JPH10164900A - Induction motor controller - Google Patents

Induction motor controller

Info

Publication number
JPH10164900A
JPH10164900A JP8334497A JP33449796A JPH10164900A JP H10164900 A JPH10164900 A JP H10164900A JP 8334497 A JP8334497 A JP 8334497A JP 33449796 A JP33449796 A JP 33449796A JP H10164900 A JPH10164900 A JP H10164900A
Authority
JP
Japan
Prior art keywords
vector
magnetic flux
output
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8334497A
Other languages
Japanese (ja)
Other versions
JP3329673B2 (en
Inventor
Yoichi Omori
洋一 大森
Masashi Takagi
正志 高木
Tomoaki Kiritani
知明 桐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP33449796A priority Critical patent/JP3329673B2/en
Publication of JPH10164900A publication Critical patent/JPH10164900A/en
Application granted granted Critical
Publication of JP3329673B2 publication Critical patent/JP3329673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure the safety of a system by correcting a primary resistance value of a motor to be used in a voltage system magnetic flux calculator, using a vector product of a current vector which is the output of a current detector and a magnetic flux error vector which is the output of an error vector calculator. SOLUTION: A current system magnetic flux calculator 8 calculates a magnetic flux vector of a motor 4 from a rotating speed μm which is the output of a speed calculator 7 and a current vector i1 which is the output of a current detector 2. An error vector calculator 11 calculates a differential vector between a current system magnetic flux vector ϕ2i which is the output of the current system magnetic flux calculator 8 and a voltage system magnetic flux vector Ψ2v which is the output of a voltage system magnetic flux calculator 6. A vector product calculator 12 calculates a vector product of the current vector i1 which is the output of the current detector 2 and a magnetic flux error vector ΔΨ2 which is the output of the error vector calculator 11. An error amplifier 13 amplifies Er which is the output of the vector product calculator 12. A primary resistance corrector 14 corrects a primary resistance value of the motor 4 to be used in the voltage magnetic flux calculator 6, using GR1 which is the output of the error amplifier 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,インバータにより
誘導電動機を駆動する装置に関するもので,特に温度変
動による特性変化を抑制する物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for driving an induction motor by an inverter, and more particularly to a device for suppressing a characteristic change due to a temperature change.

【0002】[0002]

【従来の技術】誘導電動機に速度検出器を付けないで該
電動機のトルクと速度を高精度高速に制御する誘導電動
機の制御装置の従来の制御ブロックを図2に示し,以下
図2に従って従来技術を説明する。インバータ1はトル
ク磁束制御器5の出力のスイッチング信号を入力して,
そのスイッチング信号に応じてインバータを動作させ
る。インバータ1の出力は電流検出器2や電圧検出器3
を介して電動機4に接続されており,インバータ1によ
り電動機4に電圧を印加することができる。
2. Description of the Related Art FIG. 2 shows a conventional control block of a control device for an induction motor for controlling the torque and speed of the induction motor with high accuracy and high speed without attaching a speed detector to the induction motor. Will be described. The inverter 1 receives the switching signal of the output of the torque flux controller 5 and
The inverter is operated according to the switching signal. The output of the inverter 1 is a current detector 2 or a voltage detector 3
Is connected to the electric motor 4 through the inverter 1 and a voltage can be applied to the electric motor 4 by the inverter 1.

【0003】電圧系磁束演算器6は検出器2や3からの
電流ベクトルi1と電圧ベクトルv1を入力し,また電
流系磁束演算器8の出力の電流系磁束ベクトルψ2iを
も入力して電圧系磁束ベクトルψ2vを(1)式より演
算する。
The voltage-based magnetic flux calculator 6 receives the current vector i1 and the voltage vector v1 from the detectors 2 and 3, and also receives the current-based magnetic flux vector ψ2i output from the current-based magnetic flux calculator 8 to supply the voltage to the voltage system. The magnetic flux vector ψ2v is calculated from equation (1).

【0004】[0004]

【数1】 (Equation 1)

【0005】ここで,L1は一次自己インダクタンス,
L2は二次自己インダクタンス,Mは相互インダクタン
ス,Kはドリフト補償ゲインである。R1は一次抵抗で
設定固定値のR1nを用いている。積分内第二項は,積
分ドリフト抑制のために追加されているもので,本来は
不要な項である。速度演算器7は,電圧系磁束ベクトル
ψ2vと電流ベクトルi1より回転速度ωmを(2)式
より求める。
Here, L1 is a primary self inductance,
L2 is a secondary self-inductance, M is a mutual inductance, and K is a drift compensation gain. R1 is a primary resistance and uses a fixed value R1n. The second term in the integral is added to suppress the integral drift, and is an originally unnecessary term. The speed calculator 7 calculates the rotation speed ωm from the voltage system magnetic flux vector ψ2v and the current vector i1 according to the equation (2).

【0006】[0006]

【数2】 (Equation 2)

【0007】ここでωはψ2vの回転角速度であり,R
2は二次抵抗である。電流系磁束演算器8は,(3)式
で電流系磁束ベクトルψ2iを演算する。
Here, ω is the rotational angular velocity of ψ2v, and R
2 is a secondary resistance. The current-system magnetic flux calculator 8 calculates the current-system magnetic flux vector ψ2i by Expression (3).

【0008】[0008]

【数3】 (Equation 3)

【0009】トルク演算器9では,電流系磁束ベクトル
ψ2iと電流ベクトルi1よりトルクTを演算しトルク
磁束制御器5に出力する。トルク磁束制御器5では,そ
の他にトルク指令T*と磁束指令φ*と磁束ψ2iを入
力してトルクと磁束がそれらの指令に追従するようなス
イッチング信号をインバータ1に出力する。速度制御器
10では,速度指令ωm*と演算速度ωmを入力して,
速度が指令に追従するようなトルク指令を出力する。
The torque calculator 9 calculates the torque T from the current system magnetic flux vector ψ2i and the current vector i1, and outputs the calculated torque T to the torque magnetic flux controller 5. The torque flux controller 5 also inputs a torque command T *, a flux command φ *, and a flux ψ2i, and outputs a switching signal to the inverter 1 so that the torque and the flux follow the commands. The speed controller 10 inputs the speed command ωm * and the calculated speed ωm,
A torque command is output such that the speed follows the command.

【0010】[0010]

【発明が解決しようとする課題】上述の従来技術では,
電圧系磁束ベクトルの演算に一次抵抗R1を用いてい
る。このR1は,電動機の温度によって変動するもの
で,温度変動によりR1が変動し,それにより電圧系磁
束ベクトルψ2vに誤差が含まれるようになり,それに
よって速度やトルクにも誤差が含まれるようになる。ま
たシステムの安定性も脅かされるようになる。本発明は
上述した点に鑑みて創案されたもので、その目的とする
ところは、これらの欠点を解決した誘導電動機制御装置
を提供することにある。
In the above-mentioned prior art,
The primary resistance R1 is used for calculating the voltage flux vector. This R1 fluctuates according to the temperature of the electric motor. R1 fluctuates due to the temperature fluctuation, so that an error is included in the voltage-based magnetic flux vector ψ2v, so that the speed and the torque also include an error. Become. Also, the stability of the system will be threatened. The present invention has been made in view of the above points, and an object of the present invention is to provide an induction motor control device that solves these drawbacks.

【0011】[0011]

【課題を解決するための手段】つまり、その目的を達成
するための手段は、誘導電動機への供給電圧を検出また
は推定してベクトルに変換する電圧検出手段と,該電動
機の入力電流を検出してベクトルに変換する電流検出手
段と,前記電圧検出手段の出力の電圧ベクトルと前記電
流検出手段の出力の電流ベクトルを入力して該電動機の
磁束ベクトルを演算する電圧系磁束演算手段と,前記電
圧系磁束演算手段の出力の電圧系磁束ベクトルと前記電
流検出手段の出力の電流ベクトルから該電動機の回転速
度を演算する速度演算手段と,前記速度演算手段の出力
の回転速度と前記電流検出手段の出力の電流ベクトルか
ら該電動機の磁束ベクトルを演算する電流系磁束演算手
段と,前記電流系磁束演算手段の出力の電流系磁束ベク
トルと電圧系磁束演算手段の出力の電圧系磁束ベクトル
との差ベクトルを演算する誤差ベクトル演算手段と,前
記電流検出手段のの出力の電流ベクトルと前記誤差ベク
トル演算手段の出力の磁束誤差ベクトルとの外積を演算
する外積演算手段と,前記外積演算手段の出力を増幅す
る誤差増幅手段と,前記誤差増幅手段の出力より前記電
圧系磁束演算手段に用いる該電動機の一次抵抗値を修正
する一次抵抗修正手段から構成されている。
That is, means for achieving the object are voltage detecting means for detecting or estimating a supply voltage to an induction motor and converting it into a vector, and detecting input current of the motor. Current detecting means for converting a voltage vector output from the voltage detecting means and a current vector output from the current detecting means to calculate a magnetic flux vector of the electric motor; Speed calculating means for calculating the rotation speed of the motor from a voltage system magnetic flux vector output from the system magnetic flux calculating means and a current vector output from the current detecting means; and a rotational speed between the output of the speed calculating means and the current detecting means. A current system magnetic flux calculating means for calculating a magnetic flux vector of the electric motor from an output current vector; a current system magnetic flux vector and a voltage system magnetic flux output from the current system magnetic flux calculating means; Error vector calculating means for calculating a difference vector between the voltage system magnetic flux vector output from the calculating means, and an outer product of a current vector output from the current detecting means and a magnetic flux error vector output from the error vector calculating means. It comprises an outer product calculating means, an error amplifying means for amplifying an output of the outer product calculating means, and a primary resistance correcting means for correcting a primary resistance value of the electric motor used for the voltage-based magnetic flux calculating means from the output of the error amplifying means. ing.

【0012】以下は,前記解決するための手段が前記問
題点を解決できる理由を述べる。電動機が正転で力行ト
ルクを出力している場合の各ベクトルの関係は図3の様
に表される。電流系磁束ベクトルψ2iを通り電流ベク
トルi1に平行な一点鎖線aに対して,電圧系磁束ベク
トルψ2vが電流ベクトルi1と同じ側に存在すると誤
差ベクトル演算手段の出力は(4)式で示され、
The following describes the reason why the means for solving the above problem can solve the above problem. FIG. 3 shows the relationship between the respective vectors when the motor is outputting the powering torque in the forward rotation. If the voltage-based magnetic flux vector ψ2v exists on the same side as the current vector i1 with respect to the one-dot chain line a passing through the current-system magnetic flux vector ψ2i and parallel to the current vector i1, the output of the error vector calculation means is expressed by equation (4).

【0013】[0013]

【数4】 (Equation 4)

【0014】電流ベクトルi1より位相が遅れているの
で,外積演算手段の出力は(5)式で示され、
Since the phase lags behind the current vector i1, the output of the outer product calculating means is expressed by equation (5).

【0015】[0015]

【数5】 (Equation 5)

【0016】Er<0となる。逆に一点鎖線aに対して
電圧系磁束ベクトルψ2vが電流ベクトルi1と反対側
に存在するとEr>0となる。一次抵抗R1を変化させ
るとベクトルEは電圧ベクトルv1を通る破線b上を移
動する。一次抵抗R1による電圧降下を電圧ベクトルv
1から引いたベクトルEの積分である電圧系磁束ベクト
ルψ2vは,ベクトルEと直交しているので,一次抵抗
R1を変化させると電流ベクトルi1と直交した二点鎖
線c上を移動する。電流系磁束ベクトルψ2iと電圧系
磁束ベクトルψ2vが一致しない理由が一次抵抗R1の
誤差によるものであれば,Er=0となるように一次抵
抗R1を調整することによって一点鎖線aと二点鎖線c
との交点に電圧系磁束ベクトルψ2vを移動させること
ができ,この時点で電圧系磁束ベクトルψ2vと電流系
磁束ベクトルψ2iは一致するはずであり,その時の一
次抵抗R1が正しい値となる。つまり,Er<0の時は
一次抵抗R1を小さくし,Er>0の時は一次抵抗R1
を大きくすることで一次抵抗R1は正しい値に調整され
電圧系磁束ベクトルψ2vと電流系磁束ベクトルψ2i
とは一致するようになる。よって、前記誤差増幅手段
で、例えば、(6)式に示される比例積分要素
Er <0. Conversely, if the voltage-based magnetic flux vector ψ2v exists on the opposite side of the one-dot chain line a from the current vector i1, Er> 0. When the primary resistance R1 is changed, the vector E moves on a broken line b passing through the voltage vector v1. The voltage drop due to the primary resistor R1 is represented by a voltage vector v
Since the voltage-based magnetic flux vector ψ2v, which is the integral of the vector E subtracted from 1, is orthogonal to the vector E, when the primary resistance R1 is changed, it moves on the two-dot chain line c orthogonal to the current vector i1. If the current system magnetic flux vector ψ2i and the voltage system magnetic flux vector v2v do not match due to an error in the primary resistance R1, the dash-dot line a and the dash-dot line c are adjusted by adjusting the primary resistance R1 so that Er = 0.
The voltage-based magnetic flux vector と 2v can be moved to the intersection with と, and at this time, the voltage-based magnetic flux vector 電流 2v and the current-based magnetic flux vector ψ2i should match, and the primary resistance R1 at that time has a correct value. That is, when Er <0, the primary resistance R1 is reduced, and when Er> 0, the primary resistance R1 is reduced.
Is increased, the primary resistance R1 is adjusted to a correct value, and the voltage system magnetic flux vector ψ2v and the current system magnetic flux vector ψ2i
Will match. Therefore, the error amplifying means uses, for example, a proportional-integral element

【0017】[0017]

【数6】 (Equation 6)

【0018】で誤差Erを増幅し,一次抵抗修正手段で
(7)式
The error Er is amplified by using the following formula (7) by the primary resistance correcting means.

【0019】[0019]

【数7】 (Equation 7)

【0020】のようにして一次抵抗を修正できる。これ
によって,外積演算手段の出力Erはゼロになるように
一次抵抗R1が調整できる。以下、本発明の一実施例を
図面に基づいて詳述する。
As described above, the primary resistance can be corrected. Thereby, the primary resistance R1 can be adjusted so that the output Er of the outer product calculation means becomes zero. Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

【0021】[0021]

【発明の実施の形態】図1は本発明の一実施例を示すブ
ロック図であり、図中、図2と同符号は同じ構成機能を
有する部分である。図1において、電圧系磁束演算手段
としての電圧系磁束演算器6は電流検出手段としての電
流検出器2や電圧検出手段としての電圧検出器3からの
電流ベクトルi1と電圧ベクトルv1を入力し,また電
流系磁束演算手段としての電流系磁束演算器8の出力の
電流系磁束ベクトルψ2iをも入力して電圧系磁束ベク
トルψ2vを(1)式より演算する。電圧系磁束演算器
6で用いる一次抵抗値は,一次抵抗修正手段である一次
抵抗修正器14の出力を用いる。速度演算手段としての
速度演算器7は,電圧系磁束ベクトルψ2vと電流ベク
トルi1より回転速度ωmを(2)式より求める。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which the same reference numerals as in FIG. 2 denote portions having the same configuration functions. In FIG. 1, a voltage-based magnetic flux calculator 6 as a voltage-based magnetic flux calculator inputs a current vector i1 and a voltage vector v1 from a current detector 2 as a current detector and a voltage detector 3 as a voltage detector. The current system magnetic flux vector ψ2i output from the current system magnetic flux calculator 8 as the current system magnetic flux calculator is also input, and the voltage system magnetic flux vector ψ2v is calculated from the equation (1). As the primary resistance value used in the voltage-based magnetic flux calculator 6, the output of the primary resistance corrector 14, which is primary resistance correcting means, is used. The speed calculator 7 as the speed calculating means obtains the rotational speed ωm from the equation (2) from the voltage-based magnetic flux vector ψ2v and the current vector i1.

【0022】電流系磁束演算器8は,(3)式で電流系
磁束ベクトルψ2iを演算する。トルク演算器9では,
電流系磁束ベクトルψ2iと電流ベクトルi1よりトル
クTを演算しトルク磁束制御器5に出力する。トルク磁
束制御器5では,その他にトルク指令T*と磁束指令φ
*と磁束ψ2iを入力してトルクと磁束がそれらの指令
に追従するようなスイッチング信号をインバータ1に出
力する。速度制御器10では,速度指令ωm*と演算速
度ωmを入力して,速度が指令に追従するようなトルク
指令を出力する。誤差ベクトル演算手段である誤差ベク
トル演算器11は(4)式の演算を行いΔψ2を出力す
る。外積演算手段である外積演算器12は誤差ベクトル
演算器11の出力の磁束誤差ベクトルΔψ2と電流ベク
トルi1との外積を(5)式で演算してErを出力す
る。誤差増幅手段である誤差増幅器13はErを(6)
式の様に比例積分増幅してGR1を出力する。一次抵抗
修正器14は,(7)式の様に一次抵抗設定値R1nを
修正したR1を電圧系磁束演算器6に出力する。
The current-system magnetic flux calculator 8 calculates the current-system magnetic flux vector ψ2i by the equation (3). In the torque calculator 9,
The torque T is calculated from the current system magnetic flux vector ψ2i and the current vector i1 and output to the torque magnetic flux controller 5. The torque flux controller 5 additionally includes a torque command T * and a flux command φ.
* And the magnetic flux ψ2i, and outputs a switching signal to the inverter 1 such that the torque and the magnetic flux follow those commands. The speed controller 10 inputs the speed command ωm * and the calculated speed ωm, and outputs a torque command such that the speed follows the command. The error vector calculator 11 as the error vector calculator performs the calculation of the equation (4) and outputs Δψ2. The outer product calculator 12 serving as the outer product calculating means calculates the outer product of the magnetic flux error vector Δψ2 output from the error vector calculator 11 and the current vector i1 by using equation (5), and outputs Er. The error amplifier 13 as the error amplifying means converts Er into (6)
GR1 is output after performing proportional-integral amplification as shown in the equation. The primary resistance corrector 14 outputs R1 obtained by correcting the primary resistance set value R1n to the voltage-based magnetic flux calculator 6 as in the equation (7).

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、電
圧系磁束ベクトルの演算に用いる一次抵抗R1を正しく
自動的に調整できるので,例えば電動機の温度変動によ
って実際の一次抵抗が変動しても,それに追従して電圧
系磁束ベクトルの演算に用いる一次抵抗R1を変化させ
ることができる。よって,温度変動によるR1の変動で
の速度やトルクの制御誤差がなくなり,またシステムの
安定性も確保される。
As described above, according to the present invention, the primary resistance R1 used for calculating the voltage-based magnetic flux vector can be correctly and automatically adjusted. Accordingly, the primary resistance R1 used for calculating the voltage system magnetic flux vector can be changed accordingly. Therefore, speed and torque control errors due to fluctuations in R1 due to temperature fluctuations are eliminated, and system stability is also ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘導電動機制御装置の一実施例を表す
ブロック図である。
FIG. 1 is a block diagram illustrating an embodiment of an induction motor control device according to the present invention.

【図2】従来例の誘導電動機制御装置の一実施例を表す
ブロック図である。
FIG. 2 is a block diagram showing an embodiment of a conventional induction motor control device.

【図3】ベクトル関係図である。FIG. 3 is a vector relation diagram.

【符号の説明】[Explanation of symbols]

1 インバータ 2 電流検出器 3 電圧検出器 4 誘導電動機 5 トルク磁束制御器 6 電圧系磁束演算器 7 速度演算器 8 電流系磁束演算器 9 トルク演算器 10 速度制御器 11 誤差ベクトル演算器 12 外積演算器 13 誤差増幅器 14 一次抵抗修正器 DESCRIPTION OF SYMBOLS 1 Inverter 2 Current detector 3 Voltage detector 4 Induction motor 5 Torque magnetic flux controller 6 Voltage system magnetic flux calculator 7 Speed calculator 8 Current system magnetic flux calculator 9 Torque calculator 10 Speed controller 11 Error vector calculator 12 Outer product calculation Unit 13 Error amplifier 14 Primary resistance corrector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機に電力を供給して該電動機の
回転速度や出力トルクを制御する誘導電動機制御装置に
おいて,該誘導電動機への供給電圧を検出または推定し
てベクトルに変換する電圧検出手段と,該電動機の入力
電流を検出してベクトルに変換する電流検出手段と,前
記電圧検出手段の出力の電圧ベクトルと前記電流検出手
段の出力の電流ベクトルを入力して該電動機の磁束ベク
トルを演算する電圧系磁束演算手段と,前記電圧系磁束
演算手段の出力の電圧系磁束ベクトルと前記電流検出手
段の出力の電流ベクトルから該電動機の回転速度を演算
する速度演算手段と,前記速度演算手段の出力の回転速
度と前記電流検出手段の出力の電流ベクトルから該電動
機の磁束ベクトルを演算する電流系磁束演算手段と,前
記電流系磁束演算手段の出力の電流系磁束ベクトルと電
圧系磁束演算手段の出力の電圧系磁束ベクトルとの差ベ
クトルを演算する誤差ベクトル演算手段と,前記電流検
出手段のの出力の電流ベクトルと前記誤差ベクトル演算
手段の出力の磁束誤差ベクトルとの外積を演算する外積
演算手段と,前記外積演算手段の出力を増幅する誤差増
幅手段と,前記誤差増幅手段の出力より前記電圧系磁束
演算手段に用いる該電動機の一次抵抗値を修正する一次
抵抗修正手段を具備することを特徴とする誘導電動機制
御装置。
1. An induction motor control device for supplying electric power to an induction motor to control a rotation speed and an output torque of the induction motor, wherein voltage detection means detects or estimates a supply voltage to the induction motor and converts it into a vector. A current detecting means for detecting an input current of the motor and converting it into a vector; a voltage vector of an output of the voltage detecting means and a current vector of an output of the current detecting means being inputted to calculate a magnetic flux vector of the motor A voltage-based magnetic flux calculating means, a speed calculating means for calculating a rotation speed of the motor from a voltage-based magnetic flux vector output from the voltage-based magnetic flux calculating means and a current vector output from the current detecting means; A current system magnetic flux calculator for calculating a magnetic flux vector of the motor from an output rotation speed and a current vector output from the current detector; Error vector calculating means for calculating a difference vector between a current-based magnetic flux vector output from the stage and a voltage-based magnetic flux vector output from the voltage-based magnetic flux calculating means; a current vector output from the current detecting means and the error vector calculating means; Product calculating means for calculating the cross product of the output of the motor and the magnetic flux error vector, error amplifying means for amplifying the output of the cross product calculating means, and the primary of the motor used for the voltage-based magnetic flux calculating means based on the output of the error amplifying means. An induction motor control device comprising primary resistance correction means for correcting a resistance value.
【請求項2】 誤差増幅手段に比例積分増幅器を用いる
請求項1記載の誘導電動機制御装置。
2. The induction motor control device according to claim 1, wherein a proportional-integral amplifier is used as the error amplifier.
JP33449796A 1996-11-29 1996-11-29 Induction motor control device Expired - Fee Related JP3329673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33449796A JP3329673B2 (en) 1996-11-29 1996-11-29 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33449796A JP3329673B2 (en) 1996-11-29 1996-11-29 Induction motor control device

Publications (2)

Publication Number Publication Date
JPH10164900A true JPH10164900A (en) 1998-06-19
JP3329673B2 JP3329673B2 (en) 2002-09-30

Family

ID=18278072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33449796A Expired - Fee Related JP3329673B2 (en) 1996-11-29 1996-11-29 Induction motor control device

Country Status (1)

Country Link
JP (1) JP3329673B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211697A (en) * 2000-01-28 2001-08-03 Toyo Electric Mfg Co Ltd Motor controller without speed sensor
JP2001211689A (en) * 2000-01-28 2001-08-03 Toyo Electric Mfg Co Ltd Motor controller without speed sensor
JP2007159208A (en) * 2005-12-02 2007-06-21 Toyo Electric Mfg Co Ltd Induction machine controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211697A (en) * 2000-01-28 2001-08-03 Toyo Electric Mfg Co Ltd Motor controller without speed sensor
JP2001211689A (en) * 2000-01-28 2001-08-03 Toyo Electric Mfg Co Ltd Motor controller without speed sensor
JP4592138B2 (en) * 2000-01-28 2010-12-01 東洋電機製造株式会社 Speed sensorless motor controller
JP2007159208A (en) * 2005-12-02 2007-06-21 Toyo Electric Mfg Co Ltd Induction machine controller
JP4688653B2 (en) * 2005-12-02 2011-05-25 東洋電機製造株式会社 Induction machine controller

Also Published As

Publication number Publication date
JP3329673B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
JP3944955B2 (en) Induction electromotive force estimation method, speed estimation method, axis deviation correction method, and induction motor control apparatus for induction motor
JP5198332B2 (en) Torque control device for permanent magnet synchronous motor
JP2009142116A (en) Position sensorless controller of permanent magnetic motor
WO2006033180A1 (en) Vector controller of induction motor
JP3686987B2 (en) Control method and control apparatus for IPM motor
JP3329673B2 (en) Induction motor control device
JPH11275900A (en) Controller of synchronous motor
JPH09191699A (en) Method for controlling induction motor
JPH0638574A (en) Motor controller for induction motor
JP2713857B2 (en) Sensorless inverter device with resistance fluctuation compensation
JPH0880099A (en) Controller of induction motor
JP4238652B2 (en) Speed sensorless vector control method and apparatus
JPH06147661A (en) Air conditioner
JP2001107961A (en) Electromagnetic driving device
JP3323900B2 (en) Control device for linear motor electric vehicle
JPH1094300A (en) Control apparatus for induction motor
JP3454409B2 (en) Induction motor control device
JP2935962B2 (en) Speed sensorless control inverter
JP3070264B2 (en) Speed sensorless vector control method
JP2001086799A (en) Speed sensorless control device
JP2003289700A (en) Control unit for induction motor
JP2765668B2 (en) Air conditioner
JPH0789760B2 (en) Vector control method of induction motor
JPH11136999A (en) Variable speed driver for induction machine
JPH07118959B2 (en) Induction motor control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees