JP2006174531A - Motor controller - Google Patents

Motor controller Download PDF

Info

Publication number
JP2006174531A
JP2006174531A JP2004359493A JP2004359493A JP2006174531A JP 2006174531 A JP2006174531 A JP 2006174531A JP 2004359493 A JP2004359493 A JP 2004359493A JP 2004359493 A JP2004359493 A JP 2004359493A JP 2006174531 A JP2006174531 A JP 2006174531A
Authority
JP
Japan
Prior art keywords
command
magnetic flux
flux command
voltage
calculator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004359493A
Other languages
Japanese (ja)
Other versions
JP4756855B2 (en
Inventor
Masashi Takagi
正志 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2004359493A priority Critical patent/JP4756855B2/en
Publication of JP2006174531A publication Critical patent/JP2006174531A/en
Application granted granted Critical
Publication of JP4756855B2 publication Critical patent/JP4756855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stopping Of Electric Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a matter that regenerative power may be generated under impact of quantization error in speed operation when a motor is entering a substantially no-load state and performing regenerative operation with a torque command 0 from a light load regenerative torque command operating unit, and it increases DC voltage and stringing voltage thus causing overvoltage. <P>SOLUTION: A flux command operating unit for operating a correction flux command ϕs from the output of a light load regenerative torque command operating unit, i.e. a limit torque command τs, and a flux command ϕ<SP>*</SP>is provided additionally, and the correction flux command ϕs is inputted to a torque control means in place of the flux command ϕ<SP>*</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、速度センサレスによる電動機トルクを制御する技術に関するもので、特に、軽負荷回生運転時の直流電圧上昇を抑えるものである。   The present invention relates to a technique for controlling electric motor torque without a speed sensor, and in particular, suppresses an increase in DC voltage during light load regenerative operation.

図2は、一従来例を示すブロック図であり、1は電動機、2は電流検出器、3はPWMインバータ、4はトルク制御手段、5は軽負荷回生トルク演算器、6は速度演算器、7はフィルタ処理手段である。   FIG. 2 is a block diagram showing a conventional example, where 1 is an electric motor, 2 is a current detector, 3 is a PWM inverter, 4 is a torque control means, 5 is a light load regenerative torque calculator, 6 is a speed calculator, Reference numeral 7 denotes filter processing means.

電流検出器2は、電動機1の電流iを検出する。速度演算器6は、PWMインバータ3に与えられる電圧指令vと電流検出器2で検出した電流iから式(1)を用いて、電動機速度ωmを演算する。

Figure 2006174531
ここで、VdはPWMインバータ3による電圧降下分、R1は電動機1の一次抵抗、R2は電動機1の二次抵抗、L1は電動機1の一次自己インダクタンス、L2は電動機1の二次自己インダクタンス、Mは電動機1の相互インダクタンス、ω1は一次角周波数、jは虚数単位である。なお、式(1)のv-Vdの代わりに、電動機1の電圧vrに置き換えても電動機速度ωmが演算できる。 The current detector 2 detects the current i of the electric motor 1. The speed calculator 6 calculates the motor speed ωm from the voltage command v given to the PWM inverter 3 and the current i detected by the current detector 2 using equation (1).
Figure 2006174531
Where Vd is the voltage drop due to the PWM inverter 3, R1 is the primary resistance of the motor 1, R2 is the secondary resistance of the motor 1, L1 is the primary self inductance of the motor 1, L2 is the secondary self inductance of the motor 1, M Is the mutual inductance of the motor 1, ω1 is the primary angular frequency, and j is the imaginary unit. Note that the motor speed ωm can be calculated by replacing the voltage vr of the electric motor 1 instead of v−Vd in the equation (1).

フィルタ処理手段7は、架線電圧VLをフィルタ処理して、直流電圧VCと入力電力Piを出力する。   The filter processing means 7 filters the overhead wire voltage VL and outputs the DC voltage VC and the input power Pi.

軽負荷回生トルク指令演算器5は、トルク指令τ*と電動機速度ωmと直流電圧VCと入力電力Piを入力し、制限トルク指令τsを出力する。
軽負荷回生トルク指令演算器5では、式(2)〜式(4)から制限トルク指令τsを演算する。
ωm・τ2=K1・(VC-Vx) [0以上の場合は0とする] 式(2)
τs=τ* [ωm・τ*≧ωm・τ2 の場合] 式(3)
τs=τ2 [ωm・τ*<ωm・τ2 の場合] 式(4)
ここで、Vxは軽負荷回生時の直流電圧上限値、K1は正のゲインである。
あるいは、式(5)〜式(7)から制限トルク指令τsを演算する。
ωm・τ3=Pi+K2・(VC-Vx) [0以上の場合は0とする] 式(5)
τs=τ* [ωm・τ*≧ωm・τ3 の場合] 式(6)
τs=τ3 [ωm・τ*<ωm・τ3 の場合] 式(7)
ここで、K2は正のゲインである。
The light load regenerative torque command calculator 5 receives the torque command τ *, the motor speed ωm, the DC voltage VC, and the input power Pi, and outputs a limit torque command τs.
The light load regenerative torque command calculator 5 calculates the limit torque command τs from the equations (2) to (4).
ωm · τ2 = K1 · (VC-Vx) [If greater than 0, set to 0] Equation (2)
τs = τ * [in the case of ωm · τ * ≧ ωm · τ2] Equation (3)
τs = τ2 [in the case of ωm · τ * <ωm · τ2] Equation (4)
Here, Vx is a DC voltage upper limit value during light load regeneration, and K1 is a positive gain.
Alternatively, the limit torque command τs is calculated from the equations (5) to (7).
ωm · τ3 = Pi + K2 · (VC-Vx) [If it is greater than or equal to 0, it is assumed to be 0] Equation (5)
τs = τ * [in the case of ωm · τ * ≧ ωm · τ3] Equation (6)
τs = τ3 [when ωm · τ * <ωm · τ3] Equation (7)
Here, K2 is a positive gain.

トルク制御手段4は、磁束指令φ*と制限トルク指令τsと電動機速度ωmと電流iを入力し、電動機1の磁束とトルクが磁束指令φ*及び制限トルク指令τsとなるような電圧指令vを出力する。
PWMインバータ3は、直流電圧VCと電圧指令vを入力し、PWMによる電力変換にて、電動機1に電圧指令vに相当する電力を供給する。
The torque control means 4 inputs the magnetic flux command φ *, the limiting torque command τs, the motor speed ωm, and the current i, and outputs a voltage command v such that the magnetic flux and torque of the motor 1 become the magnetic flux command φ * and the limiting torque command τs. Output.
The PWM inverter 3 inputs a DC voltage VC and a voltage command v, and supplies electric power corresponding to the voltage command v to the electric motor 1 by power conversion by PWM.

以上の構成とすることにより、以下に示す効果が期待できる。
電動機1が回生運転しているとき、電動機1からの回生電力はPWMインバータ3を
介して、直流電源へと返還される。ここで、直流電源側の負荷が充分にあれば、電動機1からの回生電力は負荷によって消費可能である。しかし、直流電源側の負荷が軽く充分でなければ、電動機1からの回生電力の消費が滞り、直流電圧VC及び架線電圧VLの上昇を引き起こし、過電圧となる。すると、PWMインバータ3の素子破壊、あるいは直流電源への悪影響を及ぼす。
図2の軽負荷回生トルク指令演算器5を加えることにより、直流電源側の負荷が充分でなければ、直流電圧VCがVxに近づき、制限トルク指令τsの大きさが小さくなり、電動機1からの回生電力が減少する。これにより、直流電圧VC及び架線電圧VLの上昇に歯止めをかけることができる。(例えば、特許文献1参照)
With the above configuration, the following effects can be expected.
When the electric motor 1 is in regenerative operation, the regenerative electric power from the electric motor 1 is returned to the DC power source via the PWM inverter 3. Here, if there is sufficient load on the DC power supply side, the regenerative power from the electric motor 1 can be consumed by the load. However, if the load on the DC power supply side is not light and sufficient, the consumption of regenerative power from the motor 1 is delayed, causing the DC voltage VC and the overhead line voltage VL to rise, resulting in overvoltage. As a result, the element of the PWM inverter 3 is destroyed or the DC power source is adversely affected.
If the load on the DC power supply side is not sufficient by adding the light load regenerative torque command calculator 5 of FIG. 2, the DC voltage VC approaches Vx, the magnitude of the limit torque command τs decreases, and the motor 1 Regenerative power decreases. As a result, the increase in the DC voltage VC and the overhead line voltage VL can be stopped. (For example, see Patent Document 1)

特許第3509020号Japanese Patent No. 3509020

従来技術においては、以下に示す問題点がある。
式(1)の量子化誤差のために、電動機速度ωmには僅かながら演算誤差が発生する。この状態で、直流電源側がほぼ無負荷となり、式(2)〜式(7)による制限トルク指令τsが0となった場合、電動機速度ωmの量子化誤差による電力が発生する。電動機速度ωmの量子化誤差の出方によっては、回生電力が発生する。すると、直流電圧VC及び架線電圧VLが増加し、過電圧となる。
本発明は、以上の問題点を解決するためのものである。
The prior art has the following problems.
Due to the quantization error in equation (1), a slight calculation error occurs in the motor speed ωm. In this state, when the DC power supply side is almost unloaded and the limit torque command τs according to the equations (2) to (7) becomes 0, electric power is generated due to the quantization error of the motor speed ωm. Depending on how the quantization error of the motor speed ωm occurs, regenerative power is generated. Then, the DC voltage VC and the overhead wire voltage VL increase and become overvoltage.
The present invention is to solve the above problems.

前記問題点を解決するために、以下の手段を施す。
請求項1においては、軽負荷回生トルク指令演算器5の出力である制限トルク指令τsと磁束指令φ*から補正磁束指令φsを演算する磁束指令演算器8を新たに追加し、磁束指令φ*の代わりに補正磁束指令φsをトルク制御手段4に入力する。
In order to solve the above problems, the following means are applied.
In claim 1, a magnetic flux command calculator 8 for newly calculating the corrected magnetic flux command φs from the limit torque command τs and the magnetic flux command φ *, which are the outputs of the light load regenerative torque command calculator 5, is newly added. Instead, the correction magnetic flux command φs is input to the torque control means 4.

請求項2においては、磁束指令演算器8において、制限トルク指令τsの大きさが減少すると共に補正磁束指令φsを減少させる。   In the second aspect, the magnetic flux command calculator 8 reduces the magnitude of the limit torque command τs and decreases the correction magnetic flux command φs.

磁束指令φ*の代わりに補正磁束指令φsをトルク制御手段4に入力することにより、電動機1の磁束を制限トルク指令τsにより変化するφsに制御できる。制限トルク指令τsの大きさが減少すると共に補正磁束指令φsを減少させることにより、電動機速度ωmの量子化誤差によるτs=0時の発生電力を抑えることができる。電動機速度ωmの量子化誤差による回生電力による直流電圧VC及び架線電圧VLの上昇が抑えられ、過電圧を防止することができる。   By inputting the corrected magnetic flux command φs to the torque control means 4 instead of the magnetic flux command φ *, the magnetic flux of the electric motor 1 can be controlled to φs that changes according to the limit torque command τs. By reducing the magnitude of the limit torque command τs and reducing the correction magnetic flux command φs, it is possible to suppress the generated power when τs = 0 due to the quantization error of the motor speed ωm. An increase in DC voltage VC and overhead wire voltage VL due to regenerative power due to quantization error of motor speed ωm can be suppressed, and overvoltage can be prevented.

磁束指令を操作することにより、電動機速度ωmの量子化誤差による発生電力を少なくすることができる。   By operating the magnetic flux command, the generated power due to the quantization error of the motor speed ωm can be reduced.

図1は、本発明の一実施例を示すブロック図であり、8は磁束指令演算器である。
磁束指令演算器8は、磁束指令φ*と制限トルク指令τsを入力し、補正磁束指令φsを出力する。補正磁束指令φsは、磁束指令φ*の代わりにトルク制御手段4に入力される。
FIG. 1 is a block diagram showing an embodiment of the present invention, and 8 is a magnetic flux command calculator.
The magnetic flux command calculator 8 receives the magnetic flux command φ * and the limit torque command τs, and outputs the corrected magnetic flux command φs. The corrected magnetic flux command φs is input to the torque control means 4 instead of the magnetic flux command φ *.

以上の構成とすることにより、制限トルク指令τsにより、電動機1の磁束を変化させることができる。   With the above configuration, the magnetic flux of the electric motor 1 can be changed by the limit torque command τs.

磁束指令演算器8の演算を以下に示す方式で実現する。
制限トルク指令τsから、正の定数F1、G1を用いて、式(8)によりφs0を演算する。
φs0=F1+G1・|τs| 式(8)
φs0をF1〜φ*の区間に制限した値を補正磁束指令φsとする。これにより、制限トルク指令τsの大きさが小さくなると共に、補正磁束指令φsも減少する。
The calculation of the magnetic flux command calculator 8 is realized by the following method.
From the limit torque command τs, φs0 is calculated by the equation (8) using positive constants F1 and G1.
φs0 = F1 + G1 ・ | τs | Formula (8)
A value obtained by limiting φs0 to the interval from F1 to φ * is set as a corrected magnetic flux command φs. Thereby, the magnitude of the limit torque command τs is reduced and the correction magnetic flux command φs is also reduced.

以上の構成とすることにより、電動機速度ωmの量子化誤差によるτs=0時の発生電力を抑えることができ、電動機速度ωmの量子化誤差による回生電力による直流電圧VC及び架線電圧VLの上昇が抑えられ、過電圧を防止することができる。
その理由を以下に説明する。
With the above configuration, the generated power at τs = 0 due to the quantization error of the motor speed ωm can be suppressed, and the DC voltage VC and the overhead voltage VL are increased due to the regenerative power due to the quantization error of the motor speed ωm. Therefore, overvoltage can be prevented.
The reason will be described below.

トルク指令0時の電動機速度ωmの演算誤差dωによる発生電力dPは、式(9)で与えられる。
dP=ωm/R2・φ・dω 式(9)
式(9)によれば、電動機1の磁束φを下げれば、dωによるdPの大きさが減少することがわかる。図1のブロックにより、電動機1の磁束を補正磁束指令φsに制御でき、制限トルク指令τsの大きさが減少すると共に補正磁束指令φsを下げれば、τs=0のdPが減少する。
The electric power dP generated by the calculation error dω of the motor speed ωm when the torque command is 0 is given by the equation (9).
dP = ωm / R 2 · φ 2 · dω Equation (9)
According to equation (9), it can be seen that if the magnetic flux φ of the electric motor 1 is lowered, the magnitude of dP due to dω decreases. With the block of FIG. 1, the magnetic flux of the electric motor 1 can be controlled to the correction magnetic flux command φs. When the magnitude of the limit torque command τs is reduced and the correction magnetic flux command φs is lowered, dP of τs = 0 is reduced.

ほぼ無負荷状態の回生運転において、直流電圧VC及び架線電圧VLの上昇が抑えられ、過電圧を防止することができる。
電気車の回生運転においては、走行している電気車が少ないときにほぼ無負荷状態となり、本発明の効果が得られる。
In regenerative operation with almost no load, an increase in the DC voltage VC and the overhead line voltage VL can be suppressed, and overvoltage can be prevented.
In regenerative operation of an electric vehicle, when there are few running electric vehicles, the vehicle is almost unloaded, and the effect of the present invention can be obtained.

図1は、本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention. 図2は、一従来例を示すブロック図である。FIG. 2 is a block diagram showing a conventional example.

符号の説明Explanation of symbols

1 電動機
2 電流検出器
3 PWMインバータ
4 トルク制御手段
5 軽負荷回生トルク指令演算器
6 速度演算器
7 フィルタ処理手段
8 磁束指令演算器

i・・電流
v・・電圧指令
VL・・架線電圧
VC・・直流電圧
Pi・・入力電力
τ*・・トルク指令
τs・・制限トルク指令
ωm・・電動機速度
φ*・・磁束指令
φs・・補正磁束指令
DESCRIPTION OF SYMBOLS 1 Electric motor 2 Current detector 3 PWM inverter 4 Torque control means 5 Light load regenerative torque command calculator 6 Speed calculator 7 Filter processing means 8 Magnetic flux command calculator

i · · Current v · · Voltage command
VL ・ ・ Overhead voltage
VC ・ ・ DC voltage
Pi ・ ・ Input power τ * ・ ・ Torque command τs ・ ・ Limit torque command ωm ・ ・ Motor speed φ * ・ ・ Magnetic flux command φs ・ ・ Corrected magnetic flux command

Claims (2)

フィルタ回路付直流電圧電源に接続されたPWMインバータを介して電動機に電力を供給し、電動機速度を演算する速度演算器と、軽負荷回生運転時のトルク指令を演算する軽負荷回生トルク指令演算器と、前記電動機速度と前記軽負荷回生トルク指令演算器の出力と磁束指令を入力し電圧指令を出力するトルク制御手段を持ち、前記電圧指令を前記PWMインバータに入力することを特徴とする電動機制御装置において、
前記軽負荷回生トルク指令演算器の出力値と前記磁束指令から補正磁束指令を演算する磁束指令演算器を新たに追加し、前記磁束指令の代わりに前記補正磁束指令を前記トルク制御手段に入力することを特徴とする電動機制御装置。
A speed calculator that calculates the motor speed by supplying power to the motor via a PWM inverter connected to a DC voltage power supply with a filter circuit, and a light load regenerative torque command calculator that calculates the torque command during light load regenerative operation And a motor control unit for inputting the voltage command to the PWM inverter, the torque control means for inputting the output of the motor speed, the output of the light load regenerative torque command calculator and the magnetic flux command, and outputting the voltage command. In the device
A magnetic flux command calculator that calculates a corrected magnetic flux command from the output value of the light load regenerative torque command calculator and the magnetic flux command is newly added, and the corrected magnetic flux command is input to the torque control means instead of the magnetic flux command. An electric motor control device characterized by that.
前記磁束指令演算器において、前記軽負荷回生トルク指令演算器の出力値の大きさが減少すると共に前記補正磁束指令を減少させることを特徴とする請求項1記載の電動機制御装置。
2. The electric motor control device according to claim 1, wherein the magnetic flux command calculator reduces the correction magnetic flux command as the magnitude of the output value of the light load regenerative torque command calculator decreases.
JP2004359493A 2004-12-13 2004-12-13 Electric motor control device Active JP4756855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359493A JP4756855B2 (en) 2004-12-13 2004-12-13 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359493A JP4756855B2 (en) 2004-12-13 2004-12-13 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2006174531A true JP2006174531A (en) 2006-06-29
JP4756855B2 JP4756855B2 (en) 2011-08-24

Family

ID=36674676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359493A Active JP4756855B2 (en) 2004-12-13 2004-12-13 Electric motor control device

Country Status (1)

Country Link
JP (1) JP4756855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374430A (en) * 2016-11-07 2017-02-01 中国神华能源股份有限公司 Electric generator no-load overvoltage protection method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551182A (en) * 1991-06-12 1993-03-02 Mitsubishi Electric Corp Elevator operating device during power failure time
JPH09298900A (en) * 1996-05-02 1997-11-18 Meidensha Corp Speed sensor-less vector controller
JPH10164883A (en) * 1996-12-02 1998-06-19 Fuji Electric Co Ltd Inverter control apparatus
JPH10225158A (en) * 1997-02-06 1998-08-21 Fujitec Co Ltd Controller for induction machine
JPH1169880A (en) * 1997-08-28 1999-03-09 Toshiba Corp Inverter controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551182A (en) * 1991-06-12 1993-03-02 Mitsubishi Electric Corp Elevator operating device during power failure time
JPH09298900A (en) * 1996-05-02 1997-11-18 Meidensha Corp Speed sensor-less vector controller
JPH10164883A (en) * 1996-12-02 1998-06-19 Fuji Electric Co Ltd Inverter control apparatus
JPH10225158A (en) * 1997-02-06 1998-08-21 Fujitec Co Ltd Controller for induction machine
JPH1169880A (en) * 1997-08-28 1999-03-09 Toshiba Corp Inverter controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374430A (en) * 2016-11-07 2017-02-01 中国神华能源股份有限公司 Electric generator no-load overvoltage protection method and device

Also Published As

Publication number Publication date
JP4756855B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4066914B2 (en) Motor drive control device
JP2007215365A (en) Ac motor system, method of controlling the same, and electric power conversion equipment associated therewith
JP2013017363A (en) Motor control device
JP2009165279A (en) Control device for electric power steering device
JP2007236075A (en) Electric power steering control device
JP5412820B2 (en) AC motor control device and control method
JP5128195B2 (en) Drive controller for buck-boost converter
JP4868585B2 (en) AC excitation generator motor controller
JP6216639B2 (en) Motor control device
JP4756855B2 (en) Electric motor control device
JP2010088239A (en) Vehicle power generation controller
JP2005033972A (en) Principal axis motor drive control arrangement
JP2007028755A (en) Power conversion equipment
JP2006325326A (en) Inverter apparatus
JP2007089318A (en) Semiconductor power conversion device
JP2007236016A (en) Drive unit of ac motor
KR100747267B1 (en) Method for reducing noise of high voltage power relay
JP4706716B2 (en) Induction motor control method
JP7451944B2 (en) Electric car
JP2015035923A (en) Synchronous motor controller
JP6127592B2 (en) Converter control device
JP4793433B2 (en) Voltage converter
KR101000502B1 (en) Over voltage control device
JP4520399B2 (en) Power supply
JP2009273270A (en) Induction-machine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4756855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3