JPH10164883A - Inverter control apparatus - Google Patents

Inverter control apparatus

Info

Publication number
JPH10164883A
JPH10164883A JP8337621A JP33762196A JPH10164883A JP H10164883 A JPH10164883 A JP H10164883A JP 8337621 A JP8337621 A JP 8337621A JP 33762196 A JP33762196 A JP 33762196A JP H10164883 A JPH10164883 A JP H10164883A
Authority
JP
Japan
Prior art keywords
voltage
inverter
main circuit
current
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8337621A
Other languages
Japanese (ja)
Inventor
Hironobu Matsueda
弘宣 松枝
Noritoshi Matsumoto
憲俊 松本
Yutaka Hayashi
裕 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fujitec Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fujitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fujitec Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8337621A priority Critical patent/JPH10164883A/en
Publication of JPH10164883A publication Critical patent/JPH10164883A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an inverter control apparatus by which the rated voltage of a lifting motor is increased up to a power-supply voltage and by which the costs of the lifting motor and of an inverter for drive are lowered, by a method wherein, even when the DC voltage of a main circuit is lowered due to a change in the power-supply voltage, the output voltage waveform of the inverter is not distorted. SOLUTION: The required DC voltage, of a main circuit, which is computed by a required-DC-voltage computing part 22 on the basis of a voltage instruction to be outputted from a current regulator(ACR) 17, and an actual DC voltage which is detected by a voltage detector 20 are compared by a comparison part 23, and their difference Δv is computed. Then, when the DC voltage of the main circuit becomes lower than the required DC voltage, the correction amount ΔΦof a magnetic-flux instruction Φo according to the difference Δv is computed by a magnetic-flux-correction-amount computing part 24, the magnetic-flux instruction Φo is corrected, an exciting current is adjusted downward, and the output voltage of an inverter is lowered so that a voltage waveform is not distorted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、誘導電動機を駆
動し、速度制御を行うベクトル制御インバータ制御装置
の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a vector control inverter control device that drives an induction motor and controls speed.

【0002】[0002]

【従来の技術】最近、制御技術の進歩に伴って、産業機
械の電動機の多くがインバータ駆動による交流電動機と
なり、その中でも直流電動機と同等の制御性能が得られ
るベクトル制御方式が広く採用されている。
2. Description of the Related Art In recent years, with the advance of control technology, many electric motors of industrial machines have become AC motors driven by inverters, and among them, a vector control system capable of obtaining the same control performance as a DC motor has been widely adopted. .

【0003】以下、適用を交流エレベータ装置を例に記
載する。図3は、従来の一般的なベクトル制御方式の全
体構成を示す図であり、1は三相交流電源、2は交流電
源を直流に変換するコンバータ、3はこのコンバータの
出力を平滑する平滑コンデンサ、4はコンバータ2の出
力を可変電圧可変周波数の交流に変換するインバータ、
5はインバータ4の出力の各相の出力電流を検出する電
流検出器、6はインバータ4によって給電されエレベー
タを駆動する誘導電動機、7はパルスジェネレータ、8
は誘導電動機6によって駆動される巻上機の綱車、9は
綱車8に巻掛けられた主索、10は主索9に結合された
かご、11は同じく釣り合い錘、12は理想の速度パタ
ーンを出力する速度パターン発生回路、13はF/V変
換器、14はASR(速度調節器)、15はベクトル制
御回路、16は励磁電流を設定するための磁束指令Φo
を出力する磁束指令設定回路、17はACR(電流調節
器)、18はPWM回路(パルス幅変調回路)、19は
インバータ素子のベースドライブ回路である。
Hereinafter, the application will be described by taking an AC elevator apparatus as an example. FIG. 3 is a diagram showing the overall configuration of a conventional general vector control system, wherein 1 is a three-phase AC power supply, 2 is a converter for converting AC power supply to DC, and 3 is a smoothing capacitor for smoothing the output of this converter. And 4, an inverter for converting the output of the converter 2 into an alternating voltage variable frequency alternating current;
5 is a current detector for detecting the output current of each phase of the output of the inverter 4; 6 is an induction motor fed by the inverter 4 to drive the elevator; 7 is a pulse generator;
Is a sheave of a hoist driven by the induction motor 6, 9 is a main rope wound around the sheave 8, 10 is a car connected to the main rope 9, 11 is a counterweight, and 12 is an ideal speed. A speed pattern generating circuit for outputting a pattern, 13 is an F / V converter, 14 is an ASR (speed regulator), 15 is a vector control circuit, and 16 is a magnetic flux command Φo for setting an exciting current.
Is a magnetic flux command setting circuit, 17 is an ACR (current regulator), 18 is a PWM circuit (pulse width modulation circuit), and 19 is a base drive circuit of an inverter element.

【0004】以上の構成において、エレベータ運転時
は、交流電源1の出力がコンバータ2及び平滑コンデン
サ3を通して直流に整流され、インバータ4により再度
可変電圧、可変周波数の交流電源に変換される。これに
より、誘導電動機6が駆動され、エレベータが運転され
る。
In the above configuration, during elevator operation, the output of the AC power supply 1 is rectified into DC through the converter 2 and the smoothing capacitor 3, and is again converted into the variable voltage and variable frequency AC power by the inverter 4. Thereby, the induction motor 6 is driven, and the elevator is operated.

【0005】一方、インバータ4の制御は、速度パター
ン発生回路12から出力される速度パターンに従って制
御される。すなわちその制御方法は、パルスジェネレー
タ7からF/V変換器13を通して誘導電動機の速度が
フィードバックされ、このフィードバックされた誘導電
動機速度と速度パターンとの偏差が、ASR14に入力
され増幅されてトルク指令となり、これがベクトル制御
回路に入力される。
On the other hand, the control of the inverter 4 is controlled according to the speed pattern output from the speed pattern generation circuit 12. That is, in the control method, the speed of the induction motor is fed back from the pulse generator 7 through the F / V converter 13, and the deviation between the fed-back induction motor speed and the speed pattern is input to the ASR 14 and amplified to become a torque command. , Which are input to the vector control circuit.

【0006】このベクトル制御回路15では、ベクトル
制御の理論に基づき、パルスジェネレータ7より誘導電
動機6の回転角を入力し、交流のベクトルとして、磁束
指令を基にした励磁電流成分とトルク指令を基にしたト
ルク電流成分とが直交状態を保ち、他励の直流機と同等
に制御するように、互いに独立に制御できる位相を持っ
た電流指令を出力する。
The vector control circuit 15 inputs the rotation angle of the induction motor 6 from the pulse generator 7 based on the theory of vector control, and uses the excitation current component based on the magnetic flux command and the torque command as an AC vector. A current command having a phase that can be controlled independently of each other is output so that the torque current component set in the above-described manner maintains the orthogonal state and is controlled in the same manner as a separately excited DC machine.

【0007】次に、このベクトル制御回路15からの電
流指令と、電流検出器5からの実電流検出値との偏差が
ACR17で増幅されてインバータ4の電圧指令とな
り、この電圧指令をPWM回路18でパルス信号に変換
し、ベースドライブ回路19によって、インバータ4を
構成する半導体素子をスイッチングすることにより、可
変電圧・可変周波数の交流電力を誘導電動機6に供給し
て制御するようにしている。
Next, the deviation between the current command from the vector control circuit 15 and the actual current detection value from the current detector 5 is amplified by the ACR 17 to become a voltage command for the inverter 4. , And the base drive circuit 19 switches the semiconductor elements constituting the inverter 4 to supply AC power of a variable voltage and a variable frequency to the induction motor 6 for control.

【0008】[0008]

【発明が解決しようとする課題】一般に、商用電源で直
接駆動される誘導電動機の場合、電源電圧が低下すると
回転磁界が弱まるため、流入電流の増加による電動機の
温度上昇や発生トルクの低下が生じる。これが電動機や
負荷の許容範囲内であれば特に問題とはならないが、上
記のようにベクトル制御インバータで駆動される誘導電
動機の場合、インバータのトルク制御が出力電流制御
(電動機電流の励磁分、トルク分の分離制御)により行
われるため、制御上必要な出力電圧発生が電源電圧低下
等により不可能な状況でも、指令電流を極力流すべく電
流制御ループが動作し、その結果、電動機印加電圧に波
形歪みが発生する。
In general, in the case of an induction motor driven directly by a commercial power supply, when the power supply voltage decreases, the rotating magnetic field weakens, so that the temperature of the motor increases and the generated torque decreases due to an increase in the inflow current. . There is no particular problem if this is within the allowable range of the motor and the load. However, in the case of the induction motor driven by the vector control inverter as described above, the inverter torque control is performed by output current control (excitation of motor current, torque Therefore, even if the output voltage required for control cannot be generated due to a drop in power supply voltage or the like, the current control loop operates to allow the command current to flow as much as possible. Distortion occurs.

【0009】インバータ制御エレベータでは、上記波形
歪みに起因するトルクリップルの発生や、トルク制御性
能の劣化は走行性能の低下につながることから、電源電
圧変動やその他の電圧降下要因により、インバータの出
力可能な電圧が低下した場合を想定して巻上電動機定格
電圧が決定されており、例えば200V系電源に対する
電動機定格電圧は170Vに設定される。
In the inverter control elevator, since the occurrence of torque ripple and the deterioration of torque control performance due to the waveform distortion described above lead to a decrease in running performance, the output of the inverter can be caused by a power supply voltage fluctuation or other voltage drop factors. The rated voltage of the hoisting motor is determined on the assumption that the voltage drops, and for example, the rated voltage of the motor for a 200 V system power supply is set to 170 V.

【0010】これは走行性能を確保するための特殊電圧
設定であるが、そのために電動機の巻線仕様は特殊なも
のとなり、安価で入手性の良い汎用モータ(定格電圧2
00V)が使用できないという問題がある。しかも、電
動機定格電圧の低下に伴う電流増加に対応する必要か
ら、インバータの電流容量も大きくする必要があり、コ
ストの上昇を招く結果となっていた。
[0010] This is a special voltage setting for ensuring the running performance. For this reason, the winding specification of the electric motor is special, and the general-purpose motor (rated voltage 2
00V) cannot be used. In addition, since it is necessary to cope with an increase in current accompanying a decrease in the rated voltage of the motor, it is necessary to increase the current capacity of the inverter, resulting in an increase in cost.

【0011】[0011]

【課題を解決するための手段】本発明は上記の問題点を
解決することを目的としたもので、その特徴とするとこ
ろは、主回路の直流電圧を検出する電圧検出手段と、主
回路の所要直流電圧と前記直流検出手段により検出した
直流電圧とを比較し、その差(不足電圧)を算出する手
段と、該不足電圧の値に応じて磁束指令の補正量を算出
する磁束補正量算出手段とを備えたことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and the features of the present invention are voltage detecting means for detecting a DC voltage of a main circuit, and voltage detecting means for the main circuit. Means for comparing the required DC voltage with the DC voltage detected by the DC detection means and calculating the difference (undervoltage); and calculating the amount of correction of the magnetic flux command in accordance with the value of the undervoltage. Means.

【0012】[0012]

【発明の実施の形態】本発明では、主回路の直流電圧を
電圧検出器で検出し、インバータの電圧指令から算出し
た所要直流電圧と比較する。そしてその差(不足電圧)
に応じて磁束指令の補正量を算出し、磁束指令を補正し
てインバータの出力電圧を下げ、主回路の直流電圧が低
下した場合でもインバータの電圧波形が歪まないように
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a DC voltage of a main circuit is detected by a voltage detector and compared with a required DC voltage calculated from a voltage command of an inverter. And the difference (undervoltage)
The correction amount of the magnetic flux command is calculated in accordance with the above equation, and the magnetic flux command is corrected to reduce the output voltage of the inverter so that the voltage waveform of the inverter is not distorted even when the DC voltage of the main circuit is reduced.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は、本発明の全体構成を示す図であり、2
0は主回路の直流電圧(平滑コンデンサ3の端子電圧)
V1を検出する電圧検出器、21は主回路の所要直流電
圧V2と実際の直流電圧V1との差(不足電圧)Δvを
算出する手段としての機能と、該不足電圧Δvの値に応
じて磁束指令Φoの補正量ΔΦを算出する磁束補正量算
出手段としての機能とを実現するマイクロコンピュータ
である。このマイクロコンピュータ21は、インバータ
が歪みのない所要電圧波形を出力するのに必要な主回路
の所要直流電圧V2を、ACR17の電圧指令から算出
する所要直流電圧算出部22と、該所要直流電圧V2
と、実際の直流電圧V1とを比較し、その差Δvを算出
する比較部23と、該不足電圧Δvに応じた磁束指令補
正量ΔΦを算出する磁束補正量算出部24とからなる。
なお、その他、図3と同一のものについては同一の符号
にて示している。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of the present invention.
0 is the DC voltage of the main circuit (terminal voltage of the smoothing capacitor 3)
A voltage detector 21 for detecting V1 functions as means for calculating a difference (undervoltage) Δv between the required DC voltage V2 of the main circuit and the actual DC voltage V1, and a magnetic flux according to the value of the undervoltage Δv. This is a microcomputer that realizes a function as a magnetic flux correction amount calculating unit that calculates a correction amount ΔΦ of the command Φo. The microcomputer 21 calculates a required DC voltage V2 of the main circuit necessary for the inverter to output a required voltage waveform without distortion from a voltage command of the ACR 17, and a required DC voltage calculation unit 22;
And the actual DC voltage V1 to calculate a difference Δv, and a magnetic flux correction amount calculation unit 24 that calculates a magnetic flux command correction amount ΔΦ according to the insufficient voltage Δv.
In addition, the same components as those in FIG. 3 are denoted by the same reference numerals.

【0014】以上の構成において、通常は主回路の直流
電圧V1は、インバータが歪みのない正弦波の電圧波形
を出力するのに必要な直流電圧V2より大きく、従って
励磁電流を弱める必要はないので磁束指令の補正量ΔΦ
は0となるが、電源電圧の変動等により主回路の直流電
圧V1が低下し、所要直流電圧V2を下回るとその差Δ
vが比較部23で算出され、さらにそのΔvに応じた補
正量ΔΦが磁束補正量算出部24で算出されて出力され
る。この結果、磁束指令ΦoはΔΦだけ低下し、すなわ
ち励磁電流はその分だけ弱められ、インバータの出力電
圧も低下して出力電圧波形が歪むのを防止する。
In the above configuration, normally, the DC voltage V1 of the main circuit is higher than the DC voltage V2 required for the inverter to output a sine wave voltage waveform without distortion, and therefore it is not necessary to weaken the exciting current. Correction amount of magnetic flux command ΔΦ
Becomes 0, but the DC voltage V1 of the main circuit decreases due to fluctuations in the power supply voltage and the like, and when the DC voltage V2 falls below the required DC voltage V2, the difference Δ
v is calculated by the comparison unit 23, and a correction amount ΔΦ corresponding to the Δv is calculated by the magnetic flux correction amount calculation unit 24 and output. As a result, the magnetic flux command Φo is reduced by ΔΦ, that is, the exciting current is reduced by that amount, and the output voltage of the inverter is also reduced to prevent the output voltage waveform from being distorted.

【0015】次にこのマイクロコンピュータ21内のソ
フトウェアで実行される、磁束補正量算出の処理手順に
ついて、図2のフローチャートにより説明する。
Next, a processing procedure for calculating a magnetic flux correction amount executed by software in the microcomputer 21 will be described with reference to a flowchart of FIG.

【0016】まずステップS1において、主回路の直流
電圧V1を検出し、ステップS2でACR17の電圧指
令からそのときの所要直流電圧V2を算出する。ここで
所要直流電圧V2は、電圧指令をVac(正弦波)とする
とそのピーク値の絶対値、すなわち V2=|Vacのピーク値| として算出することができる。
First, in step S1, the DC voltage V1 of the main circuit is detected, and in step S2, the required DC voltage V2 at that time is calculated from the voltage command of the ACR 17. Here, the required DC voltage V2 can be calculated as the absolute value of its peak value, that is, V2 = | Vac peak value |, assuming that the voltage command is Vac (sine wave).

【0017】次にステップS3で、V2とV1の差であ
るΔvを算出し、そのΔvの値に応じてステップS4以
下で図1に示すような磁束の補正量ΔΦを決める。まず
ステップS4で、Δvが所定値aより大きいか否かを判
定し、所定値a以下であれば励磁電流を弱める必要はな
いのでステップS5で補正量ΔΦ=0とする。もしΔv
が所定値aより大きい場合は、ステップS6で上限値b
より大きいか否かを判定し、上限値bに達するまでは、
ステップS8で補正量ΔΦがΔvに比例するように、す
なわち、 ΔΦ=c(Δv−a)/(b−a) として補正量ΔΦを出力する。もしΔvが上限値bを越
える場合は、ステップS7で補正量ΔΦを上限値cと
し、励磁電流が極端に下がることのないようにする。
Next, at step S3, Δv, which is the difference between V2 and V1, is calculated, and the correction amount ΔΦ of the magnetic flux as shown in FIG. 1 is determined at step S4 and thereafter according to the value of Δv. First, in step S4, it is determined whether Δv is larger than a predetermined value a. If Δv is equal to or smaller than the predetermined value a, the excitation current does not need to be weakened, so that the correction amount ΔΦ = 0 in step S5. If Δv
Is larger than the predetermined value a, the upper limit value b is set in step S6.
It is determined whether or not it is greater than
In step S8, the correction amount ΔΦ is output so that the correction amount ΔΦ is proportional to Δv, that is, as follows: ΔΦ = c (Δva) / (ba). If Δv exceeds the upper limit value b, the correction amount ΔΦ is set to the upper limit value c in step S7, so that the exciting current does not drop extremely.

【0018】このようにして、磁束指令発生装置から出
力される磁束指令Φoは、主回路の直流電圧が所要直流
電圧より低下すると、その不足分に応じて磁束指令が下
方調整され、その結果インバータの出力電圧も低下し
て、出力波形に歪みを生じる事なくベクトル制御が行わ
れることになる。
In this way, when the DC voltage of the main circuit falls below the required DC voltage, the magnetic flux command Φo output from the magnetic flux command generating device is adjusted downward according to the shortage, and as a result, the inverter Is also reduced, and the vector control is performed without causing distortion in the output waveform.

【0019】なお、上記の説明において、励磁電流を下
方調整し、電動機電圧を下げて運転すると、概略その割
合で電流が増加し、電動機損失が大きくなるが、このよ
うな運転は以下の4条件が重なった場合に限られるた
め、エレベータのように駆動・回生を繰り返す変動負荷
の場合、運転サイクル全体から見ると励磁弱め制御を要
する期間の割合は小さく、電動機温度上昇への影響は僅
かである。
In the above description, when the excitation current is adjusted downward and the motor voltage is lowered, the current increases at approximately the same rate and the motor loss increases, but such operation is performed under the following four conditions. In the case of a variable load that repeatedly drives and regenerates, such as an elevator, the proportion of the period during which the excitation weakening control is required is small when viewed from the entire operation cycle, and the effect on the motor temperature rise is small. .

【0020】(1)電源電圧降下が大きい。 (2)負荷の方向が駆動側である。 (3)負荷が重い。 (4)電動機速度が定格付近である。(1) The power supply voltage drop is large. (2) The direction of the load is the drive side. (3) The load is heavy. (4) The motor speed is near the rating.

【0021】特に、大電流が流れ電動機発生損失の大き
くなる加減速領域では、電動機速度が定格に満たないこ
とから励磁弱めの必要は発生せず、また、エレベータ運
転サイクルの約半分を占める回生動作時には主回路の直
流電圧が上昇するため、やはり励磁弱めは不要となる。
従って本発明により、励磁弱めを行っても、電動機温度
に及ぼす影響は小さく、特に問題が生じることはない。
In particular, in the acceleration / deceleration region where a large current flows and the motor generation loss is large, the motor speed does not reach the rating, so that it is not necessary to weaken the excitation, and the regenerative operation occupying about half of the elevator operation cycle. Since the DC voltage of the main circuit sometimes rises, it is not necessary to weaken the excitation.
Therefore, according to the present invention, even if the excitation is weakened, the influence on the motor temperature is small, and there is no particular problem.

【0022】[0022]

【発明の効果】本発明によれば、電源電圧と同一の定格
電圧を持つ汎用モータを巻上機に用いることが可能とな
る。しかも、電動機の定格電圧を高めることにより、加
速時最大電流や負荷サイクルを考慮した実効電流も減少
することから、インバータの容量の削減につながり、エ
レベータの巻上電動機及び駆動用インバータの大幅なコ
ストダウンを図ることができる。
According to the present invention, a general-purpose motor having the same rated voltage as the power supply voltage can be used for a hoist. In addition, by increasing the rated voltage of the motor, the effective current in consideration of the maximum current during acceleration and the duty cycle is also reduced, leading to a reduction in the capacity of the inverter, resulting in a significant cost reduction in the elevator hoist motor and the drive inverter. Down can be planned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of the present invention.

【図2】本発明における、磁束補正量算出の処理手順を
示すフローチャートである。
FIG. 2 is a flowchart illustrating a processing procedure for calculating a magnetic flux correction amount according to the present invention.

【図3】従来のベクトル制御インバータの全体構成を示
す図である。
FIG. 3 is a diagram showing an overall configuration of a conventional vector control inverter.

【符号の説明】[Explanation of symbols]

1 三相交流電源 2 コンバータ 3 平滑コンデンサ 4 インバータ 5 電流検出器 6 誘導電動機 10 かご 12 速度指令発生回路 14 ASR 15 ベクトル制御回路 16 磁束指令発生回路 17 ACR 18 PWM回路 19 ベースドライブ回路 20 電圧検出器 21 マイクロコンピュータ 22 所要直流電圧算出部 23 比較部 24 磁束補正量算出部 DESCRIPTION OF SYMBOLS 1 Three-phase AC power supply 2 Converter 3 Smoothing capacitor 4 Inverter 5 Current detector 6 Induction motor 10 Car 12 Speed command generation circuit 14 ASR 15 Vector control circuit 16 Magnetic flux command generation circuit 17 ACR 18 PWM circuit 19 Base drive circuit 20 Voltage detector Reference Signs List 21 microcomputer 22 required DC voltage calculation unit 23 comparison unit 24 magnetic flux correction amount calculation unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 裕 大阪府茨木市庄1丁目28番10号 フジテッ ク株式会社内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Hayashi 1-28-10 Sho, Ibaraki-shi, Osaka Inside Fujitec Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流電力を直流電力に変換するコンバー
タと、その直流電力をベクトル制御により、任意の可変
電圧・可変周波数の交流に変換し、誘導電動機に給電す
るインバータとからなるインバータ制御装置において、
主回路の直流電圧を検出する電圧検出手段と、主回路の
所要直流電圧と前記直流検出手段により検出した直流電
圧とを比較し、その差(不足電圧)を算出する手段と、
該不足電圧の値に応じて磁束指令の補正量を算出する磁
束補正量算出手段とを備えたことを特徴とするインバー
タ制御装置。
1. An inverter control device comprising: a converter for converting AC power to DC power; and an inverter for converting the DC power into an AC having an arbitrary variable voltage and variable frequency by vector control and supplying power to an induction motor. ,
Voltage detection means for detecting the DC voltage of the main circuit, means for comparing the required DC voltage of the main circuit with the DC voltage detected by the DC detection means, and calculating the difference (undervoltage);
A magnetic flux correction amount calculating means for calculating a correction amount of the magnetic flux command according to the value of the undervoltage.
JP8337621A 1996-12-02 1996-12-02 Inverter control apparatus Pending JPH10164883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8337621A JPH10164883A (en) 1996-12-02 1996-12-02 Inverter control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8337621A JPH10164883A (en) 1996-12-02 1996-12-02 Inverter control apparatus

Publications (1)

Publication Number Publication Date
JPH10164883A true JPH10164883A (en) 1998-06-19

Family

ID=18310384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8337621A Pending JPH10164883A (en) 1996-12-02 1996-12-02 Inverter control apparatus

Country Status (1)

Country Link
JP (1) JPH10164883A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407632B1 (en) * 2000-02-28 2003-12-01 미쓰비시덴키 가부시키가이샤 Elevator control apparatus
KR100407629B1 (en) * 2000-02-15 2003-12-01 미쓰비시덴키 가부시키가이샤 Elevator control device
JP2006174531A (en) * 2004-12-13 2006-06-29 Toyo Electric Mfg Co Ltd Motor controller
JP2006168882A (en) * 2004-12-14 2006-06-29 Toshiba Elevator Co Ltd Elevator control system
WO2007013448A1 (en) * 2005-07-26 2007-02-01 Mitsubishi Electric Corporation Elevator device
CN101166004A (en) * 2006-10-16 2008-04-23 株式会社日立制作所 Electric power converter apparatus
WO2008072348A1 (en) * 2006-12-15 2008-06-19 Mitsubishi Electric Corporation Inverter
JP5095223B2 (en) * 2005-07-26 2012-12-12 三菱電機株式会社 Elevator equipment
JP2013150429A (en) * 2012-01-18 2013-08-01 Sharp Corp Motor drive device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407629B1 (en) * 2000-02-15 2003-12-01 미쓰비시덴키 가부시키가이샤 Elevator control device
KR100407632B1 (en) * 2000-02-28 2003-12-01 미쓰비시덴키 가부시키가이샤 Elevator control apparatus
JP2006174531A (en) * 2004-12-13 2006-06-29 Toyo Electric Mfg Co Ltd Motor controller
JP2006168882A (en) * 2004-12-14 2006-06-29 Toshiba Elevator Co Ltd Elevator control system
JP5095223B2 (en) * 2005-07-26 2012-12-12 三菱電機株式会社 Elevator equipment
WO2007013448A1 (en) * 2005-07-26 2007-02-01 Mitsubishi Electric Corporation Elevator device
EP1908719A1 (en) * 2005-07-26 2008-04-09 Mitsubishi Electric Corporation Elevator device
KR100947695B1 (en) * 2005-07-26 2010-03-16 미쓰비시덴키 가부시키가이샤 Elevator device
EP1908719A4 (en) * 2005-07-26 2013-01-16 Mitsubishi Electric Corp Elevator device
US7931128B2 (en) 2005-07-26 2011-04-26 Mitsubishi Electric Corporation Elevator device
CN101166004A (en) * 2006-10-16 2008-04-23 株式会社日立制作所 Electric power converter apparatus
JP2008099496A (en) * 2006-10-16 2008-04-24 Hitachi Ltd Power converter
WO2008072348A1 (en) * 2006-12-15 2008-06-19 Mitsubishi Electric Corporation Inverter
JP4918483B2 (en) * 2006-12-15 2012-04-18 三菱電機株式会社 Inverter device
US7791911B2 (en) 2006-12-15 2010-09-07 Mitsubishi Electric Corporation Inverter device which maintains voltage during input voltage drop
JP2013150429A (en) * 2012-01-18 2013-08-01 Sharp Corp Motor drive device

Similar Documents

Publication Publication Date Title
US6262555B1 (en) Apparatus and method to generate braking torque in an AC drive
US5285029A (en) Device for driving elevator at service interruption
US7882937B2 (en) Elevating machine control apparatus
JPS63287397A (en) Induction motor controller
JP2003274682A (en) Apparatus and method for controlling torque of motor
EP2892146A2 (en) Motor control system, control device, and control method
KR20050083692A (en) Control method of induction motor
CN112737421B (en) Method and system for controlling motor deceleration
JPH10164883A (en) Inverter control apparatus
EP1494345A2 (en) Method and device for driving induction motor
US10277143B1 (en) Inverter supplying power to induction motor for driving hoist
KR0134984B1 (en) Motor control apparatus
KR100817116B1 (en) Apparatus and method thereof for suppressing inertia load
JP3787803B2 (en) Control device for permanent magnet synchronous motor
JP3276840B2 (en) Correction gain setting method for AC elevator control device
JPH10164884A (en) Inverter control apparatus
JPS6038960B2 (en) Inverter voltage control device
JP2906636B2 (en) Inverter control device for induction motor
KR100226058B1 (en) Operation speed controlling method and apparatus for elevator
JPH06135653A (en) Controller for ac elevator
JPS6166593A (en) Controller of ac motor
JP2689601B2 (en) Power converter with regenerative function
JP3246840B2 (en) Inverter device
KR20210126917A (en) Power transforming apparatus for driving motor and method for controlling same
JPH09227037A (en) Ac elevator controller