JPH10167746A - Production of basic material for optical fiber - Google Patents

Production of basic material for optical fiber

Info

Publication number
JPH10167746A
JPH10167746A JP32932196A JP32932196A JPH10167746A JP H10167746 A JPH10167746 A JP H10167746A JP 32932196 A JP32932196 A JP 32932196A JP 32932196 A JP32932196 A JP 32932196A JP H10167746 A JPH10167746 A JP H10167746A
Authority
JP
Japan
Prior art keywords
basic material
optical fiber
erbium
base material
porous glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32932196A
Other languages
Japanese (ja)
Other versions
JP3449876B2 (en
Inventor
Atsushi Abe
淳 阿部
Fumio Saito
文男 斉藤
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP32932196A priority Critical patent/JP3449876B2/en
Publication of JPH10167746A publication Critical patent/JPH10167746A/en
Application granted granted Critical
Publication of JP3449876B2 publication Critical patent/JP3449876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01466Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/90Feeding the burner or the burner-heated deposition site with vapour generated from solid glass precursors, i.e. by sublimation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a basic material for optical fiber by grinding at a given level the surface of a porous glass basic material doped with a dopant followed by sintering and vitrifying the material so as to uniformly distribute the dopant radically. SOLUTION: The dopant to be used is e.g. Er, Al, Ge. First, as glass stock gases, silicon tetrachloride and germanium tetrachloride each bubbled with a carrier gas and aluminum chloride sublimated by heating through vapor phase method are subjected to flame hydrolysis in an oxyhydrogen flame to produce fine glass particles, which are then accumulated on a rotating target and grown axially to obtain a porous glass basic material. Secondly, the basic material is heated to about 1,200 deg.C so as to adjust its density to 0.4-0.5g/cm<3> , and then impregnated with a methanol solution of an erbium halide by solution impregnation method, and dried to effect doping Er at 50-3,000ppm. Subsequently, the surface of the resultant basic material is ground at >=5wt.%, and then the basic material is sintered and vitrified e.g. in an atmosphere of He, Cl or the like at 1,400-1,600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ドーパントがドー
プされた光増幅用の光ファイバ用母材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a preform for an optical fiber for optical amplification doped with a dopant.

【0002】[0002]

【従来の技術】光増幅器が実用化され、幹線系や加入者
系の実験にも使用されている。この光増幅器に求められ
る特性としては、高速伝送性、高効率性や低雑音性が挙
げられる。高速伝送性のためには大容量伝送が必要で、
波長多重伝送系で使用される光増幅器としては、広帯域
な増幅波長特性が求められ、光増幅器用の希土類元素添
加の光ファイバも広帯域性が必要となる。また、広帯域
性とするためには、希土類元素を添加したコアに更にア
ルミニウムを高密度に添加することが必要である。一
方、高出力で効率の良い光増幅器が求められており、光
増幅器用光ファイバとしても同様の特性が必要となる。
そのためには、コアの内周部のみに希土類元素を添加し
た二重コア光ファイバがよいとされている。このような
二重コア光ファイバ用の光増幅用光ファイバ母材として
は、合成石英にゲルマニウム、エルビウムと3重量%程
度のアルミニウムをドープしたセンターコアと合成石英
にゲルマニウムをドープしたサイドコアよりなる二重コ
アタイプが知られている。
2. Description of the Related Art Optical amplifiers have been put into practical use, and are also used for experiments in trunk systems and subscriber systems. Characteristics required for this optical amplifier include high-speed transmission, high efficiency, and low noise. Large-capacity transmission is necessary for high-speed transmission,
An optical amplifier used in a wavelength division multiplexing transmission system is required to have a wide-band amplification wavelength characteristic, and a rare-earth element-doped optical fiber for an optical amplifier also needs to have a wide band. Further, in order to obtain a wide band, it is necessary to further add aluminum at a high density to the core to which the rare earth element is added. On the other hand, a high-output and efficient optical amplifier is required, and similar characteristics are required for an optical amplifier optical fiber.
For that purpose, a double core optical fiber in which a rare earth element is added only to the inner peripheral portion of the core is said to be good. An optical fiber preform for optical amplification for such a double-core optical fiber includes a center core in which synthetic quartz is doped with germanium, erbium and about 3% by weight of aluminum, and a side core in which synthetic quartz is doped with germanium. Heavy core types are known.

【0003】[0003]

【発明が解決しようとする課題】エルビウムをドープし
た光ファイバ母材の製造方法には、多孔質ガラス母材へ
のエルビウム元素のドープの方法により気相法と液相法
がある。気相法は、塩化エルビウム等の化合物を高温度
で昇華させて多孔質ガラス母材にドープする方法であ
り、また液相法は、塩化エルビウムのアルコール溶液中
に多孔質ガラス母材を含浸させた後、アルコールを蒸発
させる方法で、いずれの方法もエルビウム化合物を均一
に多孔質ガラス母材にドープさせることが難しい。特に
溶液法では、母材表面にエルビウム化合物が多くなる傾
向があり、これを焼結・ガラス化した光ファイバ用母材
は図2に示すようにエルビウム濃度が表面付近で高くな
り、表面に酸化エルビウムが析出してくるという問題が
ある。
As a method of manufacturing an optical fiber preform doped with erbium, there are a vapor phase method and a liquid phase method depending on a method of doping an erbium element into a porous glass preform. The vapor phase method is a method in which a compound such as erbium chloride is sublimated at a high temperature and doped into a porous glass base material, and the liquid phase method is a method in which an erbium chloride alcohol solution is impregnated with the porous glass base material. After that, it is difficult to uniformly dope the erbium compound into the porous glass base material by a method of evaporating the alcohol. In the solution method, in particular, the erbium compound tends to increase on the surface of the preform, and the sintering and vitrification of the preform for optical fibers increases the erbium concentration near the surface as shown in FIG. There is a problem that erbium is deposited.

【0004】[0004]

【課題を解決するための手段】本発明は、かかる問題点
に鑑みなされたもので、光ファイバ用母材の製造方法に
おいて、ドーパントをドープした多孔質ガラス母材の表
面を少なくとも5重量%研削したのち、焼結・ガラス化
することを特徴とするもので、本発明により、半径方向
にドーパントが均一に分布した光ファイバ用母材が得ら
れ、また、研削を母材のガラス化前の多孔質状態で行う
ので、短時間で容易に加工することができる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and in a method of manufacturing a preform for optical fiber, a surface of a porous glass preform doped with a dopant is ground by at least 5% by weight. After that, it is characterized by sintering and vitrification.According to the present invention, a preform for an optical fiber in which a dopant is uniformly distributed in a radial direction is obtained, and grinding is performed before vitrification of the preform. Since it is performed in a porous state, it can be easily processed in a short time.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明では、ドーパントとしてはエルビウム、アルミニ
ウム、ゲルマニウム等であり、多孔質ガラス母材へのエ
ルビウムのドープは溶液含浸法により行われ、またこの
多孔質ガラス母材はアルミニウムが気相法によりドープ
された、VAD法等で製造されたものである。例えば、
ガラス原料ガスとして、キャリアガスでバブリングされ
た四塩化ケイ素および四塩化ゲルマニウムと、気相法に
より、加温昇華させた塩化アルミニウムとを、酸水素火
炎中で火炎加水分解してガラス微粒子を生成させ、これ
を回転するターゲットに堆積させ、軸方向に成長させて
多孔質ガラス母材を得る。次いで、この多孔質ガラス母
材を約1200℃に加熱して母材密度を0.4 〜0.5g/cm3に調
整した後、溶液含浸法により、ハロゲン化エルビウムの
メタノール溶液に含浸し、乾燥して、多孔質ガラス母材
にエルビウムを50〜3000ppm ドープさせる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, the dopant is erbium, aluminum, germanium, or the like, and erbium is doped into the porous glass base material by a solution impregnation method, and the porous glass base material is doped with aluminum by a gas phase method. It is manufactured by the VAD method or the like. For example,
As glass source gases, silicon tetrachloride and germanium tetrachloride bubbled with a carrier gas and aluminum chloride heated and sublimated by a gas phase method are flame-hydrolyzed in an oxyhydrogen flame to produce glass fine particles. This is deposited on a rotating target and grown in the axial direction to obtain a porous glass preform. Next, after heating the porous glass base material to about 1200 ° C. to adjust the base material density to 0.4 to 0.5 g / cm 3 , the porous glass base material is impregnated with a methanol solution of erbium halide by a solution impregnation method, and dried. Then, the porous glass base material is doped with 50 to 3000 ppm of erbium.

【0006】本発明では図2に示すような光ファイバ用
母材の表面付近のエルビウム濃度の高い部分を除去する
ために、多孔質ガラス母材の表面を少なくとも5重量%
の、母材の半径方向のエルビウム濃度が均一となる量を
研削することが必要で、5重量%未満では、エルビウム
濃度が母材の半径方向に均一なものが得られない。ま
た、研削は、カッターで削る等の方法で、多孔質ガラス
母材が上記の研削量となるまで母材表面の研削を行えば
よい。このように本発明では母材の研削を多孔質の状態
で行うので、加工が短時間で済み、しかも容易である。
In the present invention, the surface of the porous glass preform is reduced to at least 5% by weight in order to remove a portion having a high erbium concentration near the surface of the preform for optical fiber as shown in FIG.
However, it is necessary to grind an amount in which the erbium concentration in the base material in the radial direction becomes uniform. When the erbium concentration is less than 5% by weight, a material having an erbium concentration uniform in the radial direction of the base material cannot be obtained. The grinding may be performed by grinding the surface of the porous glass base material until the porous glass base material reaches the above-described grinding amount by a method such as cutting with a cutter. As described above, in the present invention, since the grinding of the base material is performed in a porous state, the processing is completed in a short time and is easy.

【0007】研削後のエルビウムドープ多孔質ガラス母
材は公知の方法で焼結・ガラス化され光ファイバ用母材
が得られる。この焼結・ガラス化は例えば、ヘリウム、
塩素等の雰囲気で1400〜1600℃で行えばよい。
The erbium-doped porous glass base material after grinding is sintered and vitrified by a known method to obtain an optical fiber base material. This sintering and vitrification is, for example, helium,
It may be performed at 1400 to 1600 ° C. in an atmosphere such as chlorine.

【0008】図1は、本発明により得られた光ファイバ
用母材のEPMAによる半径方向のエルビウム濃度分布
の測定結果で、エルビウムが均一に分布している。一
方、図2は、研削を行わなかった場合の直径方向のエル
ビウム濃度分布の測定結果を示したもので、母材の表面
付近でエルビウム濃度が高くなることを示している。
FIG. 1 shows the results of measuring the erbium concentration distribution in the radial direction of the optical fiber preform obtained by the present invention using EPMA, in which erbium is uniformly distributed. On the other hand, FIG. 2 shows the measurement results of the erbium concentration distribution in the diameter direction when grinding is not performed, and shows that the erbium concentration increases near the surface of the base material.

【0009】[0009]

【実施例】【Example】

実施例 キャリアガスのアルゴンガスにより、四塩化ケイ素(Si
Cl4 )205SCCM 、四塩化ゲルマニウム(GeCl4 )155SCC
M をバブリングし、塩化アルミニウム(AlCl3)を140
℃で加温昇華させ、水素ガス4.7SLM、酸素ガス10SLM 、
アルゴンガス1SLM とともにバーナに送り、酸水素火炎
加水分解反応によりガラス微粒子を生成させ、回転する
ターゲットに堆積させ、軸方向に引き上げながら成長さ
せて、アルミニウムが25000ppm添加された、外径60mm、
長さ200mm の多孔質ガラス母材を作製した。この母材を
加熱炉中ヘリウム雰囲気で、約1200℃で加熱し、多孔質
体の密度を0.24g/cm3 から0.44g/cm3 に上げた。次い
で、この母材を塩化エルビウム濃度3g/l のメタノール
溶液に3時間含浸させた後、これを室温で2昼夜乾燥し
たところ、エルビウムの含有量は400ppmであった。次い
で、母材の重量を測定し、カッターを用いて母材の表面
を均一に研削し、研削量が5重量%になるまで行なっ
た。次いで、これを加熱炉でヘリウム、塩素雰囲気中で
1600℃で焼結・ガラス化して、外径25mm、長さ250mm の
透明ガラス母材を得た。この透明ガラス母材の半径方向
のエルビウム濃度をEPMAで測定したところ、図1に
示す結果が得られ、均一な分布を示した。
Example Silicon tetrachloride (Si
Cl 4) 205SCCM, germanium tetrachloride (GeCl 4) 155SCC
Bubble M and add aluminum chloride (AlCl 3 ) to 140
Sublimated by heating at ℃, hydrogen gas 4.7SLM, oxygen gas 10SLM,
Argon gas is sent to the burner together with 1 SLM to produce glass fine particles by oxyhydrogen flame hydrolysis reaction, deposited on a rotating target, grown while pulling up in the axial direction, and added with 25,000 ppm of aluminum.
A 200 mm long porous glass preform was prepared. The base material was heated at about 1200 ° C. in a helium atmosphere in a heating furnace to increase the density of the porous body from 0.24 g / cm 3 to 0.44 g / cm 3 . Next, this base material was impregnated with a methanol solution having an erbium chloride concentration of 3 g / l for 3 hours, and then dried at room temperature for 2 days and night, and the erbium content was 400 ppm. Next, the weight of the base material was measured, and the surface of the base material was ground uniformly using a cutter until the grinding amount reached 5% by weight. Then, this is heated in a helium and chlorine atmosphere
Sintering and vitrification at 1600 ° C. yielded a transparent glass base material having an outer diameter of 25 mm and a length of 250 mm. When the erbium concentration in the radial direction of the transparent glass base material was measured by EPMA, the result shown in FIG. 1 was obtained, and a uniform distribution was shown.

【0010】比較例 多孔質ガラス母材の表面の研削を行わなかった以外は実
施例と同様に行って得られた外径28mm、長さ250mm の透
明ガラス母材の直径方向のエルビウムのドープ濃度をE
PMAで測定したところ、図2に示す結果が得られ、母
材の表面付近でエルビウム濃度が高くなる分布を示し
た。
Comparative Example The erbium doping concentration in the diameter direction of a transparent glass base material having an outer diameter of 28 mm and a length of 250 mm obtained in the same manner as in the embodiment except that the surface of the porous glass base material was not ground. To E
As a result of measurement with PMA, the results shown in FIG. 2 were obtained, indicating a distribution in which the erbium concentration increased near the surface of the base material.

【0011】[0011]

【発明の効果】本発明により、ドーパント濃度が均一な
光ファイバ用ガラス母材を容易に得ることができる。
According to the present invention, a glass preform for an optical fiber having a uniform dopant concentration can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光ファイバ用母材の半径方向のエ
ルビウム濃度のEPMAによる測定結果を示した図であ
る。
FIG. 1 is a graph showing the results of EPMA measurement of the erbium concentration in the radial direction of an optical fiber preform according to the present invention.

【図2】従来法による光ファイバ用母材の直径方向のエ
ルビウム濃度のEPMAによる測定結果を示した図であ
る。
FIG. 2 is a view showing the results of EPMA measurement of the erbium concentration in the diameter direction of an optical fiber preform according to a conventional method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ドーパントをドープした多孔質ガラス母材
の表面を少なくとも5重量%研削した後、焼結・ガラス
化することを特徴とする光ファイバ用母材の製造方法。
1. A method of manufacturing a preform for an optical fiber, comprising: grinding a surface of a porous glass preform doped with a dopant by at least 5% by weight, followed by sintering and vitrification.
【請求項2】多孔質ガラス母材に気相法によりハロゲン
化アルミニウムをドープし、次いでこの多孔質ガラス母
材に溶液含浸法によりハロゲン化エルビウムをドープし
た後、多孔質ガラス母材の表面を少なくとも5重量%研
削する請求項1に記載の光ファイバ用母材の製造方法。
2. A porous glass base material is doped with an aluminum halide by a gas phase method, and then the porous glass base material is doped with an erbium halide by a solution impregnation method. The method for producing a preform for an optical fiber according to claim 1, wherein at least 5% by weight is ground.
JP32932196A 1996-12-10 1996-12-10 Manufacturing method of preform for optical fiber Expired - Fee Related JP3449876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32932196A JP3449876B2 (en) 1996-12-10 1996-12-10 Manufacturing method of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32932196A JP3449876B2 (en) 1996-12-10 1996-12-10 Manufacturing method of preform for optical fiber

Publications (2)

Publication Number Publication Date
JPH10167746A true JPH10167746A (en) 1998-06-23
JP3449876B2 JP3449876B2 (en) 2003-09-22

Family

ID=18220158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32932196A Expired - Fee Related JP3449876B2 (en) 1996-12-10 1996-12-10 Manufacturing method of preform for optical fiber

Country Status (1)

Country Link
JP (1) JP3449876B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474106B1 (en) * 1999-11-30 2002-11-05 Corning Incorporated Rare earth and alumina-doped optical fiber preform process
JP2011032137A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Method of manufacturing rare earth element-addition optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474106B1 (en) * 1999-11-30 2002-11-05 Corning Incorporated Rare earth and alumina-doped optical fiber preform process
JP2011032137A (en) * 2009-08-03 2011-02-17 Furukawa Electric Co Ltd:The Method of manufacturing rare earth element-addition optical fiber preform

Also Published As

Publication number Publication date
JP3449876B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
AU652351B2 (en) Quartz glass doped with rare earth element and production thereof
EP0565439B1 (en) Manufacturing method for erbium-doped silica glass optical fibre preforms
JP3202919B2 (en) Single mode optical transmission fiber and method of manufacturing the same
EP0851544B1 (en) Optical amplifying fiber and process of producing the same
CA2910731C (en) A process for fabrication of ytterbium doped optical fiber
US5246475A (en) Method for preparing a fused silica glass body co-doped with a rare earth element and aluminum
JP4158910B2 (en) Manufacturing method of rare earth element doped glass and optical amplification fiber using the same
JP2669976B2 (en) Erbium-doped fiber for optical amplifier
JP3449876B2 (en) Manufacturing method of preform for optical fiber
JPH04367536A (en) Production of rare earth elements-containing quartz
JPH04300218A (en) Production of quartz glass doped with rare-earth element
JP3157000B2 (en) Optical waveguide
JP3188309B2 (en) Method for manufacturing optical fiber preform for optical amplifier
JP2628944B2 (en) Manufacturing method of rare earth element doped optical fiber
JPH05330831A (en) Production of rare-earth-element-doped quartz glass
JPH085684B2 (en) Quartz glass manufacturing method
JP3187130B2 (en) Method for producing rare earth element doped quartz glass
JPH0990144A (en) Production of multicore optical fiber with addition of rare earth element
JP2003204097A (en) Optical amplifying fiber and its manufacturing method
JP2001228352A (en) Optical fiber
JPH0585759A (en) Manufacture of rare-earth-element-doped quartz glass
JPH1059736A (en) Optical fiber preform for optical amplification and its production
JP2000143273A (en) Production of optical fiber preform
JPH0990145A (en) Production of multicore optical fiber with addition of rare earth element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees