally used as powders having excellent conductivity.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの金属
被覆複合粉末は、優れた導電性を示すものの、粒径が1
0μmを超える大きさであり、繊維系が30μm以下で
あるカーペット,カーテン等の合成繊維の中にうまく練
り込むことができない。また、金属粉末は、使用中に表
面が酸化又は腐食すると導電性が低下する。他方、金属
被覆複合粉末として、シリコーン樹脂やマイカに金属を
コーティングして導電性を発現させる場合、従来の無電
解めっき等では粒子表面に均一で且つ薄くコーティング
することが困難なために、膜厚を厚くすることにより導
電性を確保している。しかし、比表面積が大きく且つ比
重の小さいこれらの粉末に比重の大きい金属をコーティ
ングすると、50〜80重量%もの大きな被覆量が必要
となり、製造コストの大幅な上昇を招く。本発明は、こ
のような問題を解消すべく案出されたものであり、白色
系微粉末の表面にスパッタリング法で白色系合金を被覆
することにより、金属被覆量を可能な限り少なくして製
造コストを節減し、カーボンブラック,金属等と同レベ
ルの導電性を示し、粒径が小さく耐久性に優れた白色導
電性粉末を提供することを目的とする。
However, these metal-coated composite powders exhibit excellent conductivity, but have a particle size of 1%.
It cannot be kneaded well into synthetic fibers such as carpets and curtains having a size exceeding 0 μm and a fiber system of 30 μm or less. In addition, the conductivity of the metal powder decreases when the surface is oxidized or corroded during use. On the other hand, when a metal is coated on a silicone resin or mica as a metal-coated composite powder to exhibit conductivity, it is difficult to coat the particle surface uniformly and thinly by conventional electroless plating or the like. The conductivity is ensured by increasing the thickness. However, if these powders having a large specific surface area and a small specific gravity are coated with a metal having a large specific gravity, a coating amount as large as 50 to 80% by weight is required, and the production cost is greatly increased. The present invention has been devised in order to solve such a problem. By coating the surface of a white fine powder with a white alloy by a sputtering method, the metal coating amount can be reduced as much as possible. It is an object of the present invention to provide a white conductive powder which reduces cost, exhibits the same level of conductivity as carbon black, metal, etc., and has a small particle size and excellent durability.

【0005】[0005]

【課題を解決するための手段】本発明の白色導電性複合
粉末は、その目的を達成するため、粒径0.1〜10μ
mの白色系酸化物微粉末をスパッタリング法で1〜10
重量%の白色系合金で被覆していることを特徴とする。
白色系酸化物微粉末には、SiO2 ,TiO2,ZnO
又はAl23 の1種又は2種以上が使用される。白色
系合金には、In−Sn合金,Sn−Sb合金又はZn
−Al合金が使用される。
Means for Solving the Problems The white conductive composite powder of the present invention has a particle size of 0.1 to 10 μm in order to achieve the object.
m of white oxide fine powder by sputtering method
It is characterized in that it is coated with a white alloy of weight%.
The white oxide fine powder includes SiO 2 , TiO 2 , ZnO
Alternatively, one or more of Al 2 O 3 are used. White alloys include In-Sn alloy, Sn-Sb alloy or Zn
-An Al alloy is used.

【0006】[0006]

【実施の形態】SiO2 ,TiO2 等の酸化物粉末の表
面にスパッタリング法でSn−Sb合金を被覆すると、
粉末表面にSbドープSiO2 層,SbドープTiO2
層等の無機半導体層が形成される。また、ZnO粉末の
表面にスパッタリング法でIn−Sn合金又はZn−A
l合金を被覆すると、粉末表面にInドープZnO層又
はAlドープZnO層等の無機半導体層が形成される。
Al23 粉末の表面にスパッタリング法でIn−Sn
合金又はSn−Sb合金を被覆すると、粉末表面にSn
ドープAl23 層のような無機半導体層が形成され
る。酸化物粉末は、球状,粒状,フレーク状,ウイスカ
状の何れの形状でも良いが、塗料,プラスチックス等に
対する分散性からは球状が最適である。粉末の平均粒径
は、0.1〜10μm,より好ましくは1〜3μmの範
囲が適している。粒径が0.1μmに満たないと、粉末
の表面積が大きくなり、導電性を発現させるために必要
な合金の被覆量が極めて多くなり、結果としてコストを
上昇させる。逆に10μmを超える大粒径では、塗料や
プラスチックスに混合する際に分散状態が不均一になり
易く、安定した導電性が得られ難い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When a surface of an oxide powder such as SiO 2 or TiO 2 is coated with a Sn—Sb alloy by a sputtering method,
Sb-doped SiO 2 layer, Sb-doped TiO 2 on powder surface
An inorganic semiconductor layer such as a layer is formed. In addition, an In—Sn alloy or Zn—A
When the alloy is coated, an inorganic semiconductor layer such as an In-doped ZnO layer or an Al-doped ZnO layer is formed on the powder surface.
In-Sn is formed on the surface of Al 2 O 3 powder by sputtering.
When the alloy or Sn-Sb alloy is coated, Sn
An inorganic semiconductor layer such as a doped Al 2 O 3 layer is formed. The oxide powder may be in any of spherical, granular, flake, and whisker-like shapes, but the spherical shape is optimal from the viewpoint of dispersibility in paints, plastics, and the like. The average particle size of the powder is suitably in the range of 0.1 to 10 μm, more preferably 1 to 3 μm. If the particle size is less than 0.1 μm, the surface area of the powder becomes large, and the amount of the alloy coating required for exhibiting conductivity becomes extremely large, resulting in an increase in cost. On the other hand, if the particle diameter is larger than 10 μm, the dispersion state tends to be non-uniform when mixed with paints or plastics, and it is difficult to obtain stable conductivity.

【0007】コーティングに使用される白色系合金とし
ては、次の条件を満足する合金組成が好ましい。 (1)合金自体の導電性が良好なこと。 (2)合金皮膜の最表面に生成する酸化物膜も導電性が
良好な無機半導体組成になっていること。 (3)スパッタリング法による被覆時に白色系酸化物微
粉末の表面に導電性の良い無機半導体ドープ層が形成さ
れること。 これら条件を満足させるためには、白色系酸化物微粉末
を構成している金属元素よりも価数が一つ多い金属元素
を含む合金を選択する必要がある。これにより、酸化膜
及びドープ層を構成している結晶格子が酸素欠損状態に
なり、余剰電子が発生して電気が流れ易くなる。このよ
うな合金として、In−Sn合金,Sn−Sb合金,Z
n−Al合金等がある。
[0007] As a white alloy used for coating, an alloy composition satisfying the following conditions is preferable. (1) The conductivity of the alloy itself is good. (2) The oxide film formed on the outermost surface of the alloy film has an inorganic semiconductor composition having good conductivity. (3) An inorganic semiconductor doped layer having good conductivity is formed on the surface of the white oxide fine powder during coating by the sputtering method. In order to satisfy these conditions, it is necessary to select an alloy containing a metal element having one more valence than the metal element constituting the white oxide fine powder. As a result, the crystal lattice forming the oxide film and the doped layer becomes in an oxygen-deficient state, and surplus electrons are generated, so that electricity easily flows. Such alloys include In-Sn alloy, Sn-Sb alloy, Z
There is an n-Al alloy or the like.

【0008】白色系合金の被覆量は、1〜10重量%,
好ましくは4〜7重量%の範囲が適している。被覆量が
1重量%に満たないと、粉末表面を連続した被覆で覆う
ことが困難になり、十分な導電性が得られない。逆に1
0重量%を超える被覆量では、導電性が良好であるもの
の、製造コストが高くなる。コーティング法としては、
スパッタリング法以外にイオンプレーティング法,真空
蒸着法等が考えられるが、本発明者等が開発した粉末ス
パッタリング法が最適である。粉末スパッタリング法で
白色系合金の被覆層を形成する場合、次のようなターゲ
ットが使用される。何れのターゲットを使用した場合で
も、各合金成分が均一に固溶した所定組成をもつ合金皮
膜が形成される。 (a)形成しようとする合金と平均組成は等しいが、単
相でない複数の結晶層からなるターゲットを焼結法又は
溶融法で作製したもの。 (b)形成しようとする合金被覆の主成分からなる金属
板に合金化しようとする金属を埋め込んだ組合せターゲ
ット (c)形成しようとする合金被覆の組成に応じて複数の
単一金属のターゲットを組み合わせたもの。
The coating amount of the white alloy is 1 to 10% by weight,
Preferably, the range of 4 to 7% by weight is suitable. If the coating amount is less than 1% by weight, it becomes difficult to cover the powder surface with a continuous coating, and sufficient conductivity cannot be obtained. Conversely 1
When the coating amount exceeds 0% by weight, the conductivity is good, but the production cost is high. As a coating method,
In addition to the sputtering method, an ion plating method, a vacuum evaporation method and the like can be considered, but the powder sputtering method developed by the present inventors is the most suitable. When forming a coating layer of a white alloy by the powder sputtering method, the following targets are used. Whichever target is used, an alloy film having a predetermined composition in which each alloy component is uniformly dissolved is formed. (A) A target having the same average composition as the alloy to be formed but having a plurality of non-single-phase crystal layers produced by a sintering method or a melting method. (B) a combination target in which a metal to be alloyed is embedded in a metal plate composed mainly of an alloy coating to be formed; and (c) a plurality of single metal targets according to the composition of the alloy coating to be formed. The combination.

【0009】白色系酸化物微粉末表面への各種合金の被
覆は、本発明者等が開発した粉末スパッタリング装置が
使用可能である。たとえば、粉末を入れた回転容器を回
転させて流動層を形成し、金属をスパッタリングする装
置(特開平2−153068号公報),繰り返し行われ
る粉末の落下流に金属をスパッタリングする装置(特開
昭62−250172号公報)等がある。図1に示す粉
末スパッタリング装置においては、回転ドラム1を2本
のロール2で支持し、一方のロール2をモータ3で回転
させる。回転ドラム1の内部には、2個のスパッタリン
グ源4が配置されており、投入した粉末原料5がスパッ
タリングされる。
For coating the surface of the white oxide fine powder with various alloys, a powder sputtering apparatus developed by the present inventors can be used. For example, an apparatus for rotating a rotating container containing powder to form a fluidized bed and sputtering metal (JP-A-2-153068), and an apparatus for sputtering metal in a falling powder flow that is repeatedly performed (JP-A-Showa) 62-250172). In the powder sputtering apparatus shown in FIG. 1, a rotating drum 1 is supported by two rolls 2, and one of the rolls 2 is rotated by a motor 3. Inside the rotating drum 1, two sputtering sources 4 are arranged, and the charged powder material 5 is sputtered.

【0010】回転ドラム1の上方には、外周に加熱コイ
ル6を備えた減圧処理室7が配置されており、減圧処理
室7の底部がバルブ8を備えた供給管9を介して回転ド
ラム1に接続されている。供給管9は、バルブ8より下
側の部分でArガス導入管10が内部に挿入された二重
管構造になっており、側面から回転ドラム1の内部に挿
入され、先端が回転ドラム1の底部に延びている。ま
た、バルブ8より下側で供給管9に分岐管11が取り付
けられており、分岐管11の先端が流体ジェットミル1
2に接続されている。流体ジェットミル12の出側は、
循環管13を経て減圧処理室7の上部に接続されてい
る。分岐管11,循環管13にバルブ14,15が挿入
されており、循環管13には固気分離装置16が接続さ
れている。
Above the rotary drum 1, a decompression processing chamber 7 provided with a heating coil 6 on the outer periphery is arranged, and the bottom of the decompression processing chamber 7 is connected to the rotation drum 1 It is connected to the. The supply pipe 9 has a double pipe structure in which an Ar gas introduction pipe 10 is inserted inside a portion below the valve 8, and is inserted into the inside of the rotary drum 1 from a side surface, and a tip of the rotary drum 1 is provided. Extends to the bottom. A branch pipe 11 is attached to the supply pipe 9 below the valve 8, and the tip of the branch pipe 11 is connected to the fluid jet mill 1.
2 are connected. The outlet side of the fluid jet mill 12 is
It is connected to the upper part of the decompression processing chamber 7 via the circulation pipe 13. Valves 14 and 15 are inserted into the branch pipe 11 and the circulation pipe 13, and a solid-gas separation device 16 is connected to the circulation pipe 13.

【0011】回転ドラム1内でスパッタリングにより金
属被覆された粉末5は、分岐管11,循環管13から減
圧処理室7に送られ、所定厚みの皮膜が形成されるまで
スパッタリング処理に繰り返し供される。所定の厚みを
もつ皮膜が形成された粉末5は、固気分離装置16で回
収される。白色系合金皮膜が形成された粉末は、不活性
雰囲気中での加熱・拡散処理により無機半導体ドープ層
を成長させても良い。たとえば、アルゴン,窒素,水素
等のガス雰囲気中で300〜500℃で約1時間加熱・
拡散処理すると、無機半導体ドープ層が厚く成長し、導
電性が一層よくなる。また、色調や導電性を調整するた
め、塗料,プラスチック中への混合量を50重量%以下
と少なくしたり、従来のカーボン系粉末,無機半導体系
粉末,無機半導体被覆複合粉末,金属粉末,金属被覆複
合粉末等の従来品と本発明品を任意の割合で使用するこ
ともできる。
The powder 5 metal-coated by sputtering in the rotary drum 1 is sent from the branch pipe 11 and the circulation pipe 13 to the decompression processing chamber 7, and is repeatedly subjected to the sputtering process until a film having a predetermined thickness is formed. . The powder 5 on which the film having a predetermined thickness is formed is collected by the solid-gas separator 16. The inorganic semiconductor doped layer may be grown on the powder having the white alloy film formed thereon by heating and diffusing in an inert atmosphere. For example, heating at 300 to 500 ° C. for about 1 hour in a gas atmosphere of argon, nitrogen, hydrogen, etc.
When the diffusion treatment is performed, the inorganic semiconductor doped layer grows thickly, and the conductivity is further improved. Further, in order to adjust the color tone and conductivity, the mixing amount in paints and plastics is reduced to 50% by weight or less, and conventional carbon-based powders, inorganic semiconductor-based powders, inorganic semiconductor-coated composite powders, metal powders, and metal powders are used. A conventional product such as a coated composite powder and the product of the present invention can be used in any ratio.

【0012】[0012]

【作用】白色系酸化物微粉末の表面に白色系合金を粉末
スパッタリングすると、たとえば1〜10重量%という
ごく少量の被覆量で粉末粒子の全表面をほぼ均一に覆う
ことができ、導電性の良好な粉末が得られる。これは、
スパッタリング時にプラズマ状態まで励起された金属原
子が粉末粒子の表面に高速で衝突する現象を繰り返し、
金属皮膜形成用の核発生点bが極めて高い密度で形成さ
れることに原因がある。他方、無電解めっき法で粉末表
面に合金層を形成しようとすると、図2に示すように粉
末粒子aの表面を予めPd等で活性化処理する必要があ
る。Pdの付着部分は、無電解めっき時に金属皮膜形成
用核の発生点bになる。付着密度は、Pdの付着が物理
現象であることから、スパッタリング法におけるプラズ
マ状態に励起された金属原子の衝突密度に比較すると格
段に低い。そのため、導電性の発現には粉末粒子の表面
全体を連続した皮膜cで覆うことが必要であるため、5
0重量%以上という多量の金属で粉末粒子を被覆するこ
とが要求される。
When a white alloy is powder-sputtered on the surface of a white oxide fine powder, the entire surface of the powder particles can be almost uniformly covered with a very small coating amount of, for example, 1 to 10% by weight. Good powder is obtained. this is,
The phenomenon that metal atoms excited to the plasma state during sputtering collide with the surface of the powder particles at high speed,
This is because the nucleation point b for forming the metal film is formed at an extremely high density. On the other hand, when an alloy layer is to be formed on the powder surface by the electroless plating method, it is necessary to previously activate the surface of the powder particles a with Pd or the like as shown in FIG. The portion where Pd adheres becomes a generation point b of a nucleus for forming a metal film during electroless plating. Since the adhesion density of Pd is a physical phenomenon, the adhesion density is much lower than the collision density of metal atoms excited to a plasma state in the sputtering method. Therefore, it is necessary to cover the entire surface of the powder particles with a continuous film c in order to develop conductivity.
It is required to coat the powder particles with a large amount of metal of 0% by weight or more.

【0013】無電解めっき法とスパッタリング法とで皮
膜形成時の結晶成長が異なることも、粉末粒子の全表面
を被覆するのに必要な被覆量に差がある原因である。す
なわち、無電解めっき法等で単一金属を被覆する場合、
核の発生と成長時に結晶が粗大化し易い傾向にある。他
方、スパッタリング法により合金皮膜を形成する場合に
は、逆に核の発生と成長時に結晶が微細化し易い傾向に
ある。そのため、スパッタリング法によるとき、より少
量の金属で粉末粒子の全表面を覆うことができる。ま
た、無電解めっき法等でAg,Cu,Ni等の単一金属
をコーティングする場合、経時変化によって皮膜表面に
酸化膜dが生成し、導電性が低下する。他方、スパッタ
リング法で形成した皮膜の最表面に生成する無機半導体
膜eは、自然にITO,ATO等の無機半導体組成にな
っているので導電性の低下がほとんどなく、しかも耐久
性の向上にも効果がある。更に、スパッタリング法によ
る皮膜形成時に、プラズマ状態まで励起された金属原子
が白色系酸化物粉末の表面に高速で衝突する現象を繰り
返す。そのため、粉末粒子の表面に無機半導体ドープ層
fが形成される。このように無機半導体ドープ層fの形
成があるため、単に無機半導体を粉末表面に被覆するよ
りも、本発明のように特定の白色系合金を被覆する方が
導電性の向上により効果的である。
The difference in crystal growth during film formation between the electroless plating method and the sputtering method is also a cause of the difference in the amount of coating required to cover the entire surface of the powder particles. In other words, when coating a single metal by electroless plating, etc.,
Crystals tend to coarsen during nucleation and growth. On the other hand, when an alloy film is formed by a sputtering method, conversely, there is a tendency that nuclei are generated and crystals are easily refined during growth. Therefore, when the sputtering method is used, the entire surface of the powder particles can be covered with a smaller amount of metal. Further, when a single metal such as Ag, Cu, Ni or the like is coated by an electroless plating method or the like, an oxide film d is generated on the surface of the film due to a change with time, and the conductivity is reduced. On the other hand, since the inorganic semiconductor film e formed on the outermost surface of the film formed by the sputtering method naturally has an inorganic semiconductor composition such as ITO and ATO, there is almost no decrease in conductivity, and the durability is also improved. effective. Further, a phenomenon in which metal atoms excited to a plasma state collide with the surface of the white oxide powder at high speed at the time of forming a film by the sputtering method is repeated. Therefore, the inorganic semiconductor doped layer f is formed on the surface of the powder particles. Since the inorganic semiconductor doped layer f is formed as described above, it is more effective to coat the specific white alloy as in the present invention than to simply coat the inorganic semiconductor on the powder surface, thereby improving the conductivity. .

【0014】[0014]

【実施例】【Example】

実施例1:図1の粉末スパッタリング装置を使用して、
SiO2 粉末(日本アエロジル株式会社製,平均粒径:
0.1μm)の表面に、次のように1重量%の95%S
n−5%Sb合金を被覆した。内径200mm,軸方向
長さ200mmの回転ドラム1に、2個の95%Sn−
5%Sb合金スパッタリング源4を配置した。スパッタ
リング源4としては、Snターゲット及びSbターゲッ
トを組み合わせて出力1.5KW,周波数13.56M
Hzのマグネトロン型を使用した。回転ドラム1にSi
2 粉末5を100g投入し、減圧処理室7を3.0×
10-3Paに減圧した後、Arガス導入管10からAr
ガスを15cm3 /分の流量で導入し、SiO2 粉末5
を分岐管11,流体ジェットミル12及び循環管13を
経て減圧処理室7に吸引移送した。そして、減圧処理室
7で加熱コイル6により200℃に30分間加熱して乾
燥脱ガスした。
Example 1: Using the powder sputtering apparatus of FIG.
SiO 2 powder (Nippon Aerosil Co., Ltd., average particle size:
0.1 μm) on 1% by weight of 95% S
An n-5% Sb alloy was coated. A rotating drum 1 having an inner diameter of 200 mm and an axial length of 200 mm is provided with two 95% Sn-
A 5% Sb alloy sputtering source 4 was provided. As the sputtering source 4, an output of 1.5 KW and a frequency of 13.56 M is obtained by combining an Sn target and an Sb target.
Hz magnetron type was used. Rotating drum 1 with Si
100 g of O 2 powder 5 was charged, and the decompression treatment chamber 7 was set to 3.0 ×
After reducing the pressure to 10 −3 Pa, Ar gas was introduced through the Ar gas introduction pipe 10.
The gas was introduced at 15cm 3 / min flow rate, SiO 2 powder 5
Was sucked and transferred to the decompression processing chamber 7 through the branch pipe 11, the fluid jet mill 12, and the circulation pipe 13. Then, it was heated to 200 ° C. for 30 minutes by the heating coil 6 in the decompression processing chamber 7 to dry and degas.

【0015】次いで、回転ドラム1の雰囲気をArガス
で完全に置換した後、減圧処理室7のSiO2 粉末5を
供給管9から回転ドラム1に落下させ、回転ドラム1を
5rpmの速度で回転させながら3.0×10-3Paの
減圧雰囲気下でスパッタリング源4からスパッタリング
した。スパッタリングを10分間継続した後、減圧処理
室7を減圧にすると共にArガス導入管10からArガ
スを導入し、SiO2 粉末5を流体ジェットミル12経
由で減圧処理室7に吸引返送し、スパッタリング中に塊
状化されたSiO2 粉末5をできるだけ個々の粒子にほ
ぐした。減圧処理室7に返送されたSiO2 粉末5に
は、0.1重量%の95%Sn−5%Sb合金が被覆さ
れていた。このスパッタリングを10回繰り返すことに
より、1重量%のSn−5%Sb合金被覆を形成した
後、固気分離装置16から回収した。
Next, after completely replacing the atmosphere of the rotary drum 1 with Ar gas, the SiO 2 powder 5 in the decompression processing chamber 7 is dropped from the supply pipe 9 onto the rotary drum 1, and the rotary drum 1 is rotated at a speed of 5 rpm. Sputtering was performed from the sputtering source 4 under a reduced pressure atmosphere of 3.0 × 10 −3 Pa. After the sputtering is continued for 10 minutes, the pressure in the decompression processing chamber 7 is reduced, and Ar gas is introduced from the Ar gas introduction pipe 10. The SiO 2 powder 5 is sucked and returned to the decompression processing chamber 7 via the fluid jet mill 12, and sputtering is performed. The agglomerated SiO 2 powder 5 was loosened as much as possible into individual particles. The SiO 2 powder 5 returned to the decompression processing chamber 7 was coated with 0.1% by weight of a 95% Sn-5% Sb alloy. This sputtering was repeated 10 times to form a 1% by weight Sn-5% Sb alloy coating, and then collected from the solid-gas separator 16.

【0016】実施例2,3:実施例1と同様の手順で、
SiO2 粉末(日本アエロジル株式会社製,平均粒径:
0.1μm)の表面に5重量%及び10重量%の95%
Sn−5%Sb合金被覆を形成した。 実施例4〜6:実施例1と同様の手順で、TiO2 粉末
(テイカ株式会社製,平均粒径:5.0μm)の表面に
1重量%,5重量%及び10重量%の90%Sn−10
%Sb合金被覆を形成した。 実施例7〜9:実施例1と同様の手順で、ZnO粉末
(高純度化学株式会社製,平均粒径:1.0μm)の表
面に1重量%,5重量%及び10重量%の90%In−
10%Sn合金被覆を形成した。
Embodiments 2 and 3: By the same procedure as in Embodiment 1,
SiO 2 powder (Nippon Aerosil Co., Ltd., average particle size:
95% of 5% and 10% by weight on the surface of 0.1 μm)
An Sn-5% Sb alloy coating was formed. Examples 4 to 6: 1% by weight, 5% by weight and 10% by weight of 90% Sn were added to the surface of TiO 2 powder (manufactured by Teica Co., average particle size: 5.0 μm) in the same procedure as in Example 1. -10
% Sb alloy coating was formed. Examples 7 to 9: 90% of 1% by weight, 5% by weight and 10% by weight were added to the surface of ZnO powder (manufactured by Kojundo Chemical Co., Ltd., average particle size: 1.0 μm) in the same procedure as in Example 1. In-
A 10% Sn alloy coating was formed.

【0017】実施例10〜12:実施例1と同様の手順
で、ZnO粉末(高純度化学株式会社製,平均粒径:
1.0μm)の表面に1重量%,5重量%及び10重量
%の90%Zn−10%Al合金被覆を形成した。 実施例13〜15:実施例1と同様の手順で、Al2
3 粉末(住友アルミニウム株式会社製,平均粒径:1
0.0μm)の表面に1重量%,5重量%及び10重量
%の80%Sn−20%Sb合金被覆を形成した。 比較例1〜5:市販品である10%SbドープSnO2
を25重量%被覆したTiO2 粉末(三菱マテリアル株
式会社製,平均粒径:0.2μm)及び10%Sbドー
プSnO2 を30重量%被覆したBaSO4 粉末(三井
金属株式会社製,平均粒径:0.4μm)等の無機半導
体被覆複合粉末、10%SnドープSnO2 粉末(三菱
マテリアル株式会社製,平均粒径:0.02μm),5
%SnドープIn23粉末(三菱マテリアル株式会社
製,平均粒径:0.01μm)及び5%AlドープZn
O粉末(白水化学株式会社製,平均粒径:1.5μm)
等の無機半導体粉末を使用した。
Examples 10 to 12: A ZnO powder (manufactured by Kojundo Chemical Co., Ltd., average particle size:
1.0 μm) was coated with 1%, 5% and 10% by weight of a 90% Zn-10% Al alloy coating. Examples 13 to 15: In the same procedure as in Example 1, Al 2 O
3 powder (Sumitomo Aluminum Co., Ltd., average particle size: 1
0.0 μm) were coated with 1%, 5% and 10% by weight of an 80% Sn-20% Sb alloy coating. Comparative Examples 1 to 5: Commercially available 10% Sb-doped SnO 2
25 wt% coated TiO 2 powder (Mitsubishi Materials Corporation, average particle diameter: 0.2 [mu] m) and 10% Sb doped BaSO 4 powder SnO 2 were coated 30 wt% (manufactured by Mitsui Mining & Smelting Co., Ltd., average particle size : 0.4 μm), 10% Sn-doped SnO 2 powder (Mitsubishi Materials Corporation, average particle size: 0.02 μm), 5
% Sn-doped In 2 O 3 powder (Mitsubishi Materials Corporation, average particle size: 0.01 μm) and 5% Al-doped Zn
O powder (manufactured by Hakusui Chemical Co., Ltd., average particle size: 1.5 μm)
And the like.

【0018】実施例1〜15で得られた試料及び比較例
1〜5の試料の合計20サンプルについて、以下に示す
条件で導電性を測定した。粉末の比抵抗の測定に際して
は、試料粉末を200kg/cm2 の圧力で成形し、直
径25mm,厚み10mmの円柱形状の圧粉体を作製し
た。そして、圧粉体の両端に抵抗計を接続し、直流比抵
抗を測定した。塗装板の表面電気抵抗の測定に際して
は、各試料粉末100gをアクリル塗料ベース(関西ペ
イント株式会社製 No.2026,樹脂含有量:40重
量%)250gの中に投入し、800mlのステンレス
鋼製容器中で撹拌翼を2,000rpmで1時間回転さ
せることにより分散した。得られたアクリル塗料を、ド
クターブレードを用いて乾燥塗膜厚みで約30μmとな
るように1mm厚の透明アクリル板上に塗布し、常温で
乾燥することにより塗装板を作製した。この塗装板につ
いて、表面電気抵抗を測定した。表1の測定結果にみら
れるように、本発明に従った実施例1〜15では、少な
い被覆量でも良好な導電性を呈する白色粉末が得られて
いる。これに対し、比較例1,2の粉末では、必要な導
電性を得るために被覆量を多くすることが必要であっ
た。また、比較例3〜5の粉末では、導電性そのものが
低い値を示した。
The conductivity of the samples obtained in Examples 1 to 15 and the samples of Comparative Examples 1 to 5 was measured under the following conditions. In measuring the specific resistance of the powder, the sample powder was molded at a pressure of 200 kg / cm 2 to produce a cylindrical green compact having a diameter of 25 mm and a thickness of 10 mm. Then, a resistance meter was connected to both ends of the green compact, and the DC specific resistance was measured. When measuring the surface electric resistance of the coated plate, 100 g of each sample powder was put into 250 g of an acrylic paint base (Kansai Paint Co., Ltd., No. 2026, resin content: 40% by weight), and an 800 ml stainless steel container The dispersion was performed by rotating the stirring blade at 2,000 rpm for 1 hour in the inside. The obtained acrylic paint was applied on a transparent acrylic plate having a thickness of 1 mm so as to have a dry coating thickness of about 30 μm using a doctor blade, and dried at normal temperature to prepare a coated plate. The surface electric resistance of this coated plate was measured. As can be seen from the measurement results in Table 1, in Examples 1 to 15 according to the present invention, a white powder exhibiting good conductivity was obtained even with a small coating amount. On the other hand, in the powders of Comparative Examples 1 and 2, it was necessary to increase the coating amount in order to obtain the required conductivity. In the powders of Comparative Examples 3 to 5, the conductivity itself showed a low value.

【0019】 [0019]

【0020】[0020]

【発明の効果】以上に説明したように、本発明の白色導
電性複合粉末は、白色系酸化物微粉末にスパッタリング
法で白色合金をコーティングしているため、Snドープ
SnO 2 被覆TiO2 粉末,SbドープSnO2 被覆B
aSO4 粉末等の無機半導体被覆複合粉末に比較すると
導電性がはるかに優れており、カーボンブラックや金属
粉末に匹敵する導電性を呈する。しかも、白色であるこ
とから、種々の着色が容易に行われる。そのため、高性
能の帯電防止用導電性粉末として、外装建材,内装建
材,家電製品,自動車,船舶,繊維等の広範囲の分野で
使用される。また、EMIシールドが可能なカーペッ
ト,カーテン,間仕切り等の内装建材,液晶ディスプレ
イ用塗装タイプの透明導電膜,自動車の後部窓ガラスの
霜取りヒータ用等の高導電膜等としても使用可能であ
る。
As described above, the white light guide according to the present invention is used.
Electric composite powder is sputtered on white oxide fine powder
Coating with white alloy by Sn method
SnO Two Coated TiOTwo Powder, Sb-doped SnOTwo Coating B
aSOFour Compared to inorganic semiconductor coated composite powder such as powder
Much better conductivity, carbon black and metal
It has conductivity comparable to powder. Moreover, it must be white
From this, various colorings are easily performed. Therefore, high sex
As an antistatic conductive powder, it is used for exterior building materials and interior building
In a wide range of fields such as materials, home appliances, automobiles, ships, and textiles
used. In addition, carpets that allow EMI shielding
Interior building materials such as screens, curtains, partitions, LCD displays
Painted transparent conductive film for a
It can also be used as a highly conductive film for defrost heaters, etc.
You.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明で使用する粉末スパッタリング装置FIG. 1 is a powder sputtering apparatus used in the present invention.

【図2】 スパッタリング法で合金皮膜を設けた導電性
粉末と従来の無電解めっきで金属皮膜を設けた導電性粉
末の相違を説明するための図
FIG. 2 is a diagram for explaining a difference between a conductive powder provided with an alloy film by a sputtering method and a conductive powder provided with a metal film by conventional electroless plating.

【符号の説明】[Explanation of symbols]

a:粉末粒子 b:皮膜形成用核の発生点 c:連
続皮膜 d:酸化膜 e:無機半導体膜 f:無機半導体ドープ層 1:回転ドラム 2:ロール 3:モータ 4:
スパッタリング源 5:粉末原料(白色系酸化物粉末) 6:加熱コイル
7:減圧処理室 8:バルブ 9:供給管 10:Arガス導入管
11:分岐管 12:流体ジェットミル 13:循環管 14,1
5:バルブ 16:固気分離装置
a: powder particles b: point of nuclei for film formation c: continuous film d: oxide film e: inorganic semiconductor film f: inorganic semiconductor doped layer 1: rotating drum 2: roll 3: motor 4:
Sputtering source 5: Powder raw material (white oxide powder) 6: Heating coil 7: Decompression processing chamber 8: Valve 9: Supply pipe 10: Ar gas introduction pipe
11: Branch pipe 12: Fluid jet mill 13: Circulation pipe 14, 1
5: Valve 16: Solid-gas separation device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 14/18 C23C 14/18 14/34 14/34 A H01B 1/00 H01B 1/00 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C23C 14/18 C23C 14/18 14/34 14/34 A H01B 1/00 H01B 1/00 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒径0.1〜10μmの白色系酸化物微
粉末をスパッタリング法で1〜10重量%の白色系合金
で被覆している白色導電性複合粉末。
1. A white conductive composite powder in which a white oxide fine powder having a particle size of 0.1 to 10 μm is coated with 1 to 10% by weight of a white alloy by a sputtering method.
【請求項2】 白色系酸化物微粉末がSiO2 ,TiO
2 ,ZnO又はAl 23 の1種又は2種以上である請
求項1記載の白色導電性複合粉末。
2. The white oxide fine powder is SiO.Two , TiO
Two , ZnO or Al Two OThree One or more types of
The white conductive composite powder according to claim 1.
【請求項3】 白色系合金がIn−Sn合金,Sn−S
b合金又はZn−Al合金である請求項1記載の白色導
電性複合粉末。
3. The white alloy is an In—Sn alloy, Sn—S
The white conductive composite powder according to claim 1, which is a b alloy or a Zn-Al alloy.
JP8271992A 1996-10-15 1996-10-15 White conductive composite powder Withdrawn JPH10121102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8271992A JPH10121102A (en) 1996-10-15 1996-10-15 White conductive composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8271992A JPH10121102A (en) 1996-10-15 1996-10-15 White conductive composite powder

Publications (1)

Publication Number Publication Date
JPH10121102A true JPH10121102A (en) 1998-05-12

Family

ID=17507648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8271992A Withdrawn JPH10121102A (en) 1996-10-15 1996-10-15 White conductive composite powder

Country Status (1)

Country Link
JP (1) JPH10121102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015380A1 (en) * 2005-08-03 2007-02-08 Youtec Co., Ltd. Transparent conductive fine particles, method for producing same, and electrooptical device
JP2012089510A (en) * 2011-12-13 2012-05-10 Takayuki Abe Transparent conductive particles, and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015380A1 (en) * 2005-08-03 2007-02-08 Youtec Co., Ltd. Transparent conductive fine particles, method for producing same, and electrooptical device
JP2012089510A (en) * 2011-12-13 2012-05-10 Takayuki Abe Transparent conductive particles, and its manufacturing method

Similar Documents

Publication Publication Date Title
US4624865A (en) Electrically conductive microballoons and compositions incorporating same
EP1224242B1 (en) Methods and apparatus for producing enhanced interference pigments
US6676741B2 (en) Methods for producing enhanced interference pigments
JP5413540B2 (en) MgO target for sputtering
Lien et al. Electroless silver plating on tetraethoxy silane-bridged fiber glass
US6486822B1 (en) Chemically modified radar absorbing materials and an associated fabrication method
JPS6313463B2 (en)
JP3473146B2 (en) Composition for forming conductive film and method for producing transparent conductive film-coated glass plate
JP3766161B2 (en) Coated powder, silver-coated copper powder and method for producing the same, conductive paste and conductive film
JPH10121102A (en) White conductive composite powder
RU2578336C2 (en) Perfected procedure of combined spraying of alloys and compounds with application of dual c-mag cathode structure and appropriate unit
JPH10168503A (en) Composite powder with high electric conductivity
JP3230395B2 (en) Composition for forming conductive film and method for forming conductive film
CN110418857B (en) Cylindrical titanium oxide sputtering target and preparation method thereof
JPH02168698A (en) Conductive resin film and manufacture thereof
Zhou et al. Conductive ZnO: Zn composites for high-rate sputtering deposition of ZnO thin films
JPS6060168A (en) Electrically conductive paint
Xu et al. Coating metals on micropowders by magnetron sputtering
CN104271793A (en) High surface area coatings
JPS5986637A (en) Electrically conductive inorganic powder
JPS5941489A (en) Method for electroplating particulate material
JP4424582B2 (en) Tin-containing indium oxide particles, method for producing the same, and conductive coating film and conductive sheet
JP2017066443A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME
JP2002008438A (en) Fibrous electrical conductive filler
Akamaru et al. Surface coating of microparticles with tungsten carbide by using the barrel sputtering system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106