JPH10167810A - Glass-ceramic sintered compact and its production - Google Patents

Glass-ceramic sintered compact and its production

Info

Publication number
JPH10167810A
JPH10167810A JP8320490A JP32049096A JPH10167810A JP H10167810 A JPH10167810 A JP H10167810A JP 8320490 A JP8320490 A JP 8320490A JP 32049096 A JP32049096 A JP 32049096A JP H10167810 A JPH10167810 A JP H10167810A
Authority
JP
Japan
Prior art keywords
glass
sintered body
ceramic
firing
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8320490A
Other languages
Japanese (ja)
Other versions
JP3359513B2 (en
Inventor
Satoshi Hamano
智 濱野
Toshiaki Shigeoka
俊昭 重岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18122035&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10167810(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32049096A priority Critical patent/JP3359513B2/en
Publication of JPH10167810A publication Critical patent/JPH10167810A/en
Application granted granted Critical
Publication of JP3359513B2 publication Critical patent/JP3359513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a glass-ceramic sintered compact suppressing the leaching of the glass phase and excellent in acid resistance in the case of contact with acidic chemicals such as a plating soln. SOLUTION: A mixture of borosilicate glass with a ceramic filler is compacted and fired in a mixed atmosphere contg. nitrogen and steam. By this firing, B2 O3 in the surface part is vaporized and the boron content of the surface of the resultant sintered compact is made lower than that in the central part. The peak height expressed as boron content in the surface part of the sintered compact measured by fluorescent X-ray analysis is especially <=90% of that in the central part. The borosilicate glass contains at least SiO2 , Al2 O3 , RO (R is at least one among Mg, Ca and Zn) and B2 O3 and is prepicitated a crystal phase at the time of firing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体収納用パッ
ケージなどの配線基板の絶縁基板として有用なガラスセ
ラミック焼結体とその製造方法に関するものであり、特
に、ガラスセラミック焼結体の耐酸性の改良に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass ceramic sintered body useful as an insulating substrate for a wiring board such as a semiconductor storage package and a method for producing the same. It is about improvement.

【0002】[0002]

【従来技術】従来より、半導体素子などを搭載するため
の配線基板としては、アルミナなどのセラミック材料が
用いられているが、最近に至り、アルミナに比較して誘
電率が低い、焼成温度が低い低抵抗の導体、例えばC
u、Au、Agでの配線を形成できるなどの点で優れて
いることから、特に回路の高集積化の要求に適用するこ
とのできる基板材料としてガラスセラミック焼結体が注
目されている。
2. Description of the Related Art Conventionally, ceramic materials such as alumina have been used as wiring substrates for mounting semiconductor elements and the like, but recently, the dielectric constant and firing temperature are lower than those of alumina. Low resistance conductor, eg C
A glass ceramic sintered body has attracted attention as a substrate material which can be applied particularly to a demand for high integration of a circuit because it is excellent in that a wiring of u, Au, and Ag can be formed.

【0003】従来、ガラスセラミック焼結体を絶縁基板
とする配線基板の製造方法としては、例えばホウケイ酸
系ガラス等とセラミックフィラーとからなるガラスセラ
ミック原料と有機バインダーからなるグリーンシートに
穴開けしてスルーホールを形成し、このスルーホールに
導体ペーストを充填し、次いで、このシートの所定位置
に導体ペーストを印刷して導体パターンを形成する。こ
れらのシートを位置合わせして加圧積層した後、積層体
を加熱して脱バインダー及び焼成を行い、ガラスセラミ
ック多層配線基板が得られる。
Conventionally, as a method of manufacturing a wiring board using a glass ceramic sintered body as an insulating substrate, for example, a green sheet made of a glass ceramic raw material composed of borosilicate glass or the like and a ceramic filler and an organic binder is punched. A through hole is formed, the through hole is filled with a conductive paste, and then the conductive paste is printed at a predetermined position on the sheet to form a conductive pattern. After aligning these sheets and laminating under pressure, the laminated body is heated to remove the binder and fire, thereby obtaining a glass ceramic multilayer wiring board.

【0004】このようなガラスセラミック配線基板の導
体材料にはCu、Au、Agが使用されるが、このう
ち、Auはコストの点から汎用性に欠け、一般的にはC
uまたはAgが使用される。Ag導体の場合は、大気雰
囲気での焼成が可能であり、また表面の導体にメッキを
施さなくてもワイヤーボンディングが可能であることか
ら、コスト面では有利である。しかし、マイグレーショ
ン、半田食われの面から、信頼性において問題がある。
また、これらの特性を改善するために導体材料にPd等
を添加して改善がなされているが、この場合、導体抵抗
が高くなり特に高周波での使用には問題が生じる。一
方、Cu導体の場合は非酸化性雰囲気で焼成し、Cu導
体表面に酸化防止のためにNi等のメッキを施す必要が
あるが、高い信頼性を確保できるという利点がある。
As a conductor material of such a glass ceramic wiring board, Cu, Au, and Ag are used. Among them, Au lacks versatility in terms of cost, and is generally C
u or Ag is used. Ag conductors are advantageous in terms of cost because they can be fired in an air atmosphere and can be wire-bonded without plating the surface conductors. However, there is a problem in reliability due to migration and solder erosion.
Further, in order to improve these characteristics, Pd or the like is added to the conductor material to improve the properties. However, in this case, the conductor resistance is increased, and there is a problem particularly when used at high frequencies. On the other hand, a Cu conductor needs to be fired in a non-oxidizing atmosphere and plated with Ni or the like on the Cu conductor surface to prevent oxidation. However, there is an advantage that high reliability can be ensured.

【0005】[0005]

【発明が解決しようとする課題】Cuを導体材料に使用
した場合、上述したように導体表面の酸化によりワイヤ
ーボンディング性や半田濡れ性が劣化するのを抑制する
ために、表面の導体にメッキ膜を施す必要がある。この
メッキの工程では塩酸などの酸性溶液からなる処理液が
使用されるため、基板となるガラスセラミック材料には
耐薬品性が要求される。しかし、従来のガラスセラミッ
ク焼結体では、このような処理液と接触すると、焼結体
表面に荒れが生じたり、焼結体表面にまでメッキが施さ
れる等の問題があった。
When Cu is used as a conductor material, a plating film is formed on the conductor on the surface in order to suppress the deterioration of wire bonding property and solder wettability due to oxidation of the conductor surface as described above. Need to be applied. In the plating step, a treatment liquid composed of an acidic solution such as hydrochloric acid is used, so that the glass ceramic material used as the substrate is required to have chemical resistance. However, in the conventional glass ceramic sintered body, when it comes into contact with such a treatment liquid, there are problems such as roughening of the surface of the sintered body and plating of the surface of the sintered body.

【0006】これは、焼結体中に含まれるガラスの耐酸
性が悪く、酸処理によりガラス相が溶出するためと考え
られる。耐酸性が高いガラスとしては、コーニング社の
#7740ガラスに代表される理化学用のガラスが知ら
れている。このガラスは耐酸性を向上させるためにB2
3 量が最適化されている。また、B2 3 量が過剰に
なった場合、B2 3 が水と反応して水溶性のH3 BO
3 を形成し、耐水性や耐酸性が低下することも知られて
いる。
This is probably because the glass contained in the sintered body has poor acid resistance, and the glass phase is eluted by the acid treatment. As a glass having high acid resistance, a glass for physics and chemistry represented by Corning # 7740 glass is known. This glass has B 2 to improve acid resistance.
The O 3 amount has been optimized. When the amount of B 2 O 3 becomes excessive, B 2 O 3 reacts with water to form water-soluble H 3 BO.
It is also known that they form 3 , and the water resistance and the acid resistance decrease.

【0007】また、ガラスセラミック焼結体の製造に
は、SiO2 およびB2 3 を含むホウケイ酸系ガラス
が最も一般に使用されているが、これは、Cu等の低抵
抗金属との焼成温度を近似させるために、焼結体の焼成
温度を900〜1000℃の低温に制御しやすく、且つ
安価に入手できる点にある。特に、最近では、焼結体の
強度を向上のために焼成時に結晶化するホウケイ酸系ガ
ラスが主流になりつつある。
[0007] Borosilicate glass containing SiO 2 and B 2 O 3 is most commonly used for the production of a glass-ceramic sintered body. In order to approximate, the sintering temperature of the sintered body is easily controlled to a low temperature of 900 to 1000 ° C., and the sintered body can be obtained at a low cost. In particular, recently, borosilicate glass that crystallizes at the time of firing to improve the strength of the sintered body is becoming mainstream.

【0008】このようなホウケイ酸系ガラスを用いて焼
結体を作製した場合、焼結体中には、必然的にガラス相
が残存し、結晶化ガラスの場合においても、少量ではあ
ってもガラス相が残存する。ガラスが結晶化した後のガ
ラス相は、SiO2 、Al23 、RO(RはMg、C
a、Zn等)等の成分が減少し、B2 3 が過剰な組成
になる場合が多い。つまり、耐酸性を向上させるために
は、残存ガラス中のB2 3 量を減少させることが必要
と考えられる。
When a sintered body is manufactured using such a borosilicate glass, a glass phase necessarily remains in the sintered body, and even in the case of crystallized glass, even if it is a small amount, A glass phase remains. The glass phase after the glass is crystallized is SiO 2 , Al 2 O 3 , RO (R is Mg, C
a, Zn, etc.) and the composition of B 2 O 3 is often excessive. That is, in order to improve the acid resistance, it is considered necessary to reduce the amount of B 2 O 3 in the residual glass.

【0009】しかしながら、B2 3 量を低減したガラ
スを用いる場合は、ガラス製造時の溶融温度が高く、ま
たガラスをフィラーと混合したガラスセラミック材料の
焼結温度が高くなり、Cu等の金属との同時焼成が不可
能となってしまうという問題があった。
However, in the case of using glass having a reduced amount of B 2 O 3, the melting temperature during glass production is high, and the sintering temperature of a glass ceramic material in which glass is mixed with a filler is high, and metal such as Cu There was a problem that simultaneous baking with was impossible.

【0010】従って、本発明は、メッキの処理液等の酸
性薬品と接触した場合においてガラス相の溶出を抑制し
た耐酸性に優れたガラスセラミック焼結体と、その製造
方法を提供することを目的とするものである。
[0010] Accordingly, an object of the present invention is to provide a glass-ceramic sintered body excellent in acid resistance, which suppresses elution of a glass phase when contacted with an acidic chemical such as a plating solution, and a method for producing the same. It is assumed that.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために検討を重ねた結果、ホウケイ酸系ガ
ラスとセラミックフィラーからなるガラスセラミック焼
結体において、少なくとも焼結体の表面のB量、言い換
えればB2 3 量を低減せしめることによって焼結体の
耐酸化性が向上できること、また、焼結工程を窒素と水
蒸気を混合した雰囲気下で行うとB2 3 が揮散し、表
面のB2 3 量を低減できることを見いだし、本発明に
至った。
Means for Solving the Problems As a result of repeated studies to solve the above-mentioned problems, the present inventors have found that at least a sintered body of a glass-ceramic comprising a borosilicate glass and a ceramic filler. The oxidation resistance of the sintered body can be improved by reducing the amount of B on the surface, in other words, the amount of B 2 O 3 , and when the sintering step is performed in an atmosphere in which nitrogen and steam are mixed, B 2 O 3 is reduced. It has been found that they can be volatilized and the amount of B 2 O 3 on the surface can be reduced, leading to the present invention.

【0012】即ち、本発明のガラスセラミック焼結体
は、ホウケイ酸系ガラスとセラミックフィラーからなる
混合物を成形、焼成してなるものであって、該焼結体の
表面におけるB含有量が、焼結体表面から30μm以上
の内部深さにおけるB含有量よりも少ないことを特徴と
する。特に、焼結体表面の蛍光X線分析におけるホウ素
のピーク強度高さが、焼結体表面から30μmの深さ位
置におけるホウ素のピーク強度高さの90%以下であ
り、また、前記ホウケイ酸系ガラスが少なくともSiO
2 、Al2 3 、RO(R:Mg、Ca、Znのうちの
少なくとも1種)およびB2 3 を含有し、焼成時に結
晶相を析出し得るガラスであることを特徴とするもので
ある。また、かかる焼結体の製造方法として、ホウケイ
酸系ガラスとセラミックフィラーからなる混合物を成形
後、窒素および水蒸気を含む混合雰囲気中で焼成して、
表面のB2 3 を揮散させることを特徴とするものであ
る。
That is, the glass-ceramic sintered body of the present invention is obtained by molding and firing a mixture comprising a borosilicate glass and a ceramic filler, and the B content on the surface of the sintered body is reduced by firing. It is characterized in that it is less than the B content at an internal depth of 30 μm or more from the surface of the consolidated body. In particular, the peak intensity height of boron in the fluorescent X-ray analysis of the surface of the sintered body is 90% or less of the peak intensity height of boron at a depth of 30 μm from the surface of the sintered body. The glass is at least SiO
2 , a glass containing Al 2 O 3 , RO (R: at least one of Mg, Ca, Zn) and B 2 O 3 and capable of depositing a crystal phase during firing. is there. Further, as a method for producing such a sintered body, after molding a mixture of borosilicate glass and a ceramic filler, firing in a mixed atmosphere containing nitrogen and water vapor,
It is characterized in that B 2 O 3 on the surface is volatilized.

【0013】[0013]

【発明の実施の形態】本発明におけるガラスセラミック
焼結体は、ホウケイ酸ガラス(言い換えれば、少なくと
もSiO2 およびB2 3 を含有するガラス)とセラミ
ックフィラーの混合物を成形、焼成してなるものである
が、該焼結体の表面におけるB含有量が焼結体表面から
30μm以上の内部深さにおけるB含有量よりも少ない
ことが最も大きな特徴である。
BEST MODE FOR CARRYING OUT THE INVENTION The glass ceramic sintered body of the present invention is obtained by molding and firing a mixture of borosilicate glass (in other words, glass containing at least SiO 2 and B 2 O 3 ) and a ceramic filler. However, the most significant feature is that the B content on the surface of the sintered body is smaller than the B content at an internal depth of 30 μm or more from the surface of the sintered body.

【0014】配線基板などを作製する際に、導体層表面
にメッキ層を形成する場合、絶縁基板となるガラスセラ
ミック焼結体は、メッキ工程では、必然的に塩酸等の処
理液と接触することになる。本発明では、これらの薬品
と接触する焼結体表面のB量、言い換えればB2 3
低減することにより、耐酸化性を向上せしめ、酸性溶液
と接触してもガラスの溶出を防止し、焼結体の耐酸性を
向上させることができる。
When a plating layer is formed on the surface of a conductor layer when a wiring board or the like is manufactured, the glass ceramic sintered body serving as an insulating substrate must be brought into contact with a treatment solution such as hydrochloric acid in the plating step. become. In the present invention, by reducing the amount of B on the surface of the sintered body in contact with these chemicals, in other words, by reducing B 2 O 3 , the oxidation resistance is improved, and the elution of glass is prevented even when contacted with an acidic solution. In addition, the acid resistance of the sintered body can be improved.

【0015】本発明の焼結体によれば、B(ホウ素)含
有量は、最表面が最も少なく内部に従って徐々に増加す
る傾向にあり、少なくとも表面のB含有量は、表面から
30μmの深さ位置におけるB含有量よりも少ないもの
であり、さらに深い位置では、B含有量は30μm深さ
位置と同等かまたはさらに増加する場合もあり、焼結体
の中心部において最もB含有量が多くなる。
According to the sintered body of the present invention, the B (boron) content tends to gradually increase as the outermost surface is the least and the inside is at least 30 μm deep from the surface. The B content is lower than the B content at the position, and at the deeper position, the B content may be equal to or more than the 30 μm depth position, and the B content is the largest at the center of the sintered body. .

【0016】かかる見地から、本発明の焼結体における
B含有量は、少なくとも焼結体表面の蛍光X線分析(K
α線)におけるBのピーク強度高さが、焼結体表面から
30μmの深さ位置におけるBのピーク強度高さの90
%以下、特に85%以下であることが望ましい。によれ
ば、耐酸性は焼結体の表面特性によってのみ決定される
ために、焼結体表面のB量を減じることいこのB含有量
の少ない部分は、表面から1〜50μmの厚みで存在す
ることが望ましく、焼結体表面から50μm以上の深部
では、B含有量は焼結体の中心部までほぼ変化しない。
From this point of view, the B content in the sintered body of the present invention is determined by X-ray fluorescence analysis (K
The peak intensity height of B at α-line) is 90% of the peak intensity height of B at a depth of 30 μm from the surface of the sintered body.
%, Particularly preferably 85% or less. According to the above, since the acid resistance is determined only by the surface characteristics of the sintered body, the B content on the surface of the sintered body is reduced. When the B content is low, the portion having a B content of 1 to 50 μm from the surface exists. It is desirable that the B content does not substantially change up to the center of the sintered body at a depth of 50 μm or more from the surface of the sintered body.

【0017】なお、焼結体中のB量の絶対量に対して
は、少なくともB(ホウ素)を含有しその焼結体表面と
内部との相対的が含有量が上述した関係を満足するもの
であれば、特に制限するものではなく、Cu等の金属導
体との焼結性の点で同時焼結性、電気特性などの種々の
特性を満足し得る適当なホウケイ酸系ガラス中に含まれ
るB2 3 量等により適宜定められる。
The absolute value of the amount of B in the sintered body is at least B (boron), and the relative content between the surface and the inside of the sintered body satisfies the above relationship. If so, it is not particularly limited, and is included in a suitable borosilicate glass capable of satisfying various properties such as simultaneous sinterability and electrical properties in terms of sinterability with a metal conductor such as Cu. It is appropriately determined by the amount of B 2 O 3 and the like.

【0018】本発明において、焼結体表面のみのB量を
低減するための方法として、ホウケイ酸系ガラスとセラ
ミックフィラーの混合物からなる成形体を焼成するにあ
たり、窒素および水蒸気を含有する雰囲気中で焼成す
る。このように水蒸気を含む雰囲気で焼成すると、ガラ
ス中のB2 3 が雰囲気中の水蒸気と反応してH3 BO
3 を形成し飛散するために、焼結体表面のB2 3 量を
減少させることができるのである。
In the present invention, as a method for reducing the amount of B only on the surface of the sintered body, when firing a molded body composed of a mixture of a borosilicate glass and a ceramic filler, an atmosphere containing nitrogen and water vapor is used. Bake. When fired in an atmosphere containing water vapor in this manner, B 2 O 3 in the glass reacts with the water vapor in the atmosphere to form H 3 BO
In order to form and scatter 3, the amount of B 2 O 3 on the surface of the sintered body can be reduced.

【0019】この場合、B量は、焼結体表面が最も少な
く、内部にわたって徐々に増加し、深さ30μm以上で
は本発明に用いられるホウケイ酸系ガラスとしては、ガ
ラス転移点が600℃以上、特に650℃以上であるも
のが望ましい。代表的なガラス組成としては、Si
2 、Al2 3 、RO(Rは、Mg、CaおよびZn
のうちの少なくとも1種)およびB2 3 を必須成分と
して含有するアルミノホウケイ酸系ガラスがあり、とり
わけ、SiO2 35〜55重量%、Al2 3 10〜3
5重量%、RO10〜30重量%、B2 3 5〜15重
量%の組成範囲であることが望ましい。その他、Li2
O、Na2 O、K2 O等のアルカリ金属酸化物、ZrO
2 、TiO2 などのを含んでいてもよい。
In this case, the B content is the smallest on the surface of the sintered body and gradually increases over the inside. At a depth of 30 μm or more, the borosilicate glass used in the present invention has a glass transition point of 600 ° C. or more, Particularly, a temperature of 650 ° C. or more is desirable. A typical glass composition is Si
O 2 , Al 2 O 3 , RO (R is Mg, Ca and Zn
There is at least one) and alumino borosilicate glass containing B 2 O 3 as an essential component of, inter alia, SiO 2 35 to 55 wt%, Al 2 O 3 10~3
5 wt%, RO10~30 wt%, it is desirable that the B 2 O 3 5 to 15% by weight of the composition range. Other, Li 2
Alkali metal oxides such as O, Na 2 O, K 2 O, ZrO
2 , TiO 2 and the like.

【0020】このガラスは軟化流動を開始する温度が高
く材料の焼成収縮開始温度を高くできることから非酸化
性雰囲気中での脱バインダーが容易であり、かつ温度に
対して急激に収縮が起こることから材料表面のみのB2
3 量を低減することが可能である。また、焼成時にガ
ラスが結晶化できるものが、材料の抗折強度を高めるこ
ともできる点で有効であり、しかも、結晶化ガラスの場
合、前述したように焼結体の結晶相の粒界に高濃度のB
2 3 を含むガラスが生成されやすく耐酸性が劣ること
から、本発明は高濃度のB2 3 含有ガラス相の生成を
抑制することができることから、特に有効である。
This glass has a high temperature at which the softening flow starts, and the firing shrinkage starting temperature of the material can be raised, so that the binder is easily removed in a non-oxidizing atmosphere, and the glass rapidly shrinks with respect to the temperature. B 2 on material surface only
It is possible to reduce the amount of O 3 . What can crystallize the glass during firing is effective in increasing the bending strength of the material. In the case of crystallized glass, as described above, the crystal boundary of the crystal phase of the sintered body is reduced. High concentration of B
Since the glass is acid resistant likely to be generated is poor containing 2 O 3, present invention since it is possible to suppress the generation of a high concentration of the content of B 2 O 3 glass phase, is particularly effective.

【0021】一方、#7740ガラスに代表されるよう
なガラス転移点が低いホウケイ酸ガラスを使用した場合
も、本発明にもとづき表面のB量を低減させることによ
り耐酸性を向上できるが、材料の焼成収縮が開始する温
度が低く十分な脱バインダーを行うことが難しく、温度
に対するガラスの粘度低下が緩やかであり、材料が緻密
化する前にB2 3 が飛散しその結果材料の表面が多孔
質になりやすい傾向にある。
On the other hand, when borosilicate glass having a low glass transition point such as # 7740 glass is used, the acid resistance can be improved by reducing the B content on the surface according to the present invention. The temperature at which firing shrinkage starts is low and it is difficult to perform sufficient debinding, the viscosity of the glass decreases slowly with temperature, and B 2 O 3 scatters before the material is densified, resulting in a porous material surface. It tends to be quality.

【0022】上記ガラスと混合するセラミックフィラー
としては、要求される材料特性に応じて選択できる。代
表的なものに、アルミナ、シリカ、ムライト、ジルコニ
ア等がある。
The ceramic filler mixed with the above glass can be selected according to the required material properties. Representative examples include alumina, silica, mullite, zirconia and the like.

【0023】より具体的には、上記のようなホウケイ酸
系ガラス40〜80体積%と上記セラミックフィラーと
を20〜60体積%の比率で混合したものに、成形用有
機樹脂バインダーや各種成形助剤等を添加した後、これ
を所望の成形手段、例えば、金型プレス、冷間静水圧プ
レス、射出成形、押出し成形等により任意の形状に成形
する。また、シート状に成形する方法としては、ドクタ
ーブレード法、カレンダーロール法、圧延法などがあ
る。
More specifically, a mixture of 40 to 80% by volume of the above borosilicate glass and the above ceramic filler at a ratio of 20 to 60% by volume is mixed with an organic resin binder for molding and various molding aids. After the addition of the agent and the like, it is formed into an arbitrary shape by a desired forming means, for example, a die press, a cold isostatic press, injection molding, extrusion molding or the like. Examples of the method of forming the sheet include a doctor blade method, a calendar roll method, a rolling method, and the like.

【0024】そして、この成形体を300〜500℃の
2 あるいはN2 +H2 O雰囲気中で加熱処理して成形
体中の有機樹脂バインダーを分解除去させた後、前述し
たような窒素および水蒸気を含む雰囲気中で800〜1
000℃の温度で0.1〜2時間焼成することにより作
製することができる。この焼成時の雰囲気中の水蒸気圧
は9〜300mmHgが適当である。なお、9mmHg
よりも低いと焼結体表面のB2 3 の揮散効果が顕著で
なく、300mmHgよりも高いと、Cu等の金属と同
時焼成した場合、金属が酸化してしまうためである。
Then, the molded body is heat-treated at 300 to 500 ° C. in an N 2 or N 2 + H 2 O atmosphere to decompose and remove the organic resin binder in the molded body. 800-1 in an atmosphere containing
It can be manufactured by baking at a temperature of 000 ° C. for 0.1 to 2 hours. The steam pressure in the atmosphere during the firing is suitably 9 to 300 mmHg. In addition, 9mmHg
If it is lower than this, the effect of volatilizing B 2 O 3 on the surface of the sintered body is not remarkable, and if it is higher than 300 mmHg, the metal is oxidized when co-fired with a metal such as Cu.

【0025】また、かかるガラスセラミック焼結体を用
いて配線基板を作製する場合には、上で述べたようなガ
ラス粉末とセラミックフィラー粉末にメタクリル酸樹脂
等の熱分解性に優れた成形用有機樹脂バインダーや溶剤
を混合してスラリーを作製しドクターブレード法等によ
ってグリーンシートを成形する。そして、そのグリーン
シートの表面に配線パターン状にCu、Au、Ag等の
金属を含むペーストを印刷し、場合によっては、グリー
ンシートの所定箇所にスルーホールを形成し、ペースト
を充填する。その後、それらのグリーンシートを位置合
わせして加圧積層した後、この積層体を300〜500
℃の水蒸気を含んだ窒素雰囲気中で熱処理し、グリーン
シート及び金属ペースト中のバインダー、可塑剤、溶剤
を分解除去する。
When a wiring board is manufactured using such a glass-ceramic sintered body, the above-mentioned glass powder and ceramic filler powder may be added to a molding organic material such as methacrylic acid resin which is excellent in thermal decomposability. A slurry is prepared by mixing a resin binder and a solvent, and a green sheet is formed by a doctor blade method or the like. Then, a paste containing a metal such as Cu, Au, or Ag is printed on the surface of the green sheet in the form of a wiring pattern, and in some cases, a through hole is formed in a predetermined portion of the green sheet, and the paste is filled. After that, the green sheets are aligned and press-laminated, and then the laminated body is 300 to 500
Heat treatment is performed in a nitrogen atmosphere containing water vapor at a temperature of .degree. C. to decompose and remove binders, plasticizers and solvents in the green sheets and metal paste.

【0026】その後、前述したような水蒸気を含んだ窒
素雰囲気中で温度を800〜1000℃に上昇し、基板
中に微量残存する炭素を水蒸気と反応させて除去すると
ともに緻密化させ、さらには露出した焼結体表面のB2
3 を揮散除去する。結晶性のガラスを使用した場合
は、緻密化と同時にガラスを結晶化させる。また、焼結
体表面のB2 3 量は、焼成時間等によって適宜調整で
きる。
Thereafter, the temperature is raised to 800 to 1000 ° C. in a nitrogen atmosphere containing water vapor as described above, and a small amount of carbon remaining in the substrate is reacted with water vapor to remove and densify the carbon. B 2 on the surface of the sintered body
O 3 is stripped off. When crystalline glass is used, the glass is crystallized simultaneously with the densification. Further, the amount of B 2 O 3 on the surface of the sintered body can be appropriately adjusted by the firing time and the like.

【0027】そして、ガラスセラミック配線基板の金属
導体、特にCu導体を形成した場合には、Cu導体表面
にメッキ処理を施す。メッキ膜の種類は用途にもよる
が、下地にNiあるいはCuをメッキし、その上にAu
をメッキするのがよい。
When a metal conductor, particularly a Cu conductor, of the glass ceramic wiring board is formed, the surface of the Cu conductor is plated. The type of plating film depends on the application, but Ni or Cu is plated on the base, and Au is
Should be plated.

【0028】[0028]

【実施例】SiO2 :44重量%、Al2 3 :28重
量%、MgO:11重量%、ZnO:8重量%、B2
3 :9重量%の組成を有する結晶性ガラス粉末61重量
%と、ジルコン酸カルシウム粉末21重量%と、チタン
酸ストロンチウム粉末16重量%と、アルミナ粉末2重
量%からなるガラスセラミック原料粉末に対して、有機
バインダーとしてメタクリル酸イソブチル樹脂を固形分
で12重量%、可塑剤としてフタル酸ジブチルを6重量
%添加し、トルエンおよび酢酸エチルを溶媒としてボー
ルミルにより40時間混合し、スラリーを調整した。
Examples: SiO 2 : 44% by weight, Al 2 O 3 : 28% by weight, MgO: 11% by weight, ZnO: 8% by weight, B 2 O
3 : Based on a glass ceramic raw material powder composed of 61% by weight of crystalline glass powder having a composition of 9% by weight, 21% by weight of calcium zirconate powder, 16% by weight of strontium titanate powder, and 2% by weight of alumina powder. A slurry was prepared by adding isobutyl methacrylate resin as an organic binder in an amount of 12% by weight in terms of solid content and dibutyl phthalate as a plasticizer in an amount of 6% by weight, and using a ball mill for 40 hours with toluene and ethyl acetate as solvents to prepare a slurry.

【0029】得られたスラリーをドクターブレード法に
より厚さ0.4mmのグリーンシートに成形した。この
シートを3枚加圧積層した成形体、およびシート上にC
uペーストを印刷したものを最上層として3枚加圧積層
した成形体を作製した。
The obtained slurry was formed into a green sheet having a thickness of 0.4 mm by a doctor blade method. A molded body obtained by pressing and laminating three such sheets, and C on the sheet
A molded body formed by pressing and laminating three sheets with the u paste printed thereon as the uppermost layer.

【0030】成形体中の有機成分(バインダー、可塑剤
等)を分解除去するために55mmHgの水蒸気を含ん
だ窒素雰囲気中で750℃、1時間の熱処理を行い、そ
の後雰囲気中の水蒸気量を表1のように変更して900
℃、1時間の焼成を行いガラスセラミック基板およびC
u配線を施した配線基板を得た。
In order to decompose and remove organic components (binders, plasticizers, etc.) in the molded product, heat treatment is performed at 750 ° C. for 1 hour in a nitrogen atmosphere containing 55 mmHg of steam. Change to 1 and 900
℃ 1 hour firing, glass ceramic substrate and C
A wiring board provided with u wiring was obtained.

【0031】得られた基板を室温にて6Nの塩酸中に1
5分間浸漬した後の重量減少を測定した。また、焼結体
表面のB量をKα線による蛍光X線分析により分析し
た。B量については、焼結体表面から30μmを研削処
理しその表面の蛍光X線分析によるB(ホウ素)のピー
ク強度I1 を100とした時の、焼結体表面における蛍
光X線分析によるB(ホウ素)のピーク強度I2 の比率
(I2 ×100/I1 )を算出した。また、比重をアル
キメデス法により測定した。さらに配線基板に対して
は、Cu配線の焼成後の外観を観察した。結果は、表1
に示した。
The obtained substrate was placed in 6N hydrochloric acid at room temperature for 1 hour.
The weight loss after immersion for 5 minutes was measured. Further, the amount of B on the surface of the sintered body was analyzed by fluorescent X-ray analysis using Kα radiation. Regarding the amount of B, when the surface of the sintered body was ground by 30 μm and the peak intensity I 1 of B (boron) by fluorescent X-ray analysis of the surface was set to 100, the B amount by fluorescent X-ray analysis on the surface of the sintered body The ratio (I 2 × 100 / I 1 ) of the peak intensity I 2 of (boron) was calculated. The specific gravity was measured by the Archimedes method. Further, the appearance of the Cu wiring after firing was observed for the wiring substrate. The results are shown in Table 1.
It was shown to.

【0032】[0032]

【表1】 [Table 1]

【0033】表1の結果から明らかなように、焼成時の
雰囲気に水蒸気を添加することにより、焼結体表面のB
量が減少(焼結体中心部のB2 3 量は約5.5重量
%)し、その結果、耐酸性は向上することが判る。ま
た、このガラスセラミック材料においては、焼成時の雰
囲気を変更することにより材料の比重は変化なかった。
但し水蒸気量を360mmHgとした場合はCu導体が
著しく酸化した。
As is evident from the results in Table 1, by adding steam to the atmosphere during firing, the B
It can be seen that the amount is reduced (the amount of B 2 O 3 in the center of the sintered body is about 5.5% by weight), and as a result, the acid resistance is improved. Further, in this glass ceramic material, the specific gravity of the material did not change by changing the atmosphere during firing.
However, when the amount of water vapor was 360 mmHg, the Cu conductor was significantly oxidized.

【0034】実施例2 表2に示すガラスA(ガラス転移点:710℃)、B
(ガラス転移点:520℃)をそれぞれ50重量%とフ
ィラーのアルミナ:50重量%を混合した組成物につい
て、実施例1と同様の評価を行った。結果を表3に示
す。
Example 2 Glasses A (glass transition point: 710 ° C.) and B shown in Table 2
(Glass transition point: 520 ° C.) The same evaluation as in Example 1 was performed on a composition in which 50% by weight of each and alumina: 50% by weight of a filler were mixed. Table 3 shows the results.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】表3の結果から、水蒸気を混合した雰囲気
中で焼成し、表面のB量を低減させた試料は、B量を低
減しない試料に比較していずれも優れた耐酸化性を示し
た。但し、ガラス転移点の低いホウケイ酸系ガラスBを
用いた場合は、水蒸気を混合した雰囲気下で焼成するこ
とにより比重が低下し、断面観察の結果、基板表面が多
孔質になっていることを確認した。
From the results shown in Table 3, all the samples baked in an atmosphere containing water vapor and having a reduced B content on the surface exhibited superior oxidation resistance as compared with the samples not reduced in the B content. . However, when borosilicate glass B having a low glass transition point is used, the specific gravity is reduced by firing in an atmosphere containing a mixture of water vapor, and as a result of cross-sectional observation, it is confirmed that the substrate surface is porous. confirmed.

【0038】[0038]

【発明の効果】以上詳述したように、本発明のガラスセ
ラミック焼結体によれば、表面のB23 量を低減した
ことにより、焼結体の耐酸性を大きく向上することがで
き、これにより、配線基板等の作製において、メッキ処
理液等と接触した場合においても、ガラス相の溶出を防
止することができ、製造時の歩留り等を向上することが
できる。
As described above in detail, according to the glass ceramic sintered body of the present invention, the acid resistance of the sintered body can be greatly improved by reducing the amount of B 2 O 3 on the surface. Accordingly, in the production of a wiring board or the like, even when the glass substrate comes into contact with a plating solution or the like, elution of the glass phase can be prevented, and the yield during manufacturing can be improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ホウケイ酸系ガラスとセラミックフィラー
からなる混合物を成形、焼成してなるガラスセラミック
焼結体であって、該焼結体表面のホウ素含有量が、該焼
結体表面から30μm以上の内部深さにおけるホウ素含
有量よりも少ないことを特徴とするガラスセラミック焼
結体。
1. A glass-ceramic sintered body obtained by molding and firing a mixture comprising borosilicate glass and a ceramic filler, wherein the surface of the sintered body has a boron content of 30 μm or more from the surface of the sintered body. A glass ceramic sintered body characterized in that the content is less than the boron content at the inner depth of the glass ceramic.
【請求項2】焼結体表面の蛍光X線分析におけるホウ素
のピーク強度高さが、焼結体表面から30μmの深さ位
置におけるホウ素のピーク強度高さの90%以下である
請求項1記載のガラスセラミック焼結体。
2. The peak intensity of boron in the surface of the sintered body in a fluorescent X-ray analysis is not more than 90% of the peak intensity of boron at a depth of 30 μm from the surface of the sintered body. Glass ceramic sintered body.
【請求項3】前記ホウケイ酸系ガラスが少なくともSi
2 、Al2 3 、RO(R:Mg、Ca、Znのうち
の少なくとも1種)およびB2 3 を含有し、焼成時に
結晶相を析出し得るガラスである請求項1記載のガラス
セラミック焼結体。
3. The method according to claim 1, wherein the borosilicate glass is at least Si.
2. The glass according to claim 1, wherein the glass contains O 2 , Al 2 O 3 , RO (at least one of R, Mg, Ca, and Zn) and B 2 O 3 and can precipitate a crystal phase during firing. Ceramic sintered body.
【請求項4】ホウケイ酸系ガラスとセラミックフィラー
からなる混合物を成形後、窒素および水蒸気を含む混合
雰囲気中で焼成して、表面のB2 3 を揮散させること
を特徴とするガラスセラミック焼結体の製造方法。
4. A glass ceramic sintering method comprising molding a mixture comprising a borosilicate glass and a ceramic filler, followed by firing in a mixed atmosphere containing nitrogen and water vapor to volatilize B 2 O 3 on the surface. How to make the body.
JP32049096A 1996-11-29 1996-11-29 Glass ceramic sintered body and method for producing the same Expired - Fee Related JP3359513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32049096A JP3359513B2 (en) 1996-11-29 1996-11-29 Glass ceramic sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32049096A JP3359513B2 (en) 1996-11-29 1996-11-29 Glass ceramic sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10167810A true JPH10167810A (en) 1998-06-23
JP3359513B2 JP3359513B2 (en) 2002-12-24

Family

ID=18122035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32049096A Expired - Fee Related JP3359513B2 (en) 1996-11-29 1996-11-29 Glass ceramic sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3359513B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307671A (en) * 2000-04-21 2001-11-02 Fujitsu Ltd Material for electrode, electrode for charged particle beam apparatus and manufacturing method therefor
WO2020129858A1 (en) * 2018-12-20 2020-06-25 株式会社村田製作所 Laminate, electronic component, and laminate production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307671A (en) * 2000-04-21 2001-11-02 Fujitsu Ltd Material for electrode, electrode for charged particle beam apparatus and manufacturing method therefor
WO2020129858A1 (en) * 2018-12-20 2020-06-25 株式会社村田製作所 Laminate, electronic component, and laminate production method
CN113196418A (en) * 2018-12-20 2021-07-30 株式会社村田制作所 Laminate, electronic component, and method for producing laminate
JPWO2020129858A1 (en) * 2018-12-20 2021-10-07 株式会社村田製作所 Method for manufacturing laminates, electronic components and laminates
US11903126B2 (en) 2018-12-20 2024-02-13 Murata Manufacturing Co., Ltd. Laminate, electronic component, and laminate production method

Also Published As

Publication number Publication date
JP3359513B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
JPH11353939A (en) Conductive paste and ceramic multilayer substrate
JP5316545B2 (en) Glass ceramic composition and glass ceramic substrate
JP2008270741A (en) Wiring board
JP4577461B2 (en) Conductive paste composition and multilayer capacitor
JP4613826B2 (en) Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition
JPH1095686A (en) Copper-metalizing composition and glass ceramic wiring substrate using the same
JP5582150B2 (en) Ceramic sintered body and method for producing the same
JP3359513B2 (en) Glass ceramic sintered body and method for producing the same
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
JP2002261443A (en) Method of manufacturing circuit board
JP3426820B2 (en) Copper metallized composition and method for producing glass ceramic wiring board using the same
JP2005093546A (en) Wiring board and its producing method
JPH04280657A (en) Ceramic board and manufacture thereof
JP3101966B2 (en) High thermal expansion Al2O3-SiO2-based sintered body and method for producing the same
JP3793557B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JP2004026543A (en) Dielectric porcelain composition and laminated ceramic component using the same
JP4577956B2 (en) Glass ceramic sintered body and wiring board using the same
JP5057612B2 (en) Low-temperature sintered porcelain and wiring board using the same
JP2002211971A (en) Glass-ceramics dielectric material, sintered body and circuit member for microwave
JP3792355B2 (en) High-strength ceramic sintered body, method for producing the same, and wiring board
JP2860734B2 (en) Multilayer ceramic component, method for manufacturing the same, and internal conductor paste
JPH11157945A (en) Production of ceramic electronic part and green sheet for dummy used therefor
JP3101971B2 (en) Glass-ceramic sintered body and method for producing the same
JPH1125754A (en) Manufacture of copper-metallized composition and glass-ceramic substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees